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M
odern physics began in 1900 with Max Planck’s discovery of the role of energy
quantization in blackbody radiation, a revolutionary idea soon followed by
Albert Einstein’s equally revolutionary theory of relativity and quantum the-

ory of light. Students today must wonder why the label “modern” remains attached to
this branch of physics. Yet it is not really all that venerable: my father was born in
1900, for instance, and when I was learning modern physics most of its founders, in-
cluding Einstein, were still alive; I even had the privilege of meeting a number of them,
including Heisenberg, Pauli, and Dirac. Few aspects of contemporary science—indeed,
of contemporary life—are unaffected by the insights into matter and energy provided
by modern physics, which continues as an active discipline as it enters its second
century.

This book is intended to be used with a one-semester course in modern physics for
students who have already had basic physics and calculus courses. Relativity and
quantum ideas are considered first to provide a framework for understanding the
physics of atoms and nuclei. The theory of the atom is then developed with emphasis
on quantum-mechanical notions. Next comes a discussion of the properties of aggre-
gates of atoms, which includes a look at statistical mechanics. Finally atomic nuclei
and elementary particles are examined.

The balance in this book leans more toward ideas than toward experimental meth-
ods and practical applications, because I believe that the beginning student is better
served by a conceptual framework than by a mass of details. For a similar reason the
sequence of topics follows a logical rather than strictly historical order. The merits of
this approach have led to the extensive worldwide use of the five previous editions of
Concepts of Modern Physics, including translations into a number of other languages,
since the first edition appeared nearly forty years ago.

Wherever possible, important subjects are introduced on an elementary level, which
enables even relatively unprepared students to understand what is going on from the
start and also encourages the development of physical intuition in readers in whom
the mathematics (rather modest) inspires no terror. More material is included than can
easily be covered in one semester. Both factors give scope to an instructor to fashion
the type of course desired, whether a general survey, a deeper inquiry into selected
subjects, or a combination of both.

Like the text, the exercises are on all levels, from the quite easy (for practice and
reassurance) to those for which real thought is needed (for the joy of discovery). The
exercises are grouped to correspond to sections of the text with answers to the odd-
numbered exercises given at the back of the book. In addition, a Student Solutions
Manual has been prepared by Craig Watkins that contains solutions to the odd-
numbered exercises. 

Because the ideas of modern physics represented totally new directions in thought
when first proposed, rather than extensions of previous knowledge, the story of their
development is exceptionally interesting. Although there is no room here for a full ac-
count, bits and pieces are included where appropriate, and thirty-nine brief biogra-
phies of important contributors are sprinkled through the text to help provide a hu-
man persepctive. Many books on the history of modern physics are available for those

Preface
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who wish to go further into this subject; those by Abraham Pais and by Emilio Segré,
themselves distinguished physicists, are especially recommended.

For this edition of Concepts of Modern Physics the treatments of special relativity,
quantum mechanics, and elementary particles received major revisions. In addition,
numerous smaller changes and updates were made throughout the book, and several
new topics were added, for instance Einstein’s derivation of the Planck radiation law.
There is more material on aspects of astrophysics that nicely illustrate important ele-
ments of modern physics, which for this reason are discussed where relevant in the
text rather than being concentrated in a single chapter.

Many students, although able to follow the arguments in the book, nevertheless may
have trouble putting their knowledge to use. To help them, each chapter has a selec-
tion of worked examples. Together with those in the Solutions Manual, over 350 solu-
tions are thus available to problems that span all levels of difficulty. Understanding
these solutions should bring the unsolved even-numbered exercises within reach.

In revising Concepts of Modern Physics for the sixth edition I have had the benefit of
constructive criticism from the following reviewers, whose generous assistance was
of great value: Steven Adams, Widener University; Amitava Bhattacharjee, The Univer-
sity of Iowa; William E. Dieterle, California University of Pennsylvania; Nevin D. Gibson,
Denison University; Asif Khand Ker, Millsaps College; Teresa Larkin-Hein, American
University; Jorge A. López, University of Texas at El Paso; Carl A. Rotter, West Virginia
University; and Daniel Susan, Texas A&M University–Kingsville. I am also grateful to the
following reviewers of previous editions for their critical reviews and comments: Donald
R. Beck, Michigan Technological University; Ronald J. Bieniek, University of Missouri–Rolla;
Lynn R. Cominsky, Sonoma State University; Brent Cornstubble, United States Military
Academy; Richard Gass, University of Cincinnati; Nicole Herbot, Arizona State Univer-
sity; Vladimir Privman, Clarkson University; Arnold Strassenberg, State University of New
York–Stony Brook; the students at Clarkson and Arizona State Universities who evaluated
an earlier edition from their point of view; and Paul Sokol of Pennsylvania State Uni-
versity who supplied a number of excellent exercises. I am especially indebted to Craig
Watkins of Massachusetts Institute of Technology who went over the manuscript with a
meticulous and skeptical eye and who checked the answers to all the exercises. Finally,
I want to thank my friends at McGraw-Hill for their skilled and enthusiastic help
throughout the project.

Arthur Beiser
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CHAPTER 1

Relativity
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exceed 10 km/s, they are far from this ultimate speed limit.
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2 Chapter One

I
n 1905 a young physicist of twenty-six named Albert Einstein showed how meas-
urements of time and space are affected by motion between an observer and what
is being observed. To say that Einstein’s theory of relativity revolutionized science

is no exaggeration. Relativity connects space and time, matter and energy, electricity
and magnetism—links that are crucial to our understanding of the physical universe.
From relativity have come a host of remarkable predictions, all of which have been
confirmed by experiment. For all their profundity, many of the conclusions of relativity
can be reached with only the simplest of mathematics.

1.1   SPECIAL RELATIVITY

All motion is relative; the speed of light in free space is the same for all
observers

When such quantities as length, time interval, and mass are considered in elementary
physics, no special point is made about how they are measured. Since a standard unit
exists for each quantity, who makes a certain determination would not seem to matter—
everybody ought to get the same result. For instance, there is no question of principle
involved in finding the length of an airplane when we are on board. All we have to do
is put one end of a tape measure at the airplane’s nose and look at the number on the
tape at the airplane’s tail.

But what if the airplane is in flight and we are on the ground? It is not hard to de-
termine the length of a distant object with a tape measure to establish a baseline, a
surveyor’s transit to measure angles, and a knowledge of trigonometry. When we meas-
ure the moving airplane from the ground, though, we find it to be shorter than it is
to somebody in the airplane itself. To understand how this unexpected difference arises
we must analyze the process of measurement when motion is involved.

Frames of Reference

The first step is to clarify what we mean by motion. When we say that something is
moving, what we mean is that its position relative to something else is changing. A
passenger moves relative to an airplane; the airplane moves relative to the earth; the
earth moves relative to the sun; the sun moves relative to the galaxy of stars (the Milky
Way) of which it is a member; and so on. In each case a frame of reference is part of
the description of the motion. To say that something is moving always implies a specific
frame of reference.

An inertial frame of reference is one in which Newton’s first law of motion holds.
In such a frame, an object at rest remains at rest and an object in motion continues to
move at constant velocity (constant speed and direction) if no force acts on it. Any
frame of reference that moves at constant velocity relative to an inertial frame is itself
an inertial frame.

All inertial frames are equally valid. Suppose we see something changing its posi-
tion with respect to us at constant velocity. Is it moving or are we moving? Suppose
we are in a closed laboratory in which Newton’s first law holds. Is the laboratory mov-
ing or is it at rest? These questions are meaningless because all constant-velocity motion
is relative. There is no universal frame of reference that can be used everywhere, no
such thing as “absolute motion.”

The theory of relativity deals with the consequences of the lack of a universal frame
of reference. Special relativity, which is what Einstein published in 1905, treats
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Relativity 3

problems that involve inertial frames of reference. General relativity, published by
Einstein a decade later, describes the relationship between gravity and the geometrical
structure of space and time. The special theory has had an enormous impact on much
of physics, and we shall concentrate on it here.

Postulates of Special Relativity

Two postulates underlie special relativity. The first, the principle of relativity, states:

The laws of physics are the same in all inertial frames of reference.

This postulate follows from the absence of a universal frame of reference. If the laws
of physics were different for different observers in relative motion, the observers could
find from these differences which of them were “stationary” in space and which were
“moving.” But such a distinction does not exist, and the principle of relativity expresses
this fact.

The second postulate is based on the results of many experiments:

The speed of light in free space has the same value in all inertial frames of
reference.

This speed is 2.998 � 108 m/s to four significant figures.
To appreciate how remarkable these postulates are, let us look at a hypothetical

experiment basically no different from actual ones that have been carried out in a
number of ways. Suppose I turn on a searchlight just as you fly past in a spacecraft
at a speed of 2 � 108 m/s (Fig. 1.1). We both measure the speed of the light waves
from the searchlight using identical instruments. From the ground I find their speed
to be 3 � 108 m/s as usual. “Common sense” tells me that you ought to find a speed
of (3 � 2) � 108 m/s, or only 1 � 108 m/s, for the same light waves. But you also
find their speed to be 3 � 108 m/s, even though to me you seem to be moving parallel
to the waves at 2 � 108 m/s.

Figure 1.1 The speed of light is the same to all observers.

(a) b) c)

c = 3 ✕ 108 m/s

c  = 3 ✕ 108 m/s

v = 2 ✕ 108 m/s

( (
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4 Chapter One

Figure 1.2 The Michelson-Morley experiment.

Mirror A
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single source
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Albert A. Michelson (1852–1931)
was born in Germany but came to the
United States at the age of two with
his parents, who settled in Nevada. He
attended the U.S. Naval Academy at
Annapolis where, after two years of sea
duty, he became a science instructor.
To improve his knowledge of optics,
in which he wanted to specialize,
Michelson went to Europe and stud-
ied in Berlin and Paris. Then he left

the Navy to work first at the Case School of Applied Science in
Ohio, then at Clark University in Massachusetts, and finally at
the University of Chicago, where he headed the physics de-
partment from 1892 to 1929. Michelson’s speciality was high-
precision measurement, and for many decades his successive
figures for the speed of light were the best available. He rede-
fined the meter in terms of wavelengths of a particular spectral
line and devised an interferometer that could determine the
diameter of a star (stars appear as points of light in even the
most powerful telescopes).

Michelson’s most significant achievement, carried out in
1887 in collaboration with Edward Morley, was an experiment
to measure the motion of the earth through the “ether,” a hy-
pothetical medium pervading the universe in which light waves
were supposed to occur. The notion of the ether was a hang-
over from the days before light waves were recognized as elec-
tromagnetic, but nobody at the time seemed willing to discard
the idea that light propagates relative to some sort of universal
frame of reference.

To look for the earth’s motion through the ether, Michelson
and Morley used a pair of light beams formed by a half-silvered
mirror, as in Fig. 1.2. One light beam is directed to a mirror
along a path perpendicular to the ether current, and the other
goes to a mirror along a path parallel to the ether current. Both
beams end up at the same viewing screen. The clear glass plate
ensures that both beams pass through the same thicknesses of
air and glass. If the transit times of the two beams are the same,
they will arrive at the screen in phase and will interfere con-
structively. An ether current due to the earth’s motion parallel
to one of the beams, however, would cause the beams to have
different transit times and the result would be destructive in-
terference at the screen. This is the essence of the experiment.

Although the experiment was sensitive enough to detect the
expected ether drift, to everyone’s surprise none was found.
The negative result had two consequences. First, it showed that
the ether does not exist and so there is no such thing as “ab-
solute motion” relative to the ether: all motion is relative to a
specified frame of reference, not to a universal one. Second, the
result showed that the speed of light is the same for all ob-
servers, which is not true of waves that need a material medium
in which to occur (such as sound and water waves).

The Michelson-Morley experiment set the stage for Einstein’s
1905 special theory of relativity, a theory that Michelson him-
self was reluctant to accept. Indeed, not long before the flow-
ering of relativity and quantum theory revolutionized physics,
Michelson announced that “physical discoveries in the future
are a matter of the sixth decimal place.” This was a common
opinion of the time. Michelson received a Nobel Prize in 1907,
the first American to do so.

bei48482_ch01.qxd  1/15/02  1:21 AM  Page 4



Relativity 5

There is only one way to account for these results without violating the principle of
relativity. It must be true that measurements of space and time are not absolute but de-
pend on the relative motion between an observer and what is being observed. If I were
to measure from the ground the rate at which your clock ticks and the length of your
meter stick, I would find that the clock ticks more slowly than it did at rest on the ground
and that the meter stick is shorter in the direction of motion of the spacecraft. To you,
your clock and meter stick are the same as they were on the ground before you took off.
To me they are different because of the relative motion, different in such a way that the
speed of light you measure is the same 3 � 108 m/s I measure. Time intervals and lengths
are relative quantities, but the speed of light in free space is the same to all observers.

Before Einstein’s work, a conflict had existed between the principles of mechanics,
which were then based on Newton’s laws of motion, and those of electricity and
magnetism, which had been developed into a unified theory by Maxwell. Newtonian
mechanics had worked well for over two centuries. Maxwell’s theory not only covered
all that was then known about electric and magnetic phenomena but had also pre-
dicted that electromagnetic waves exist and identified light as an example of them.
However, the equations of Newtonian mechanics and those of electromagnetism differ
in the way they relate measurements made in one inertial frame with those made in a
different inertial frame.

Einstein showed that Maxwell’s theory is consistent with special relativity whereas
Newtonian mechanics is not, and his modification of mechanics brought these branches
of physics into accord. As we will find, relativistic and Newtonian mechanics agree for
relative speeds much lower than the speed of light, which is why Newtonian mechanics
seemed correct for so long. At higher speeds Newtonian mechanics fails and must be
replaced by the relativistic version.

1.2   TIME DILATION

A moving clock ticks more slowly than a clock at rest

Measurements of time intervals are affected by relative motion between an observer
and what is observed. As a result, a clock that moves with respect to an observer ticks
more slowly than it does without such motion, and all processes (including those of
life) occur more slowly to an observer when they take place in a different inertial frame.

If someone in a moving spacecraft finds that the time interval between two events
in the spacecraft is t0, we on the ground would find that the same interval has the
longer duration t. The quantity t0, which is determined by events that occur at the same
place in an observer’s frame of reference, is called the proper time of the interval
between the events. When witnessed from the ground, the events that mark the be-
ginning and end of the time interval occur at different places, and in consequence the
duration of the interval appears longer than the proper time. This effect is called time
dilation (to dilate is to become larger).

To see how time dilation comes about, let us consider two clocks, both of the par-
ticularly simple kind shown in Fig. 1.3. In each clock a pulse of light is reflected back
and forth between two mirrors L0 apart. Whenever the light strikes the lower mirror,
an electric signal is produced that marks the recording tape. Each mark corresponds
to the tick of an ordinary clock.

One clock is at rest in a laboratory on the ground and the other is in a spacecraft
that moves at the speed � relative to the ground. An observer in the laboratory watches
both clocks: does she find that they tick at the same rate?
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6 Chapter One

Figure 1.4 shows the laboratory clock in operation. The time interval between ticks
is the proper time t0 and the time needed for the light pulse to travel between the
mirrors at the speed of light c is t0�2. Hence t0�2 � L0�c and

t0 � (1.1)

Figure 1.5 shows the moving clock with its mirrors perpendicular to the direction
of motion relative to the ground. The time interval between ticks is t. Because the clock
is moving, the light pulse, as seen from the ground, follows a zigzag path. On its way
from the lower mirror to the upper one in the time t�2, the pulse travels a horizontal
distance of �(t�2) and a total distance of c(t�2). Since L0 is the vertical distance between
the mirrors,

� �
2

� L2
0 � � �

2

(c2 � �2) � L2
0

t2 � �

t � (1.2)

But 2L0�c is the time interval t0 between ticks on the clock on the ground, as in
Eq. (1.1), and so

2L0�c
��
�1 � �2��c2�

(2L0)2

��
c2(1 � �2�c2)

4L2
0

�
c2 � �2

t2
�
4

� t
�
2

ct
�
2

2L0
�

c

0

t

t
2
–

Figure 1.4 A light-pulse clock at
rest on the ground as seen by an
observer on the ground. The dial
represents a conventional clock on
the ground.

M
et

er
 s

ti
ck

L0

Mirror

Light pulse

Mirror

Photosensitive surface

Recording device

“Ticks”

Figure 1.3 A simple clock. Each “tick” corresponds to a round trip of the light pulse from the lower
mirror to the upper one and back.
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Time dilation t � (1.3)

Here is a reminder of what the symbols in Eq. (1.4) represent:

t0 � time interval on clock at rest relative to an observer � proper time
t � time interval on clock in motion relative to an observer
� � speed of relative motion
c � speed of light

Because the quantity �1 � �2��c2� is always smaller than 1 for a moving object, t is
always greater than t0. The moving clock in the spacecraft appears to tick at a slower
rate than the stationary one on the ground, as seen by an observer on the ground.

Exactly the same analysis holds for measurements of the clock on the ground by
the pilot of the spacecraft. To him, the light pulse of the ground clock follows a zigzag
path that requires a total time t per round trip. His own clock, at rest in the spacecraft,
ticks at intervals of t0. He too finds that 

t �

so the effect is reciprocal: every observer finds that clocks in motion relative to him
tick more slowly than clocks at rest relative to him.

Our discussion has been based on a somewhat unusual clock. Do the same conclusions
apply to ordinary clocks that use machinery—spring-controlled escapements, tuning
forks, vibrating quartz crystals, or whatever—to produce ticks at constant time intervals?
The answer must be yes, since if a mirror clock and a conventional clock in the space-
craft agree with each other on the ground but not when in flight, the disagreement
between then could be used to find the speed of the spacecraft independently of any
outside frame of reference—which contradicts the principle that all motion is relative.

t0
��
�1 � �2��c2�

t0
��
�1 � �2��c2�

0

t

t
2
–

t
2
–v

v

t
2
–c L0

v

Figure 1.5 A light-pulse clock in a spacecraft as seen by an observer on the ground. The mirrors are
parallel to the direction of motion of the spacecraft. The dial represents a conventional clock on the
ground.
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8 Chapter One

The Ultimate Speed Limit

T he earth and the other planets of the solar system seem to be natural products of the evolu-
tion of the sun. Since the sun is a rather ordinary star in other ways, it is not surprising that

other stars have been found to have planetary systems around them as well. Life developed here
on earth, and there is no known reason why it should not also have done so on some of these
planets. Can we expect ever to be able to visit them and meet our fellow citizens of the universe?
The trouble is that nearly all stars are very far away—thousands or millions of light-years away. (A
light-year, the distance light travels in a year, is 9.46 � 1015 m.) But if we can build a spacecraft
whose speed is thousands or millions of times greater than the speed of light c, such distances
would not be an obstacle.

Alas, a simple argument based on Einstein’s postulates shows that nothing can move faster
than c. Suppose you are in a spacecraft traveling at a constant speed � relative to the earth that
is greater than c. As I watch from the earth, the lamps in the spacecraft suddenly go out. You
switch on a flashlight to find the fuse box at the front of the spacecraft and change the blown
fuse (Fig. 1.6a). The lamps go on again.

From the ground, though, I would see something quite different. To me, since your speed �
is greater than c, the light from your flashlight illuminates the back of the spacecraft (Fig. 1.6b).
I can only conclude that the laws of physics are different in your inertial frame from what they
are in my inertial frame—which contradicts the principle of relativity. The only way to avoid
this contradiction is to assume that nothing can move faster than the speed of light. This as-
sumption has been tested experimentally many times and has always been found to be correct.

The speed of light c in relativity is always its value in free space of 3.00 � 108 m/s. In all ma-
terial media, such as air, water, or glass, light travels more slowly than this, and atomic particles
are able to move faster in such media than does light. When an electrically charged particle moves
through a transparent substance at a speed exceeding that of light in the substance, a cone of light
waves is emitted that corresponds to the bow wave produced by a ship moving through the water
faster than water waves do. These light waves are known as Cerenkov radiation and form the
basis of a method of determining the speeds of such particles. The minimum speed a particle must
have to emit Cerenkov radiation is c�n in a medium whose index of refraction is n. Cerenkov ra-
diation is visible as a bluish glow when an intense beam of particles is involved.

(a) (b)

Figure 1.6 A person switches on a flashlight in a spacecraft assumed to be moving relative to the earth
faster than light. (a) In the spacecraft frame, the light goes to the front of the spacecraft. (b) In the
earth frame, the light goes to the back of the spacecraft. Because observers in the spacecraft and on
the earth would see different events, the principle of relativity would be violated. The conclusion is
that the spacecraft cannot be moving faster than light relative to the earth (or relative to anything else).
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Albert Einstein (1879–1955), bitterly
unhappy with the rigid discipline of
the schools of his native Germany,
went at sixteen to Switzerland to com-
plete his education, and later got a job
examining patent applications at the
Swiss Patent Office. Then, in 1905,
ideas that had been germinating in his
mind for years when he should have
been paying attention to other matters
(one of his math teachers called
Einstein a “lazy dog”) blossomed into

three short papers that were to change decisively the course not
only of physics but of modern civilization as well.

The first paper, on the photoelectric effect, proposed that light
has a dual character with both particle and wave properties. The
subject of the second paper was Brownian motion, the irregular
zigzag movement of tiny bits of suspended matter, such as pollen
grains in water. Einstein showed that Brownian motion results
from the bombardment of the particles by randomly moving mol-
ecules in the fluid in which they are suspended. This provided
the long-awaited definite link with experiment that convinced
the remaining doubters of the molecular theory of matter. The
third paper introduced the special theory of relativity.

Although much of the world of physics was originally either
indifferent or skeptical, even the most unexpected of Einstein’s
conclusions were soon confirmed and the development of what
is now called modern physics began in earnest. After university
posts in Switzerland and Czechoslovakia, in 1913 he took up an

appointment at the Kaiser Wilhelm Institute in Berlin that left him
able to do research free of financial worries and routine duties.
Einstein’s interest was now mainly in gravitation, and he started
where Newton had left off more than two centuries earlier.

Einstein’s general theory of relativity, published in 1916, re-
lated gravity to the structure of space and time. In this theory
the force of gravity can be thought of as arising from a warp-
ing of spacetime around a body of matter so that a nearby mass
tends to move toward it, much as a marble rolls toward the bot-
tom of a saucer-shaped hole. From general relativity came a
number of remarkable predictions, such as that light should be
subject to gravity, all of which were verified experimentally. The
later discovery that the universe is expanding fit neatly into the
theory. In 1917 Einstein introduced the idea of stimulated emis-
sion of radiation, an idea that bore fruit forty years later in the
invention of the laser.

The development of quantum mechanics in the 1920s dis-
turbed Einstein, who never accepted its probabilistic rather than
deterministic view of events on an atomic scale. “God does not
play dice with the world,” he said, but for once his physical in-
tuition seemed to be leading him in the wrong direction.

Einstein, by now a world celebrity, left Germany in 1933 af-
ter Hitler came to power and spent the rest of his life at the In-
stitute for Advanced Study in Princeton, New Jersey, thereby
escaping the fate of millions of other European Jews at the hands
of the Germans. His last years were spent in an unsuccessful
search for a theory that would bring gravitation and electro-
magnetism together into a single picture, a problem worthy of
his gifts but one that remains unsolved to this day.

(AIP Niels Bohr Library)

Example 1.1

A spacecraft is moving relative to the earth. An observer on the earth finds that, between 1 P.M.
and 2 P.M. according to her clock, 3601 s elapse on the spacecraft’s clock. What is the space-
craft’s speed relative to the earth?

Solution 

Here t0 � 3600 s is the proper time interval on the earth and t � 3601 s is the time interval in
the moving frame as measured from the earth. We proceed as follows:

t �

1 � � � �
2

� � c �1 � ����
2� � (2.998 � 108 m/s) �1 � ����

2�
� 7.1 � 106 m/s

Today’s spacecraft are much slower than this. For instance, the highest speed of the Apollo 11 space-
craft that went to the moon was only 10,840 m/s, and its clocks differed from those on the earth
by less than one part in 109. Most of the experiments that have confirmed time dilation made use
of unstable nuclei and elementary particles which readily attain speeds not far from that of light.

3600 s
�
3601 s

t0
�
t

t0
�
t

�2

�
c2

t0
��
�1 � �2��c2�
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10 Chapter One

Although time is a relative quantity, not all the notions of time formed by every-
day experience are incorrect. Time does not run backward to any observer, for in-
stance. A sequence of events that occur at some particular point at t1, t2, t3, . . . will
appear in the same order to all observers everywhere, though not necessarily with the
same time intervals t2 � t1, t3 � t2, . . . between each pair of events. Similarly, no
distant observer, regardless of his or her state of motion, can see an event before it
happens—more precisely, before a nearby observer sees it—since the speed of light
is finite and signals require the minimum period of time L�c to travel a distance L.
There is no way to peer into the future, although past events may appear different to
different observers.

1.3   DOPPLER EFFECT

Why the universe is believed to be expanding

We are all familiar with the increase in pitch of a sound when its source approaches
us (or we approach the source) and the decrease in pitch when the source recedes from
us (or we recede from the source). These changes in frequency constitute the doppler
effect, whose origin is straightforward. For instance, successive waves emitted by a
source moving toward an observer are closer together than normal because of the
advance of the source; because the separation of the waves is the wavelength of the
sound, the corresponding frequency is higher. The relationship between the source
frequency �0 and the observed frequency � is

Apollo 11 lifts off its pad to begin the first human
visit to the moon. At its highest speed of 10.8 km/s
relative to the earth, its clocks differed from those on
the earth by less than one part in a billion.
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Relativity 11

� � �0� � (1.4)

where c � speed of sound
� � speed of observer (� for motion toward the source, � for motion away

from it)
V � speed of the source (� for motion toward the observer, � for motion

away from him)

If the observer is stationary, � � 0, and if the source is stationary, V � 0.
The doppler effect in sound varies depending on whether the source, or the observer,

or both are moving. This appears to violate the principle of relativity: all that should
count is the relative motion of source and observer. But sound waves occur only in a
material medium such as air or water, and this medium is itself a frame of reference
with respect to which motions of source and observer are measurable. Hence there is
no contradiction. In the case of light, however, no medium is involved and only rela-
tive motion of source and observer is meaningful. The doppler effect in light must
therefore differ from that in sound.

We can analyze the doppler effect in light by considering a light source as a clock
that ticks �0 times per second and emits a wave of light with each tick. We will examine
the three situations shown in Fig. 1.7.

1 Observer moving perpendicular to a line between him and the light source. The proper
time between ticks is t0 � 1��0, so between one tick and the next the time
t � t0��1 � �2��c2� elapses in the reference frame of the observer. The frequency he
finds is accordingly

�(transverse) � �

� � �0�1 � �2��c2� (1.5)

The observed frequency � is always lower than the source frequency �0.

2 Observer receding from the light source. Now the observer travels the distance � t away
from the source between ticks, which means that the light wave from a given tick takes

Transverse
doppler effect
in light

�1 � �2��c2�
��

t0

1
�
t

1 � ��c
�
1 � V�c

Doppler effect in
sound

Figure 1.7 The frequency of the light seen by an observer depends on the direction and speed of the
observer’s motion relative to its source.

(1)

Source

v

(2)

v

(3)

v

Observer
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12 Chapter One

� t�c longer to reach him than the previous one. Hence the total time between the arrival
of successive waves is 

T � t � � t0 � t0 � t0 ��
and the observed frequency is 

�(receding) � � ��� �0 �� (1.6)

The observed frequency � is lower than the source frequency �0. Unlike the case of
sound waves, which propagate relative to a material medium it makes no difference
whether the observer is moving away from the source or the source is moving away
from the observer.

3 Observer approaching the light source. The observer here travels the distance � t toward
the source between ticks, so each light wave takes � t�c less time to arrive than the
previous one. In this case T � t � � t�c and the result is

�(approaching) � �0�� (1.7)
1 � ��c
�
1 � ��c

1 � ��c
�
1 � ��c

1 � ��c
�
1 � ��c

1
�
t0

1
�
T

1 � ��c
�
1 � ��c

�1 � ���c� �1 � ���c�
���
�1 � ���c� �1 � ���c�

1 � ��c
��
�1 � �2��c2�

� t
�
c

a

�4415.1 �4526.6

b

The observed frequency is higher than the source frequency. Again, the same formula
holds for motion of the source toward the observer.

Equations (1.6) and (1.7) can be combined in the single formula

� � �0 �� (1.8)

by adopting the convention that � is � for source and observer approaching each other
and � for source and observer receding from each other.

1 � ��c
�
1 � ��c

Longitudinal
doppler effect
in light

Spectra of the double star Mizar, which consists of two stars that circle their center of mass, taken
2 days apart. In a the stars are in line with no motion toward or away from the earth, so their
spectral lines are superimposed. In b one star is moving toward the earth and the other is mov-
ing away from the earth, so the spectral lines of the former are doppler-shifted toward the blue
end of the spectrum and those of the latter are shifted toward the red end.
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Example 1.2

A driver is caught going through a red light. The driver claims to the judge that the color she
actually saw was green (� � 5.60 � 1014 Hz) and not red (�0 � 4.80 � 1014 Hz) because of
the doppler effect. The judge accepts this explanation and instead fines her for speeding at the
rate of $1 for each km/h she exceeded the speed limit of 80 km/h. What was the fine?

Solution

Solving Eq. (1.8) for � gives

� � c� � � (3.00 � 108 m/s)� �
� 4.59 � 107 m/s � 1.65 � 108 km/h

since 1 m/s � 3.6 km/h. The fine is therefore $(1.65 � 108 � 80) � $164,999,920.

Visible light consists of electromagnetic waves in a frequency band to which the eye
is sensitive. Other electromagnetic waves, such as those used in radar and in radio
communications, also exhibit the doppler effect in accord with Eq. (1.8). Doppler shifts
in radar waves are used by police to measure vehicle speeds, and doppler shifts in the
radio waves emitted by a set of earth satellites formed the basis of the highly accurate
Transit system of marine navigation.

The Expanding Universe

The doppler effect in light is an important tool in astronomy. Stars emit light of cer-
tain characteristic frequencies called spectral lines, and motion of a star toward or away
from the earth shows up as a doppler shift in these frequencies. The spectral lines of
distant galaxies of stars are all shifted toward the low-frequency (red) end of the
spectrum and hence are called “red shifts.” Such shifts indicate that the galaxies are re-
ceding from us and from one another. The speeds of recession are observed to be

(5.60)2 � (4.80)2

��
(5.60)2 � (4.80)2

�2 � �2
0�

�2 � �2
0

Edwin Hubble (1889–
1953) was born in Missouri
and, although always inter-
ested in astronomy, pursued
a variety of other subjects
as well at the University of
Chicago. He then went as a
Rhodes Scholar to Oxford
University in England where
he concentrated on law,
Spanish, and heavyweight
boxing. After two years of
teaching at an Indiana high
school, Hubble realized
what his true vocation was

and returned to the University of Chicago to study astronomy.

At Mt. Wilson Observatory in California, Hubble made
the first accurate measurements of the distances of spiral
galaxies which showed that they are far away in space from
our own Milky Way galaxy. It had been known for some time
that such galaxies have red shifts in their spectra that indi-
cate motion away from the Milky Way, and Hubble joined his
distance figures with the observed red shifts to conclude that
the recession speeds were proportional to distance. This im-
plies that the universe is expanding, a remarkable discovery
that has led to the modern picture of the universe. Hubble
was the first to use the 200-inch telescope, for many years
the world’s largest, at Mt. Palomar in California, in 1949. In
his later work Hubble tried to determine the structure of the
universe by finding how the concentration of remote galax-
ies varies with distance, a very difficult task that only today
is being accomplished.
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14 Chapter One

proportional to distance, which suggests that the entire universe is expanding (Fig. 1.8).
This proportionality is called Hubble’s law.

The expansion apparently began about 13 billion years ago when a very small, in-
tensely hot mass of primeval matter exploded, an event usually called the Big Bang.
As described in Chap. 13, the matter soon turned into the electrons, protons, and neu-
trons of which the present universe is composed. Individual aggregates that formed
during the expansion became the galaxies of today. Present data suggest that the current
expansion will continue forever.

Example 1.3

A distant galaxy in the constellation Hydra is receding from the earth at 6.12 � 107 m/s. By
how much is a green spectral line of wavelength 500 nm (1 nm � 10�9 m) emitted by this
galaxy shifted toward the red end of the spectrum?

(b)

(a)

Approximate distance, light-years
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Figure 1.8 (a) Graph of recession speed versus distance for distant galaxies. The speed of recession
averages about 21 km/s per million light-years. (b) Two-dimensional analogy of the expanding uni-
verse. As the balloon is inflated, the spots on it become farther apart. A bug on the balloon would
find that the farther away a spot is from its location, the faster the spot seems to be moving away;
this is true no matter where the bug is. In the case of the universe, the more distant a galaxy is from
us, the faster it is moving away, which means that the universe is expanding uniformly.
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Solution

Since � � c�� and �0 � c��0, from Eq. (1.6) we have

� � �0 ��
Here � � 0.204c and �0 � 500 nm, so

� � 500 nm �� � 615 nm

which is in the orange part of the spectrum. The shift is � � �0 � 115 nm. This galaxy is believed
to be 2.9 billion light-years away.

1.4   LENGTH CONTRACTION

Faster means shorter

Measurements of lengths as well as of time intervals are affected by relative motion.
The length L of an object in motion with respect to an observer always appears to the
observer to be shorter than its length L0 when it is at rest with respect to him. This
contraction occurs only in the direction of the relative motion. The length L0 of an
object in its rest frame is called its proper length. (We note that in Fig. 1.5 the clock
is moving perpendicular to v, hence L � L0 there.)

The length contraction can be derived in a number of ways. Perhaps the simplest
is based on time dilation and the principle of relativity. Let us consider what happens
to unstable particles called muons that are created at high altitudes by fast cosmic-ray
particles (largely protons) from space when they collide with atomic nuclei in the earth’s
atmosphere. A muon has a mass 207 times that of the electron and has a charge of
either �e or �e; it decays into an electron or a positron after an average lifetime of
2.2 �s (2.2 � 10�6 s).

Cosmic-ray muons have speeds of about 2.994 � 108 m/s (0.998c) and reach sea
level in profusion—one of them passes through each square centimeter of the earth’s
surface on the average slightly more often than once a minute. But in t0 � 2.2 �s,
their average lifetime, muons can travel a distance of only

� t0 � (2.994 � 108 m/s)(2.2 � 10�6 s) � 6.6 � 102 m � 0.66 km

before decaying, whereas they are actually created at altitudes of 6 km or more.
To resolve the paradox, we note that the muon lifetime of t0 � 2.2 �s is what an

observer at rest with respect to a muon would find. Because the muons are hurtling
toward us at the considerable speed of 0.998c, their lifetimes are extended in our frame
of reference by time dilation to

t � � � 34.8 � 10�6 s � 34.8 �s

The moving muons have lifetimes almost 16 times longer than those at rest. In a time
interval of 34.8 �s, a muon whose speed is 0.998c can cover the distance

� t � (2.994 � 108 m/s)(34.8 � 10�6 s) � 1.04 � 104 m � 10.4 km

2.2 � 10�6 s
���
�1 � (0�.998c)�2�c2�

t0
��
�1 � �2��c2�

1 � 0.204
��
1 � 0.204

1 � ��c
�
1 � ��c
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As found by an observer
moving with the muon, the
ground is L below it, which is
a shorter distance than L0.

As found by observer
on the ground, the
muon altitude is L0.

L0

L

Figure 1.9 Muon decay as seen by different observers. The muon size is greatly exaggerated here; in fact,
the muon seems likely to be a point particle with no extension in space.

Although its lifetime is only t0 � 2.2 �s in its own frame of reference, a muon can
reach the ground from altitudes of as much as 10.4 km because in the frame in which
these altitudes are measured, the muon lifetime is t � 34.8 �s.

What if somebody were to accompany a muon in its descent at � � 0.998c, so that
to him or her the muon is at rest? The observer and the muon are now in the same
frame of reference, and in this frame the muon’s lifetime is only 2.2 �s. To the observer,
the muon can travel only 0.66 km before decaying. The only way to account for the
arrival of the muon at ground level is if the distance it travels, from the point of view
of an observer in the moving frame, is shortened by virtue of its motion (Fig. 1.9). The
principle of relativity tells us the extent of the shortening—it must be by the same 

factor of �1 � �2��c2� that the muon lifetime is extended from the point of view of a
stationary observer.

We therefore conclude that an altitude we on the ground find to be h0 must appear
in the muon’s frame of reference as the lower altitude

h � h0 �1 � �2��c2�

In our frame of reference the muon can travel h0 � 10.4 km because of time dilation.
In the muon’s frame of reference, where there is no time dilation, this distance is
abbreviated to
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h � (10.4 km) �1 � (0�.998c)�2�c2� � 0.66 km

As we know, a muon traveling at 0.998c goes this far in 2.2 �s.
The relativistic shortening of distances is an example of the general contraction of

lengths in the direction of motion:

L � L0 �1 � �2��c2� (1.9)

Figure 1.10 is a graph of L�L0 versus ��c. Clearly the length contraction is most
significant at speeds near that of light. A speed of 1000 km/s seems fast to us, but it
only results in a shortening in the direction of motion to 99.9994 percent of the proper
length of an object moving at this speed. On the other hand, something traveling at
nine-tenths the speed of light is shortened to 44 percent of its proper length, a
significant change.

Like time dilation, the length contraction is a reciprocal effect. To a person in a
spacecraft, objects on the earth appear shorter than they did when he or she was on
the ground by the same factor of �1 � �2��c2� that the spacecraft appears shorter to
somebody at rest. The proper length L0 found in the rest frame is the maximum length
any observer will measure. As mentioned earlier, only lengths in the direction of motion
undergo contraction. Thus to an outside observer a spacecraft is shorter in flight than
on the ground, but it is not narrower.

1.5   TWIN PARADOX

A longer life, but it will not seem longer

We are now in a position to understand the famous relativistic effect known as the
twin paradox. This paradox involves two identical clocks, one of which remains on
the earth while the other is taken on a voyage into space at the speed � and eventu-
ally is brought back. It is customary to replace the clocks with the pair of twins Dick and

Length 
contraction

1.0

0.8

0.6

0.4

0.2

0
0.001 0.01 0.1 1.0

L
/L

0

v/c

Figure 1.10 Relativistic length contraction. Only lengths in the direction of motion are affected. The
horizontal scale is logarithmic.

bei48482_ch01.qxd  1/15/02  1:21 AM  Page 17



18 Chapter One

Jane, a substitution that is perfectly acceptable because the processes of life—heartbeats,
respiration, and so on—constitute biological clocks of reasonable regularity.

Dick is 20 y old when he takes off on a space voyage at a speed of 0.80c to a star
20 light-years away. To Jane, who stays behind, the pace of Dick’s life is slower than
hers by a factor of

�1 � �2��c2� � �1 � (0�.80c)2��c2� � 0.60 � 60%

To Jane, Dick’s heart beats only 3 times for every 5 beats of her heart; Dick takes only
3 breaths for every 5 of hers; Dick thinks only 3 thoughts for every 5 of hers. Finally
Dick returns after 50 years have gone by according to Jane’s calendar, but to Dick the
trip has taken only 30 y. Dick is therefore 50 y old whereas Jane, the twin who stayed
home, is 70 y old (Fig. 1.11).

Where is the paradox? If we consider the situation from the point of view of Dick
in the spacecraft, Jane on the earth is in motion relative to him at a speed of 0.80c.
Should not Jane then be 50 y old when the spacecraft returns, while Dick is then
70—the precise opposite of what was concluded above?

But the two situations are not equivalent. Dick changed from one inertial frame to
a different one when he started out, when he reversed direction to head home, and
when he landed on the earth. Jane, however, remained in the same inertial frame dur-
ing Dick’s whole voyage. The time dilation formula applies to Jane’s observations of
Dick, but not to Dick’s observations of her.

To look at Dick’s voyage from his perspective, we must take into account that the
distance L he covers is shortened to

L � L0 �1 � �2��c2� � (20 light-years) �1 � (0�.80c)2��c2� � 12 light-years

To Dick, time goes by at the usual rate, but his voyage to the star has taken L�� � 15 y
and his return voyage another 15 y, for a total of 30 y. Of course, Dick’s life span has

2130

2100

2150

2100

Figure 1.11 An astronaut who returns from a space voyage will be younger than his or her twin who
remains on earth. Speeds close to the speed of light (here � � 0.8c) are needed for this effect to be
conspicuous.
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not been extended to him, because regardless of Jane’s 50-y wait, he has spent only
30 y on the roundtrip.

The nonsymmetric aging of the twins has been verified by experiments in which
accurate clocks were taken on an airplane trip around the world and then compared
with identical clocks that had been left behind. An observer who departs from an in-
ertial system and then returns after moving relative to that system will always find his
or her clocks slow compared with clocks that stayed in the system.

Example 1.4

Dick and Jane each send out a radio signal once a year while Dick is away. How many signals
does Dick receive? How many does Jane receive?

Solution

On the outward trip, Dick and Jane are being separated at a rate of 0.80c. With the help of the
reasoning used to analyze the doppler effect in Sec. 1.3, we find that each twin receives signals

T1 � t0 ��� (1 y) �� � 3 y

apart. On the return trip, Dick and Jane are getting closer together at the same rate, and each
receives signals more frequently, namely

T2 � t0 ��� (1 y) �� � y

apart.
To Dick, the trip to the star takes 15 y, and he receives 15�3 � 5 signals from Jane. During

the 15 y of the return trip, Dick receives 15�(1�3) � 45 signals from Jane, for a total of 50 sig-
nals. Dick therefore concludes that Jane has aged by 50 y in his absence. Both Dick and Jane
agree that Jane is 70 y old at the end of the voyage.

To Jane, Dick needs L0�� � 25 y for the outward trip. Because the star is 20 light-years away.
Jane on the earth continues to receive Dick’s signals at the original rate of one every 3 y for 20 y
after Dick has arrived at the star. Hence Jane receives signals every 3 y for 25 y � 20 y � 45 y
to give a total of 45�3 � 15 signals. (These are the 15 signals Dick sent out on the outward
trip.) Then, for the remaining 5 y of what is to Jane a 50-y voyage, signals arrive from Dick at
the shorter intervals of 1�3 y for an additional 5�(1�3) � 15 signals. Jane thus receives 30 sig-
nals in all and concludes that Dick has aged by 30 y during the time he was away—which agrees
with Dick’s own figure. Dick is indeed 20 y younger than his twin Jane on his return.

1.6   ELECTRICITY AND MAGNETISM

Relativity is the bridge

One of the puzzles that set Einstein on the trail of special relativity was the connec-
tion between electricity and magnetism, and the ability of his theory to clarify the na-
ture of this connection is one of its triumphs.

Because the moving charges (usually electrons) whose interactions give rise to many
of the magnetic forces familiar to us have speeds far smaller than c, it is not obvious
that the operation of an electric motor, say, is based on a relativistic effect. The idea
becomes less implausible, however, when we reflect on the strength of electric forces.
The electric attraction between the electron and proton in a hydrogen atom, for instance,

1
�
3

1 � 0.80
�
1 � 0.80

1 � ��c
�
1 � ��c

1 � 0.80
�
1 � 0.80

1 � ��c
�
1 � ��c
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20 Chapter One

is 1039 times greater than the gravitational attraction between them. Thus even a small
change in the character of these forces due to relative motion, which is what magnetic
forces represent, may have large consequences. Furthermore, although the effective
speed of an individual electron in a current-carrying wire (�1 mm/s) is less than that
of a tired caterpillar, there may be 1020 or more moving electrons per centimeter in
such a wire, so the total effect may be considerable.

Although the full story of how relativity links electricity and magnetism is mathe-
matically complex, some aspects of it are easy to appreciate. An example is the origin
of the magnetic force between two parallel currents. An important point is that, like
the speed of light,

Electric charge is relativistically invariant.

A charge whose magnitude is found to be Q in one frame of reference is also Q in all
other frames.

Let us look at the two idealized conductors shown in Fig. 1.12a. They contain equal
numbers of positive and negative charges at rest that are equally spaced. Because the
conductors are electrically neutral, there is no force between them.

Figure 1.12b shows the same conductors when they carry currents iI and iII in the
same direction. The positive charges move to the right and the negative charges move to
the left, both at the same speed � as seen from the laboratory frame of reference. (Actual
currents in metals consist of flows of negative electrons only, of course, but the electri-
cally equivalent model here is easier to analyze and the results are the same.) Because 

the charges are moving, their spacing is smaller than before by the factor �1 � �2��c2�.
Since � is the same for both sets of charges, their spacings shrink by the same amounts,
and both conductors remain neutral to an observer in the laboratory. However, the con-
ductors now attract each other. Why?

Let us look at conductor II from the frame of reference of one of the negative
charges in conductor I. Because the negative charges in II appear at rest in this frame,
their spacing is not contracted, as in Fig. 1.12c. On the other hand, the positive charges
in II now have the velocity 2�, and their spacing is accordingly contracted to a greater
extent than they are in the laboratory frame. Conductor II therefore appears to have
a net positive charge, and an attractive force acts on the negative charge in I.

Next we look at conductor II from the frame of reference of one of the positive
charges in conductor I. The positive charges in II are now at rest, and the negative
charges there move to the left at the speed 2�. Hence the negative charges are closer
together than the positive ones, as in Fig. 1.12d, and the entire conductor appears neg-
atively charged. An attractive force therefore acts on the positive charges in I.

Identical arguments show that the negative and positive charges in II are attracted
to I. Thus all the charges in each conductor experience forces directed toward the other
conductor. To each charge, the force on it is an “ordinary” electric force that arises be-
cause the charges of opposite sign in the other conductor are closer together than
the charges of the same sign, so the other conductor appears to have a net charge.
From the laboratory frame the situation is less straightforward. Both conductors are
electrically neutral in this frame, and it is natural to explain their mutual attraction by
attributing it to a special “magnetic” interaction between the currents.

A similar analysis explains the repulsive force between parallel conductors that carry
currents in opposite directions. Although it is convenient to think of magnetic forces
as being different from electric ones, they both result from a single electromagnetic in-
teraction that occurs between charged particles.

Clearly a current-carrying conductor that is electrically neutral in one frame of
reference might not be neutral in another frame. How can this observation be reconciled
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with charge invariance? The answer is that we must consider the entire circuit of which
the conductor is a part. Because the circuit must be closed for a current to occur in it,
for every current element in one direction that a moving observer finds to have, say, a
positive charge, there must be another current element in the opposite direction which
the same observer finds to have a negative charge. Hence magnetic forces always act
between different parts of the same circuit, even though the circuit as a whole appears
electrically neutral to all observers.

The preceding discussion considered only a particular magnetic effect. All other
magnetic phenomena can also be interpreted on the basis of Coulomb’s law, charge in-
variance, and special relativity, although the analysis is usually more complicated.

Positive charge Negative charge

I

II

I

II

I

II

I

II

Force on positive charge

Force on negative charge

Force on II
Force on I

2v

v
iI

v

2v

iII

(a)

(b)

(c)

(d)

v

v

Figure 1.12 How the magnetic attraction between parallel currents arises. (a) Idealized parallel con-
ductors that contain equal numbers of positive and negative charges. (b) When the conductors carry
currents, the spacing of their moving charges undergoes a relativistic contraction as seen from the lab-
oratory. The conductors attract each other when iI and iII are in the same direction. (c) As seen by a
negative charge in I, the negative charges in II are at rest whereas the positive charges are in motion.
The contracted spacing of the latter leads to a net positive charge in II that attracts the negative charge
in I. (d) As seen by a positive charges in I, the positive charges in II are at rest whereas the negative
charges are in motion. The contracted spacing of the latter leads to a net negative charge on II that
attrats the positive charge in I. The contracted spacings in b, c, and d are greatly exaggerated.
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1.7   RELATIVISTIC MOMENTUM

Redefining an important quantity

In classical mechanics linear momentum p � mv is a useful quantity because it is con-
served in a system of particles not acted upon by outside forces. When an event such
as a collision or an explosion occurs inside an isolated system, the vector sum of the
momenta of its particles before the event is equal to their vector sum afterward. We
now have to ask whether p � mv is valid as the definition of momentum in inertial
frames in relative motion, and if not, what a relativistically correct definition is.

To start with, we require that p be conserved in a collision for all observers in rel-
ative motion at constant velocity. Also, we know that p � mv holds in classical
mechanics, that is, for � �� c. Whatever the relativistically correct p is, then, it must
reduce to mv for such velocities.

Let us consider an elastic collision (that is, a collision in which kinetic energy is
conserved) between two particles A and B, as witnessed by observers in the reference
frames S and S	 which are in uniform relative motion. The properties of A and B are
identical when determined in reference frames in which they are at rest. The frames S
and S	 are oriented as in Fig. 1.13, with S	 moving in the �x direction with respect
to S at the velocity v.

Before the collision, particle A had been at rest in frame S and particle B in frame
S	. Then, at the same instant, A was thrown in the �y direction at the speed VA while
B was thrown in the �y	 direction at the speed V	B, where

VA � V	B (1.10)

Hence the behavior of A as seen from S is exactly the same as the behavior of B as seen
from S	.

When the two particles collide, A rebounds in the �y direction at the speed VA,
while B rebounds in the �y	 direction at the speed V	B. If the particles are thrown from
positions Y apart, an observer in S finds that the collision occurs at y � �

1
2

�Y and one in
S	 finds that it occurs at y	 � y � �

1
2

�Y. The round-trip time T0 for A as measured in
frame S is therefore

T0 � (1.11)

and it is the same for B in S	:

T0 �

In S the speed VB is found from

VB � (1.12)

where T is the time required for B to make its round trip as measured in S. In S	, however,
B’s trip requires the time T0, where

T � (1.13)
T0

��
�1 � �2��c2�

Y
�
T

Y
�
V	B

Y
�
VA
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according to our previous results. Although observers in both frames see the same
event, they disagree about the length of time the particle thrown from the other frame
requires to make the collision and return.

Replacing T in Eq. (1.12) with its equivalent in terms of T0, we have

VB �
Y �1 � �2��c2�
��

T0

A

B

A

B

Collision as seen from frame S:

Collision as seen from frame S′:

S′
x′

z′

y′

v

S

y

z

x

Y

B

A

V′B

VA

Figure 1.13 An elastic collision as observed in two different frames of reference. The balls are initially
Y apart, which is the same distance in both frames since S	 moves only in the x direction.
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24 Chapter One

From Eq. (1.11), VA �

If we use the classical definition of momentum, p � mv, then in frame S

pA � mAVA � mA� �

pB � mBVB � mB �1 � �2��c2�� �
This means that, in this frame, momentum will not be conserved if mA � mB, where
mA and mB are the masses as measured in S. However, if

mB � (1.14)

then momentum will be conserved.
In the collision of Fig. 1.13 both A and B are moving in both frames. Suppose now

that VA and V	B are very small compared with �, the relative velocity of the two frames.
In this case an observer in S will see B approach A with the velocity �, make a glanc-
ing collision (since V	B �� �), and then continue on. In the limit of VA � 0, if m is the
mass in S of A when A is at rest, then mA � m. In the limit of V	B � 0, if m(�) is the
mass in S of B, which is moving at the velocity �, then mB � m(�). Hence Eq. (1.14)
becomes

m(�) � (1.15)

We can see that if linear momentum is defined as

p � (1.16)

then conservation of momentum is valid in special relativity. When � �� c, Eq. (1.16)
becomes just p � mv, the classical momentum, as required. Equation (1.16) is often
written as

p � �mv (1.17)

where

� � (1.18)

In this definition, m is the proper mass (or rest mass) of an object, its mass when
measured at rest relative to an observer. (The symbol � is the Greek letter gamma.)

1
��
�1 � �2��c2�

Relativistic
momentum

mv
��
�1 � �2��c2�

Relativistic
momentum

m
��
�1 � �2��c2�

mA
��
�1 � �2��c2�

Y
�
T0

Y
�
T0

Y
�
T0
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Figure 1.14 shows how p varies with ��c for both �m� and m�. When ��c is small,
m� and �m� are very nearly the same. (For � � 0.01c, the difference is only 0.005
percent; for � � 0.1c, it is 0.5 percent, still small). As � approaches c, however, the
curve for �m� rises more and more steeply (for � � 0.9c, the difference is 229 percent).
If � � c, p � �m� � 
, which is impossible. We conclude that no material object can
travel as fast as light.

But what if a spacecraft moving at �1 � 0.5c relative to the earth fires a projectile
at �2 � 0.5c in the same direction? We on earth might expect to observe the projec-
tile’s speed as �1 � �2 � c. Actually, as discussed in Appendix I to this chapter, velocity
addition in relativity is not so simple a process, and we would find the projectile’s speed
to be only 0.8c in such a case.

Relativistic Second Law

In relativity Newton’s second law of motion is given by

F � � (�mv) (1.19)

This is more complicated than the classical formula F � ma because � is a function
of �. When � �� c, � is very nearly equal to 1, and F is very nearly equal to mv, as it
should be.

d
�
dt

dp
�
dt

Relativistic
second law

Relativity 25

“Relativistic Mass”

W e could alternatively regard the increase in an object’s momentum over the classical value
as being due to an increase in the object’s mass. Then we would call m0 � m the rest

mass of the object and m � m(�) from Eq. (1.17) its relativistic mass, its mass when moving rel-
ative to an observer, so that p � mv. This is the view often taken in the past, at one time even
by Einstein. However, as Einstein later wrote, the idea of relativistic mass is “not good” because
“no clear definition can be given. It is better to introduce no other mass concept than the ‘rest
mass’ m.” In this book the term mass and the symbol m will always refer to proper (or rest)
mass, which will be considered relativistically invariant.

4mc

3mc

2mc

mc

0 0.2 0.4 0.6 0.8 1.0

Relativistic momentum
γmv

Classical momentum mv

Li
ne

ar
 m

om
en

tu
m

 p

Velocity ratio v/c

Figure 1.14 The momentum of an object moving at the velocity � relative to an observer. The mass
m of the object is its value when it is at rest relative to the observer. The object's velocity can never
reach c because its momentum would then be infinite, which is impossible. The relativistic momen-
tum �m� is always correct; the classical momentum m� is valid for velocities much smaller than c.
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Example 1.5

Find the acceleration of a particle of mass m and velocity v when it is acted upon by the con-
stant force F, where F is parallel to v.

Solution

From Eq. (1.19), since a � d��dt,

F � (�m�) � m � �
� m	 � 

�

We note that F is equal to �3ma, not to �ma. Merely replacing m by �m in classical formulas
does not always give a relativistically correct result.

The acceleration of the particle is therefore

a � (1 � �2�c2)3�2

Even though the force is constant, the acceleration of the particle decreases as its velocity in-
creases. As � S c, a S 0, so the particle can never reach the speed of light, a conclusion we
expect.

1.8   MASS AND ENERGY

Where E0 � mc2 comes from

The most famous relationship Einstein obtained from the postulates of special
relativity—how powerful they turn out to be!—concerns mass and energy. Let us see
how this relationship can be derived from what we already know.

As we recall from elementary physics, the work W done on an object by a con-
stant force of magnitude F that acts through the distance s, where F is in the same
direction as s, is given by W � Fs. If no other forces act on the object and the ob-
ject starts from rest, all the work done on it becomes kinetic energy KE, so KE � Fs.
In the general case where F need not be constant, the formula for kinetic energy is
the integral

KE � �s

0 
F ds

In nonrelativistic physics, the kinetic energy of an object of mass m and speed � is
KE � �

1
2

�m�2. To find the correct relativistic formula for KE we start from the relativistic
form of the second law of motion, Eq. (1.19), which gives

KE � �s

0 
ds � �m�

0
� d(�m�) � ��

0 
� d� �

m�
��
�1 � �2��c2�

d(�m�)
�

dt

F
�
m

ma
��
(1 � �2�c2)3�2

d�
�
dt

�2�c2

��
(1 � �2�c2)3�2

1
��
�1 � �2��c2�

�
��
�1 � �2��c2�

d
�
dt

d
�
dt
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Integrating by parts (� x dy � xy � � y dx),

KE � � m ��

0

� � 	mc2 �1 � �2��c2�

�

0

� � mc2

Kinetic energy KE � �mc2 � mc2 � (� � 1)mc2 (1.20)

This result states that the kinetic energy of an object is equal to the difference between
�mc2 and mc2. Equation (1.20) may be written

Total energy E � �mc2 � mc2 � KE (1.21)

If we interpret �mc2 as the total energy E of the object, we see that when it is at rest
and KE � 0, it nevertheless possesses the energy mc2. Accordingly mc2 is called the
rest energy E0 of something whose mass is m. We therefore have

E � E0 � KE

where

Rest energy E0 � mc2 (1.22)

If the object is moving, its total energy is

Total energy E � �mc2 � (1.23)

Example 1.6

A stationary body explodes into two fragments each of mass 1.0 kg that move apart at speeds
of 0.6c relative to the original body. Find the mass of the original body.

Solution

The rest energy of the original body must equal the sum of the total energies of the fragments. Hence

E0 � mc2 � �m1c2 � �m2c2 � �

and

m � � � 2.5 kg

Since mass and energy are not independent entities, their separate conservation prin-
ciples are properly a single one—the principle of conservation of mass energy. Mass
can be created or destroyed, but when this happens, an equivalent amount of energy
simultaneously vanishes or comes into being, and vice versa. Mass and energy are dif-
ferent aspects of the same thing.

(2)(1.0 kg)
��
�1 � (0�.60)2�

E0�
c2

m2c2

��
�1 � �2

2��c2�
m1c2

��
�1 � �2

1��c2�

mc2

��
�1 � �2��c2�

mc2

��
�1 � �2��c2�

m�2

��
�1 � �2��c2�

� d�
��
�1 � �2��c2�

m�2

��
�1 � �2��c2�
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It is worth emphasizing the difference between a conserved quantity, such as total
energy, and an invariant quantity, such as proper mass. Conservation of E means that,
in a given reference frame, the total energy of some isolated system remains the same
regardless of what events occur in the system. However, the total energy may be dif-
ferent as measured from another frame. On the other hand, the invariance of m means
that m has the same value in all inertial frames.

The conversion factor between the unit of mass (the kilogram, kg) and the unit of
energy (the joule, J) is c2, so 1 kg of matter—the mass of this book is about that—has
an energy content of mc2 � (1 kg)(3 � 108 m/s)2 � 9 � 1016 J. This is enough to
send a payload of a million tons to the moon. How is it possible for so much energy
to be bottled up in even a modest amount of matter without anybody having been
aware of it until Einstein’s work?

In fact, processes in which rest energy is liberated are very familiar. It is simply that
we do not usually think of them in such terms. In every chemical reaction that evolves
energy, a certain amount of matter disappears, but the lost mass is so small a fraction
of the total mass of the reacting substances that it is imperceptible. Hence the “law” of
conservation of mass in chemistry. For instance, only about 6 � 10�11 kg of matter
vanishes when 1 kg of dynamite explodes, which is impossible to measure directly, but
the more than 5 million joules of energy that is released is hard to avoid noticing.

Example 1.7

Solar energy reaches the earth at the rate of about 1.4 kW per square meter of surface perpen-
dicular to the direction of the sun (Fig. 1.15). By how much does the mass of the sun decrease
per second owing to this energy loss? The mean radius of the earth’s orbit is 1.5 � 1011 m.

Solution

The surface area of a sphere of radius r is A � 4�r2. The total power radiated by the sun, which
is equal to the power received by a sphere whose radius is that of the earth’s orbit, is therefore

P � A � (4�r2) � (1.4 � 103 W/m2)(4�)(1.5 � 1011 m)2 � 4.0 � 1026 W

Thus the sun loses E0 � 4.0 � 1026 J of rest energy per second, which means that the sun’s rest
mass decreases by

m � � � 4.4 � 109 kg

per second. Since the sun’s mass is 2.0 � 1030 kg, it is in no immediate danger of running out
of matter. The chief energy-producing process in the sun and most other stars is the conversion
of hydrogen to helium in its interior. The formation of each helium nucleus is accompanied by
the release of 4.0 � 10�11 J of energy, so 1037 helium nuclei are produced in the sun per second.

4.0 � 1026 J
��
(3.0 � 108 m/s)2

E0
�
c2

P
�
A

P
�
A
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Kinetic Energy at Low Speeds

When the relative speed � is small compared with c, the formula for kinetic energy
must reduce to the familiar �

1
2

� m�2, which has been verified by experiment at such speeds.
Let us see if this is true. The relativistic formula for kinetic energy is

KE � �mc2 � mc2 � � mc2
(1.20)

Since �2�c2 �� 1, we can use the binomial approximation (1 � x)n � 1 � nx, valid
for |x| �� 1, to obtain

� 1 � � �� c

Thus we have the result

KE � �1 � �mc2 � mc2 � m�2 � �� c

At low speeds the relativistic expression for the kinetic energy of a moving object
does indeed reduce to the classical one. So far as is known, the correct formulation of
mechanics has its basis in relativity, with classical mechanics representing an approxi-
mation that is valid only when � �� c. Figure 1.16 shows how the kinetic energy of

1
�
2

�2

�
c2

1
�
2

�2

�
c2

1
�
2

1
��
�1 � �2	�c2	

mc2

��
�1 � �2	�c2	

Kinetic
energy

Figure 1.16 A comparison between the classical and relativistic formulas for the ratio between kinetic
energy KE of a moving body and its rest energy mc2. At low speeds the two formulas give the same
result, but they diverge at speeds approaching that of light. According to relativistic mechanics, a body
would need an infinite kinetic energy to travel with the speed of light, whereas in classical mechan-
ics it would need only a kinetic energy of half its rest energy to have this speed.
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a moving object varies with its speed according to both classical and relativistic
mechanics.

The degree of accuracy required is what determines whether it is more appropri-
ate to use the classical or to use the relativistic formulas for kinetic energy. For in-
stance, when � � 107 m/s (0.033c), the formula �

1

2
�m�2 understates the true kinetic

energy by only 0.08 percent; when � � 3 � 107 m/s (0.1c), it understates the true
kinetic energy by 0.8 percent; but when � � 1.5 � 108 m/s (0.5c), the understate-
ment is a significant 19 percent; and when � � 0.999c, the understatement is a whop-
ping 4300 percent. Since 107 m/s is about 6310 mi/s, the nonrelativistic formula
�
1

2
�m�2 is entirely satisfactory for finding the kinetic energies of ordinary objects, and
it fails only at the extremely high speeds reached by elementary particles under cer-
tain circumstances.

1.9 ENERGY AND MOMENTUM

How they fit together in relativity

Total energy and momentum are conserved in an isolated system, and the rest energy
of a particle is invariant. Hence these quantities are in some sense more fundamental
than velocity or kinetic energy, which are neither. Let us look into how the total en-
ergy, rest energy, and momentum of a particle are related.

We begin with Eq. (1.23) for total energy,

Total energy E � (1.23)

and square it to give

E2 �

From Eq. (1.17) for momentum,

Momentum p � (1.17)

we find that

p2c2 �

Now we subtract p2c2 from E2:

E2 � p2c2 � �

� (mc2)2

m2c4(1 � �2�c2)
��

1 � �2�c2

m2c4 � m2�2c2

��
1 � �2�c2

m2�2c2

��
1 � �2�c2

m�
��
�1 � �2��c2�

m2c4

��
1 � �2�c2

mc2

��
�1 � �2��c2�
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Hence

E2 � (mc2)2 � p2c2 (1.24)

which is the formula we want. We note that, because mc2 is invariant, so is E2 � p2c2:
this quantity for a particle has the same value in all frames of reference.

For a system of particles rather than a single particle, Eq. (1.24) holds provided
that the rest energy mc2—and hence mass m—is that of the entire system. If the
particles in the system are moving with respect to one another, the sum of their
individual rest energies may not equal the rest energy of the system. We saw this in
Example 1.7 when a stationary body of mass 2.5 kg exploded into two smaller bodies,
each of mass 1.0 kg, that then moved apart. If we were inside the system, we would
interpret the difference of 0.5 kg of mass as representing its conversion into kinetic
energy of the smaller bodies. But seen as a whole, the system is at rest both before
and after the explosion, so the system did not gain kinetic energy. Therefore the rest
energy of the system includes the kinetic energies of its internal motions and it cor-
responds to a mass of 2.5 kg both before and after the explosion.

In a given situation, the rest energy of an isolated system may be greater than, the
same as, or less than the sum of the rest energies of its members. An important case
in which the system rest energy is less than the rest energies of its members is that of
a system of particles held together by attractive forces, such as the neutrons and pro-
tons in an atomic nucleus. The rest energy of a nucleus (except that of ordinary
hydrogen, which is a single proton) is less than the total of the rest energies of its 
constituent particles. The difference is called the binding energy of the nucleus. To break
a nucleus up completely calls for an amount of energy at least equal to its binding
energy. This topic will be explored in detail in Sec. 11.4. For the moment it is inter-
esting to note how large nuclear binding energies are—nearly 1012 kJ per kg of
nuclear matter is typical. By comparison, the binding energy of water molecules in liq-
uid water is only 2260 kJ/kg; this is the energy needed to turn 1 kg of water at 100°C
to steam at the same temperature.

Massless Particles

Can a massless particle exist? To be more precise, can a particle exist which has no rest
mass but which nevertheless exhibits such particlelike properties as energy and mo-
mentum? In classical mechanics, a particle must have rest mass in order to have en-
ergy and momentum, but in relativistic mechanics this requirement does not hold.

From Eqs. (1.17) and (1.23), when m � 0 and � �� c, it is clear that E � p � 0.
A massless particle with a speed less than that of light can have neither energy nor mo-
mentum. However, when m � 0 and � � c, E � 0�0 and p � 0�0, which are inde-
terminate: E and p can have any values. Thus Eqs. (1.17) and (1.23) are consistent
with the existence of massless particles that possess energy and momentum provided
that they travel with the speed of light.

Equation (1.24) gives us the relationship between E and p for a particle with m � 0:

Massless particle E � pc (1.25)

The conclusion is not that massless particles necessarily occur, only that the laws
of physics do not exclude the possibility as long as � � c and E � pc for them. In fact,

Energy and
momentum
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a massless particle—the photon—indeed exists and its behavior is as expected, as we
shall find in Chap. 2.

Electronvolts

In atomic physics the usual unit of energy is the electronvolt (eV), where 1 eV is the
energy gained by an electron accelerated through a potential difference of 1 volt. Since
W � QV,

1 eV � (1.602 � 10�19 C)(1.000 V) � 1.602 � 10�19 J

Two quantities normally expressed in electronvolts are the ionization energy of an atom
(the work needed to remove one of its electrons) and the binding energy of a mole-
cule (the energy needed to break it apart into separate atoms). Thus the ionization
energy of nitrogen is 14.5 eV and the binding energy of the hydrogen molecule H2 is
4.5 eV. Higher energies in the atomic realm are expressed in kiloelectronvolts (keV),
where 1 keV � 103 eV.

In nuclear and elementary-particle physics even the keV is too small a unit in most
cases, and the megaelectronvolt (MeV) and gigaelectronvolt (GeV) are more appro-
priate, where

1 MeV � 106 eV 1 GeV � 109 eV

An example of a quantity expressed in MeV is the energy liberated when the nucleus
of a certain type of uranium atom splits into two parts. Each such fission event releases
about 200 MeV; this is the process that powers nuclear reactors and weapons.

The rest energies of elementary particles are often expressed in MeV and GeV and
the corresponding rest masses in MeV/c2 and GeV/c2. The advantage of the latter units
is that the rest energy equivalent to a rest mass of, say, 0.938 GeV/c2 (the rest mass of
the proton) is just E0 � mc2 � 0.938 GeV. If the proton’s kinetic energy is 5.000 GeV,
finding its total energy is simple:

E � E0 � KE � (0.938 � 5.000) GeV � 5.938 GeV

In a similar way the MeV/c and GeV/c are sometimes convenient units of linear mo-
mentum. Suppose we want to know the momentum of a proton whose speed is 0.800c.
From Eq. (1.17) we have

p � �

� � 1.25 GeV�c

Example 1.8

An electron (m � 0.511 MeV/c2) and a photon (m � 0) both have momenta of 2.000 MeV/c.
Find the total energy of each.

0.750 GeV�c
��

0.600

(0.938 GeV�c2)(0.800c)
���

�1 � (0�.800c)�2�c2�
m�

��
�1 � �2��c2�
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Solution 

(a) From Eq. (1.24) the electron’s total energy is 

E � �m2c4 �� p2c2� � �(0.511� MeV�c�2)2c4 �� (2.000� MeV�c�)2c2�
� �(0.511� MeV)�2 � (2�.000 M�eV)2� � 2.064 MeV

(b) From Eq. (1.25) the photon’s total energy is 

E � pc � (2.000 MeV�c)c � 2.000 MeV

1.10 GENERAL RELATIVITY

Gravity is a warping of spacetime

Special relativity is concerned only with inertial frames of reference, that is, frames that
are not accelerated. Einstein’s 1916 general theory of relativity goes further by in-
cluding the effects of accelerations on what we observe. Its essential conclusion is that
the force of gravity arises from a warping of spacetime around a body of matter
(Fig. 1.17). As a result, an object moving through such a region of space in general
follows a curved path rather than a straight one, and may even be trapped there.

The principle of equivalence is central to general relativity:

An observer in a closed laboratory cannot distinguish between the effects pro-
duced by a gravitational field and those produced by an acceleration of the 
laboratory.

This principle follows from the experimental observation (to better than 1 part in 1012)
that the inertial mass of an object, which governs the object’s acceleration when a force
acts on it, is always equal to its gravitational mass, which governs the gravitational
force another object exerts on it. (The two masses are actually proportional; the con-
stant of proportionality is set equal to 1 by an appropriate choice of the constant of
gravitation G.)

Relativity 33

Figure 1.17 General relativity pictures gravity as a warping of spacetime due to the presence of a body
of matter. An object nearby experiences an attractive force as a result of this distortion, much as a
marble rolls toward the bottom of a depression in a rubber sheet. To paraphrase J. A. Wheeler, space-
time tells mass how to move, and mass tells spacetime how to curve.
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Gravity and Light

It follows from the principle of equivalence that light should be subject to gravity. If a
light beam is directed across an accelerated laboratory, as in Fig. 1.18, its path relative
to the laboratory will be curved. This means that, if the light beam is subject to the
gravitational field to which the laboratory’s acceleration is equivalent, the beam would
follow the same curved path.

According to general relativity, light rays that graze the sun should have their paths
bent toward it by 0.005°—the diameter of a dime seen from a mile away. This pre-
diction was first confirmed in 1919 by photographs of stars that appeared in the sky
near the sun during an eclipse, when they could be seen because the sun’s disk was
covered by the moon. The photographs were then compared with other photographs
of the same part of the sky taken when the sun was in a distant part of the sky (Fig. 1.19).
Einstein became a world celebrity as a result.

Because light is deflected in a gravitational field, a dense concentration of mass—
such as a galaxy of stars—can act as a lens to produce multiple images of a distant
light source located behind it (Fig. 1.20). A quasar, the nucleus of a young galaxy,
is brighter than 100 billion stars but is no larger than the solar system. The first
observation of gravitational lensing was the discovery in 1979 of what seemed to
be a pair of nearby quasars but was actually a single one whose light was deviated
by an intervening massive object. Since then a number of other gravitational lenses
have been found; the effect occurs in radio waves from distant sources as well as in
light waves.

The interaction between gravity and light also gives rise to the gravitational red shift
and to black holes, topics that are considered in Chap. 2.
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Accelerated laboratoryLaboratory in
gravitational field

a = –g

g

Figure 1.18 According to the principle of equivalence, events that take place in an accelerated
laboratory cannot be distinguished from those which take place in a gravitational field. Hence the
deflection of a light beam relative to an observer in an accelerated laboratory means that light must
be similarly deflected in a gravitational field.
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Other Findings of General Relativity

A further success of general relativity was the clearing up of a long-standing puzzle in
astronomy. The perihelion of a planetary orbit is the point in the orbit nearest the sun.
Mercury’s orbit has the peculiarity that its perihelion shifts (precesses) about 1.6° per
century (Fig. 1.21). All but 43� (1� � 1 arc second � �

36
1
00
� of a degree) of this shift is

due to the attractions of other planets, and for a while the discrepancy was used as
evidence for an undiscovered planet called Vulcan whose orbit was supposed to lie
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of  star
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Starlight

Sun

Figure 1.19 Starlight passing near the sun is deflected by its strong gravitational field. The deflection
can be measured during a solar eclipse when the sun’s disk is obscured by the moon.

Earth

Massive
object

Apparent
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Light and radio waves from source

Apparent
position
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Figure 1.20 A gravitational lens. Light and radio waves from a source such as a quasar are deviated by a massive object such as a
galaxy so that they seem to come from two or more identical sources. A number of such gravitational lenses have been identified.
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inside that of Mercury. When gravity is weak, general relativity gives very nearly the
same results as Newton’s formula F � Gm1m2�r2. But Mercury is close to the sun and
so moves in a strong gravitational field, and Einstein was able to show from general
relativity that a precession of 43� per century was to be expected for its orbit.

The existence of gravitational waves that travel with the speed of light was the
prediction of general relativity that had to wait the longest to be verified. To visualize
gravitational waves, we can think in terms of the model of Fig. 1.17 in which two-
dimensional space is represented by a rubber sheet distorted by masses embedded in
it. If one of the masses vibrates, waves will be sent out in the sheet that set other masses
in vibration. A vibrating electric charge similarly sends out electromagnetic waves that
excite vibrations in other charges.

A big difference between the two kinds of waves is that gravitational waves are ex-
tremely weak, so that despite much effort none have as yet been directly detected.
However, in 1974 strong evidence for gravitational waves was found in the behavior
of a system of two nearby stars, one a pulsar, that revolve around each other. A pulsar
is a very small, dense star, composed mainly of neutrons, that spins rapidly and sends
out flashes of light and radio waves at a regular rate, much as the rotating beam of a
lighthouse does (see Sec. 9.11). The pulsar in this particular binary system emits pulses
every 59 milliseconds (ms), and it and its companion (probably another neutron star)
have an orbital period of about 8 h. According to general relativity, such a system
should give off gravitational waves and lose energy as a result, which would reduce
the orbital period as the stars spiral in toward each other. A change in orbital period
means a change in the arrival times of the pulsar’s flashes, and in the case of the ob-
served binary system the orbital period was found to be decreasing at 75 ms per year.
This is so close to the figure that general relativity predicts for the system that there
seems to be no doubt that gravitational radiation is responsible. The 1993 Nobel Prize
in physics was awarded to Joseph Taylor and Russell Hulse for this work.

Much more powerful sources of gravitational waves ought to be such events as two
black holes colliding and supernova explosions in which the remnant star cores col-
lapse into neutron stars (again, see Sec. 9.11). A gravitational wave that passes through
a body of matter will cause distortions to ripple through it due to fluctuations in the
gravitational field. Because gravitational forces are feeble—the electric attraction be-
tween a proton and an electron is over 1039 times greater than the gravitational at-
traction between them—such distortions at the earth induced by gravitational waves
from a supernova in our galaxy (which occurs an average of once every 30 years or
so) would amount to only about 1 part in 1018, even less for a more distant super-
nova. This corresponds to a change in, say, the height of a person by well under the
diameter of an atomic nucleus, yet it seems to be detectable—just—with current
technology.

In one method, a large metal bar cooled to a low temperature to minimize the ran-
dom thermal motions of its atoms is monitored by sensors for vibrations due to grav-
itational waves. In another method, an interferometer similar to the one shown in
Fig. 1.2 with a laser as the light source is used to look for changes in the lengths of
the arms to which the mirrors are attached. Instruments of both kinds are operating,
thus far with no success.

A really ambitious scheme has been proposed that would use six spacecraft in or-
bit around the sun placed in pairs at the corners of a triangle whose sides are 5 million
kilometers (km) long. Lasers, mirrors, and sensors in the spacecraft would detect
changes in their spacings resulting from the passing of a gravitational wave. It may only
be a matter of time before gravitational waves will be providing information about a
variety of cosmic disturbances on the largest scale.
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Figure 1.21 The precession of the
perihelion of Mercury's orbit.
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Appendix  I  to  Chapter  1

The Lorentz Transformation

S uppose we are in an inertial frame of reference S and find the coordinates of
some event that occurs at the time t are x, y, z. An observer located in a dif-
ferent inertial frame S	 which is moving with respect to S at the constant ve-

locity v will find that the same event occurs at the time t	 and has the coordinates x	,
y	, z	. (In order to simplify our work, we shall assume that v is in the �x direction,
as in Fig. 1.22.) How are the measurements x, y, z, t related to x	, y	, z	, t	?

Galilean Transformation

Before special relativity, transforming measurements from one inertial system to an-
other seemed obvious. If clocks in both systems are started when the origins of S and
S	 coincide, measurements in the x direction made is S will be greater than those made
in S	 by the amount � t, which is the distance S	 has moved in the x direction. That is,

x	 � x � � t (1.26)

There is no relative motion in the y and z directions, and so

y	 � y (1.27)

S

y

z

x

S′
x′

z′

y′

v

Figure 1.22 Frame S	 moves in the �x direction with the speed � relative to frame S. The Lorentz
transformation must be used to convert measurements made in one of these frames to their equivalents
in the other.
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z	 � z (1.28)

In the absence of any indication to the contrary in our everyday experience, we fur-
ther assume that

t	 � t (1.29)

The set of Eqs. (1.26) to (1.29) is known as the Galilean transformation.
To convert velocity components measured in the S frame to their equivalents in the

S	 frame according to the Galilean transformation, we simply differentiate x	, y	, and
z	 with respect to time:

�	x � � �x � � (1.30)

�	y � � �y (1.31)

�	z � � �z (1.32)

Although the Galilean transformation and the corresponding velocity transfor-
mation seem straightforward enough, they violate both of the postulates of special
relativity. The first postulate calls for the same equations of physics in both the S
and S	 inertial frames, but the equations of electricity and magnetism become very
different when the Galilean transformation is used to convert quantities measured
in one frame into their equivalents in the other. The second postulate calls for the
same value of the speed of light c whether determined in S or S	. If we measure the
speed of light in the x direction in the S system to be c, however, in the S	 system
it will be

c	 � c � �

according to Eq. (1.30). Clearly a different transformation is required if the postulates
of special relativity are to be satisfied. We would expect both time dilation and length
contraction to follow naturally from this new transformation.

Lorentz Transformation

A reasonable guess about the nature of the correct relationship between x and x	 is

x	 � k(x � � t) (1.33)

Here k is a factor that does not depend upon either x or t but may be a function of �.
The choice of Eq. (1.33) follows from several considerations:

1 It is linear in x and x	, so that a single event in frame S corresponds to a single event
in frame S	, as it must.
2 It is simple, and a simple solution to a problem should always be explored first.
3 It has the possibility of reducing to Eq. (1.26), which we know to be correct in
ordinary mechanics.

dz	
�
dt	

dy	
�
dt	

dx	
�
dt	
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Because the equations of physics must have the same form in both S and S	, we need
only change the sign of � (in order to take into account the difference in the direction
of relative motion) to write the corresponding equation for x in terms of x	 and t	:

x � k(x	 � � t	) (1.34)

The factor k must be the same in both frames of reference since there is no difference
between S and S	 other than in the sign of �.

As in the case of the Galilean transformation, there is nothing to indicate that there
might be differences between the corresponding coordinates y, y	 and z, z	 which are
perpendicular to the direction of �. Hence we again take

y	 � y (1.35)

z	 � z (1.36)

The time coordinates t and t	, however, are not equal. We can see this by substi-
tuting the value of x	 given by Eq. (1.33) into Eq. (1.34). This gives

x � k2(x � � t) � k� t	

from which we find that

t	 � kt � � � x (1.37)

Equations (1.33) and (1.35) to (1.37) constitute a coordinate transformation that
satisfies the first postulate of special relativity.

The second postulate of relativity gives us a way to evaluate k. At the instant t � 0,
the origins of the two frames of reference S and S	 are in the same place, according to
our initial conditions, and t	 � 0 then also. Suppose that a flare is set off at the com-
mon origin of S and S	 at t � t	 � 0, and the observers in each system measure the
speed with which the flare’s light spreads out. Both observers must find the same speed c
(Fig. 1.23), which means that in the S frame

x � ct (1.38)

and in the S	 frame

x	 � ct	 (1.39)

Substituting for x	 and t	 in Eq. (1.39) with the help of Eqs. (1.33) and (1.37) gives

k(x � �t) � ckt � � � cx

and solving for x,

x � � ct	 
� ct	 

1 � �

�

c
�

��

1 � ��
k
1
2� � 1� �

�

c
�

k � �
�

c
�k

��

k � ��1 �

k�

k2

��c

ckt � �kt
��

k � ��1 �

k�

k2

��c

1 � k2

�
k�

1 � k2

�
k�
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This expression for x will be the same as that given by Eq. (1.38), namely, x � ct,
provided that the quantity in the brackets equals 1. Therefore

� 1

and

k � (1.40)

Finally we put this value of k in Eqs. (1.36) and (1.40). Now we have the complete
transformation of measurements of an event made in S to the corresponding meas-
urements made in S	:

x	 � (1.41)
x � � t

��
�1 � �2��c2�

Lorentz
transformation

1
��
�1 � �2��c2�

1 � �
�

c
�

��

1 � ��
k

1
2� � 1��

�

c
�
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Each observer detects
light waves spreading
out from own boat

S′
v

S

S′

S

S′

S

Pattern of ripples
from stone dropped
in water

Each observer sees pattern
spreading from boat S

S′
v

S

S′

S

S′

S

Light emitted by flare(a)

(b)

Figure 1.23 (a) Inertial frame S	 is a boat moving at speed � in the �x direction relative to another
boat, which is the inertial frame S. When t � t0 � 0, S	 is next to S, and x � x0 � 0. At this moment
a flare is fired from one of the boats. An observer on boat S detects light waves spreading out at speed
c from his boat. An observer on boat S	 also detects light waves spreading out at speed c from her
boat, even though S	 is moving to the right relative to S. (b) If instead a stone were dropped in the
water at t � t0 � 0, the observers would find a pattern of ripples spreading out around S at different
speeds relative to their boats. The difference between (a) and (b) is that water, in which the ripples
move, is itself a frame of reference whereas space, in which light moves, is not.
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y	 � y (1.42)

z	 � z (1.43)

t	 � (1.44)

These equations comprise the Lorentz transformation. They were first obtained
by the Dutch physicist H.A. Lorentz, who showed that the basic formulas of
electromagnetism are the same in all inertial frames only when Eqs. (1.41) to (1.44)
are used. It was not until several years later that Einstein discovered their full
significance. It is obvious that the Lorentz transformation reduces to the Galilean
transformation when the relative velocity � is small compared with the velocity of
light c.

t � �
�

c2
x
�

��
�1 � �2��c2�

Example 1.9

Derive the relativistic length contraction using the Lorentz transformation.

Solution

Let us consider a rod lying along the x	 axis in the moving frame S	. An observer in this frame
determines the coordinates of its ends to be x	1 and x	2, and so the proper length of the rod is

L0 � x	2 � x	1

Hendrik A. Lorentz (1853–1928)
was born in Arnhem, Holland, and
studied at the University of Leyden.
At nineteen he returned to Arnhem
and taught at the high school there
while preparing a doctoral thesis that
extended Maxwell’s theory of elec-
tromagnetism to cover the details of
the refraction and reflection of light.
In 1878 he became professor of the-
oretical physics at Leyden, the first

such post in Holland, where he remained for thirty-four years
until he moved to Haarlem. Lorentz went on to reformulate
and simplify Maxwell’s theory and to introduce the idea that
electromagnetic fields are created by electric charges on the
atomic level. He proposed that the emission of light by atoms
and various optical phenomena could be traced to the mo-
tions and interactions of atomic electrons. The discovery in

1896 by Pieter Zeeman, a student of his, that the spectral
lines of atoms that radiate in a magnetic field are split 
into components of slightly different frequency confirmed
Lorentz’s work and led to a Nobel Prize for both of them in
1902.

The set of equations that enables electromagnetic quantities
in one frame of reference to be transformed into their values in
another frame of reference moving relative to the first were
found by Lorentz in 1895, although their full significance was
not realized until Einstein’s theory of special relativity ten years
afterward. Lorentz (and, independently, the Irish physicist G. F.
Fitzgerald) suggested that the negative result of the Michelson-
Morley experiment could be understood if lengths in the 
direction of motion relative to an observer were contracted. Sub-
sequent experiments showed that although such contractions
do occur, they are not the real reason for the Michelson-
Morley result, which is that there is no “ether” to serve as a
universal frame of reference.
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In order to find L � x2 � x1, the length of the rod as measured in the stationary frame S at the
time t, we make use of Eq. (1.41) to give

x	1 � x	2 �

Hence L � x2 � x1 � (x	2 � x	1) �1 � �2��c2� � L0�1 � �2��c2�

This is the same as Eq. (1.9)

Inverse Lorentz Transformation

In Example 1.9 the coordinates of the ends of the moving rod were measured in the
stationary frame S at the same time t, and it was easy to use Eq. (1.41) to find L in
terms of L0 and �. If we want to examine time dilation, though, Eq. (1.44) is not con-
venient, because t1 and t2, the start and finish of the chosen time interval, must be
measured when the moving clock is at the respective different positions x1 and x2. In
situations of this kind it is easier to use the inverse Lorentz transformation, which
converts measurements made in the moving frame S	 to their equivalents in S.

To obtain the inverse transformation, primed and unprimed quantities in Eqs. (1.41)
to (1.44) are exchanged, and � is replaced by �� :

x � (1.45)

y � y	 (1.46)

z	 � z	 (1.47)

t � (1.48)

Example 1.10

Derive the formula for time dilation using the inverse Lorentz transformation.

Solution

Let us consider a clock at the point x	 in the moving frame S	. When an observer in S	 finds
that the time is t	1, an observer in S will find it to be t1, where, from Eq. (1.48),

t1 �

After a time interval of t0 (to him), the observer in the moving system finds that the time is now
t	2 according to his clock. That is,

t0 � t	2 � t	1

t	1 � �
�

c
x
2

	
�

��
�1 � �2��c2�

t	 � �
�

c

x
2

	
�

��
�1 � �2��c2�

x	 � �t	
��
�1 � �2��c2�

Inverse Lorentz
transformation

x2 � � t
��
�1 � �2��c2�

x1 � � t
��
�1 � �2��c2�
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The Lorentz Transformation 43

The observer in S, however, measures the end of the same time interval to be

t2 �

so to her the duration of the interval t is

t � t2 � t1 � �

This is what we found earlier with the help of a light-pulse clock.

Velocity Addition

Special relativity postulates that the speed of light c in free space has the same value
for all observers, regardless of their relative motion.“Common sense” (which means
here the Galilean transformation) tells us that if we throw a ball forward at 10 m/s
from a car moving at 30 m/s, the ball’s speed relative to the road will be 40 m/s, the
sum of the two speeds. What if we switch on the car’s headlights when its speed is �?
The same reasoning suggests that their light, which is emitted from the reference frame
S	 (the car) in the direction of its motion relative to another frame S (the road), ought
to have a speed of c � � as measured in S. But this violates the above postulate, which
has had ample experimental verification. Common sense is no more reliable as a guide
in science than it is elsewhere, and we must turn to the Lorentz transformation equa-
tions for the correct scheme of velocity addition.

Suppose something is moving relative to both S and S	. An observer in S measures
its three velocity components to be

Vx � Vy � Vz �

while to an observer in S	 they are

V	x � V	y � V	z �

By differentiating the inverse Lorentz transformation equations for x, y, z, and t, we
obtain

dx � dy � dy	 dz � dz	 dt �

and so Vx � � �

�
d

d

x

t	

	
� � �

��

1 � �
c

�
2� �

d

d

x

t	

	
�

dx	 � � dt	
��

dt	 � �
�

c
d
2
x	
�

dx
�
dt

dt	 � �
�

c
d
2
z	
�

��
�1 � �2��c2�

dx	 � � dt	
��
�1 � �2��c2�

dz	
�
dt	

dy	
�
dt	

dx	
�
dt	

dz
�
dt

dy
�
dt

dx
�
dt

t0
��
�1 � �2��c2�

t	2 � t	1
��
�1 � �2��c2�

t	2 � �
�

c
x
2

	
�

��
�1 � �2��c2�
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Vx � (1.49)

Similarly, Vy � (1.50)

Vz � (1.51)

If V	x � c, that is, if light is emitted in the moving frame S	 in its direction of motion
relative to S, an observer in frame S will measure the speed

Vx � � � � c

Thus observers in the car and on the road both find the same value for the speed of
light, as they must.

Example 1.11

Spacecraft Alpha is moving at 0.90c with respect to the earth. If spacecraft Beta is to pass Alpha
at a relative speed of 0.50c in the same direction, what speed must Beta have with respect to
the earth?

Solution

According to the Galilean transformation, Beta would need a speed relative to the earth of
0.90c � 0.50c � 1.40c, which we know is impossible. According to Eq. (1.49), however, with
V	x � 0.50c and � � 0.90c, the required speed is only

Vx � � � 0.97c

which is less than c. It is necessary to go less than 10 percent faster than a spacecraft traveling
at 0.90c in order to pass it at a relative speed of 0.50c.

Simultaneity

The relative character of time as well as space has many implications. Notably, events
that seem to take place simultaneously to one observer may not be simultaneous to
another observer in relative motion, and vice versa.

Let us examine two events—the setting off of a pair of flares, say—that occur at the
same time t0 to somebody on the earth but at the different locations x1 and x2. What
does the pilot of a spacecraft in flight see? To her, the flare at x1 and t0 appears at the
time

0.50c � 0.90c
��

1 ��
(0.90c

c
)(
2

0.50c)
�

V	x � �
�
1 � �

�

c
V
2

	x�

c(c � �)
�

c � �

c � �
�
1 � �

�

c2

c
�

V	x � �
��

1 � �
�V

c2

	x
�

V	z�1 � �2��c2�
��

1 � �
�

c

V
2

	x
�

V	y�1 � �2��c2�
��

1 � �
�

c

V
2

	x
�

V	x � �
�

1 � �
�

c

V
2

	x
�

Relativistic velocity
transformation

44 Appendix to Chapter 1

bei48482_ch01.qxd  1/15/02  1:21 AM  Page 44



The Lorentz Transformation 45

t	1 �

according to Eq. (1.44), while the flare at x2 and t0 appears at the time

t	2 �

Hence two events that occur simultaneously to one observer are separated by a time
interval of

t	2 � t	1�

to an observer moving at the speed � relative to the other observer. Who is right? The
question is, of course, meaningless: both observers are “right” since each simply meas-
ures what he or she sees.

Because simultaneity is a relative concept and not an absolute one, physical theo-
ries that require simultaneity in events at different locations cannot be valid. For in-
stance, saying that total energy is conserved in an isolated system does not rule out a
process in which an amount of energy 
E vanishes at one place while an equal amount
of energy 
E comes into being somewhere else with no actual transport of energy from
one place to the other. Because simultaneity is relative, some observers of the process
will find energy not being conserved. To rescue conservation of energy in the light
of special relativity, then, we have to say that, when energy disappears somewhere
and appears elsewhere, it has actually flowed from the first location to the second.
Thus energy is conserved locally everywhere, not merely when an isolated system is
considered—a much stronger statement of this principle.

� (x1 � x2)�c2

��
�1 � �2��c2�

t0 � �x2�c2

��
�1 � �2��c2�

t0 � �x1�c2

��
�1 � �2��c2�
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Spacetime

A s we have seen, the concepts of space and time are inextricably mixed in 
nature. A length that one observer can measure with only a meter stick may
have to be measured with both a meter stick and a clock by another observer.

A convenient and elegant way to express the results of special relativity is to regard
events as occurring in a four-dimensional spacetime in which the usual three coordi-
nates x, y, z refer to space and a fourth coordinate ict refers to time, where i � ��1�.
Although we cannot visualize spacetime, it is no harder to deal with mathematically
than three-dimensional space.

The reason that ict is chosen as the time coordinate instead of just t is that the
quantity

s2 � x2 � y2 � z2 � (ct)2 (1.52)

is invariant under a Lorentz transformation. That is, if an event occurs at x, y, z, t in
an inertial frame S and at x	, y	, z	, t	 in another inertial frame S	, then

s2 � x2 � y2 � z2 � (ct)2 � x	2 � y	2 � z	2 � (ct	)2

Because s2 is invariant, we can think of a Lorentz transformation merely as a rotation
in spacetime of the coordinate axes x, y, z, ict (Fig. 1.24).

The four coordinates x, y, z, ict define a vector in spacetime, and this four-vector
remains fixed in spacetime regardless of any rotation of the coordinate system—that
is, regardless of any shift in point of view from one inertial frame S to another S	.

Another four-vector whose magnitude remains constant under Lorentz transforma-
tions has the components px, py, pz, iE�c. Here px, py, pz are the usual components of
the linear momentum of a body whose total energy is E. Hence the value of

px
2 � py

2 � pz
2 �

E2

�c

46 Appendix to Chapter 1

y

s

x

y′

s

x′

Figure 1.24 Rotating a two-dimensional coordinate system does not change the quantity s2 � x2

� y2 � x	2 � y	2, where s is the length of the vector s. This result can be generalized to the four-
dimensional spacetime coordinate system x, y, z, ict.
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is the same in all inertial frames even though px, py, pz and E separately may be dif-
ferent. This invariance was noted earlier in connection with Eq. (1.24); we note that
p2 � px

2 � py
2 � pz

2.
A more mathematically elaborate formulation brings together the electric and mag-

netic fields E and B into an invariant quantity called a tensor. This approach to 
incorporating special relativity into physics has led both to a deeper understanding of
natural laws and to the discovery of new phenomena and relationships.

Spacetime Intervals

The statements made at the end of Sec. 1.2 (P. 10) are easy to confirm using the idea
of spacetime. Figure 1.25 shows two events plotted on the axes x and ct. Event 1 oc-
curs at x � 0, t � 0 and event 2 occurs at x � 
x, t � 
t. The spacetime interval 
s
between them is defined by

(
s)2 � (c
t)2 � (
x)2 (1.53)

The virtue of this definition is that (
s)2, like the s2 of Eq. 1.52, is invariant under
Lorentz transformations. If 
x and 
t are the differences in space and time between
two events measured in the S frame and 
x	 and 
t	 are the same quantities meas-
ured in the S	 frame,

(
s)2 � (c
t)2 � (
x)2 � (c
t	)2 � (
x	)2

Therefore whatever conclusions we arrive at in the S frame in which event 1 is at the
origin hold equally well in any other frame in relative motion at constant velocity.

Spacetime interval
between events

Figure 1.25 The past and future light cones in spacetime of event 1.

FUTURE LIGHT CONE

PAST LIGHT CONE

Event 1

ct

∆x

c ∆t
Event 2

x = ct

x

x = −ct
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48 Appendix to Chapter 1

Now let us look into the possible relationships between events 1 and 2. Event 2 can
be related causally in some way to event 1 provided that a signal traveling slower than
the speed of light can connect these events, that is, provided that

c
t � �
x�

or

Timelike interval (
s)2 	 0 (1.53)

An interval in which (
s)2 � 0 is said to be timelike. Every timelike interval that connects
event 1 with another event lies within the light cones bounded by x � �ct in 
Fig. 1.25. All events that could have affected event 1 lie in the past light cone; all events
that event 1 is able to affect lie in the future light cone. (Events connected by timelike
intervals need not necessarily be related, of course, but it is possible for them to be 
related.)

Conversely, the criterion for there being no causal relationship between events 1
and 2 is that

c
t � �
x�

or

Spacelike interval (
s)2 � 0 (1.54)

An interval in which (
s)2 � 0 is said to be spacelike. Every event that is connected
with event 1 by a spacelike interval lies outside the light cones of event 1 and neither
has interacted with event 1 in the past nor is capable of interacting with it in the 
future; the two events must be entirely unrelated.

When events 1 and 2 can be connected with a light signal only,

c
t � �
x�

or

Lightlike interval 
s � 0 (1.55)

An interval in which 
s � 0 is said to be lightlike. Events that can be connected with
event 1 by lightlike intervals lie on the boundaries of the light cones.

These conclusions hold in terms of the light cones of event 2 because (
s)2 is 
invariant; for example, if event 2 is inside the past light cone of event 1, event 1 is 
inside the future light cone of event 2. In general, events that lie in the future of an
event as seen in one frame of reference S lie in its future in every other frame S	, and
events that lie in the past of an event in S lie in its past in every other frame S	. Thus
“future” and “past” have invariant meanings. However, “simultaneity” is an ambiguous
concept, because all events that lie outside the past and future light cones of event 1
(that is, all events connected by spacelike intervals with event 1) can appear to occur
simultaneously with event 1 in some particular frame of reference.

The path of a particle in spacetime is called its world line (Fig. 1.26). The world line
of a particle must lie within its light cones.
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But be ye doers of the word, and not hearers only, deceiving your own selves. —James I:22

Exercises 49

Figure 1.26 The world line of a particle in spacetime.

x = ct

ABSOLUTELY
UNRELATED

ABSOLUTELY
UNRELATED

ct

x

Here and now

World
line

x = −ct

ABSOLUTE FUTURE

ABSOLUTE PAST

6. An airplane is flying at 300 m/s (672 mi/h). How much time
must elapse before a clock in the airplane and one on the
ground differ by 1.00 s?

7. How fast must a spacecraft travel relative to the earth for each
day on the spacecraft to correspond to 2 d on the earth?

8. The Apollo 11 spacecraft that landed on the moon in 1969
traveled there at a speed relative to the earth of 1.08 � 104 m/s.
To an observer on the earth, how much longer than his own day
was a day on the spacecraft?

9. A certain particle has a lifetime of 1.00 � 10�7 s when meas-
ured at rest. How far does it go before decaying if its speed is
0.99c when it is created?

1.3 Doppler Effect

10. A spacecraft receding from the earth at 0.97c transmits data at
the rate of 1.00 � 104 pulses/s. At what rate are they received?

11. A galaxy in the constellation Ursa Major is receding from the
earth at 15,000 km/s. If one of the characteristic wavelengths of
the light the galaxy emits is 550 nm, what is the corresponding
wavelength measured by astronomers on the earth?

12. The frequencies of the spectral lines in light from a distant
galaxy are found to be two-thirds as great as those of the same
lines in light from nearby stars. Find the recession speed of the
distant galaxy.

1.1 Special Relativity

1. If the speed of light were smaller than it is, would relativistic
phenomena be more or less conspicuous than they are now?

2. It is possible for the electron beam in a television picture tube
to move across the screen at a speed faster than the speed of
light. Why does this not contradict special relativity?

1.2 Time Dilation

3. An athlete has learned enough physics to know that if he meas-
ures from the earth a time interval on a moving spacecraft,
what he finds will be greater than what somebody on the
spacecraft would measure. He therefore proposes to set a world
record for the 100-m dash by having his time taken by an
observer on a moving spacecraft. Is this a good idea?

4. An observer on a spacecraft moving at 0.700c relative to the
earth finds that a car takes 40.0 min to make a trip. How long
does the trip take to the driver of the car?

5. Two observers, A on earth and B in a spacecraft whose speed
is 2.00 � 108 m/s, both set their watches to the same time
when the ship is abreast of the earth. (a) How much time
must elapse by A’s reckoning before the watches differ by
1.00 s? (b) To A, B’s watch seems to run slow. To B, does A’s
watch seem to run fast, run slow, or keep the same time as
his own watch?
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13. A spacecraft receding from the earth emits radio waves at a
constant frequency of 109 Hz. If the receiver on earth can
measure frequencies to the nearest hertz, at what spacecraft
speed can the difference between the relativistic and classical
doppler effects be detected? For the classical effect, assume the
earth is stationary.

14. A car moving at 150 km/h (93 mi/h) is approaching a station-
ary police car whose radar speed detector operates at a fre-
quency of 15 GHz. What frequency change is found by the
speed detector?

15. If the angle between the direction of motion of a light source of
frequency �0 and the direction from it to an observer is �, the
frequency � the observer finds is given by

� � �0

where � is the relative speed of the source. Show that this for-
mula includes Eqs. (1.5) to (1.7) as special cases.

16. (a) Show that when � �� c, the formulas for the doppler effect
both in light and in sound for an observer approaching a
source, and vice versa, all reduce to � � �0(1 � ��c), so that
���� � ��c. [Hint: For x �� 1, 1�(1 � x) � 1 � x.] (b) What
do the formulas for an observer receding from a source, and
vice versa, reduce to when � �� c?

1.4 Length Contraction

17. An astronaut whose height on the earth is exactly 6 ft is lying
parallel to the axis of a spacecraft moving at 0.90c relative to
the earth. What is his height as measured by an observer in the
same spacecraft? By an observer on the earth?

18. An astronaut is standing in a spacecraft parallel to its direction
of motion. An observer on the earth finds that the spacecraft
speed is 0.60c and the astronaut is 1.3 m tall. What is the as-
tronaut’s height as measured in the spacecraft?

19. How much time does a meter stick moving at 0.100c relative to
an observer take to pass the observer? The meter stick is paral-
lel to its direction of motion.

20. A meter stick moving with respect to an observer appears only
500 mm long to her. What is its relative speed? How long does
it take to pass her? The meter stick is parallel to its direction of
motion.

21. A spacecraft antenna is at an angle of 10° relative to the axis of
the spacecraft. If the spacecraft moves away from the earth at a
speed of 0.70c, what is the angle of the antenna as seen from
the earth?

1.5 Twin Paradox

22. Twin A makes a round trip at 0.6c to a star 12 light-years away,
while twin B stays on the earth. Each twin sends the other a
signal once a year by his own reckoning. (a) How many signals
does A send during the trip? How many does B send? (b) How
many signals does A receive? How many does B receive?

23. A woman leaves the earth in a spacecraft that makes a round
trip to the nearest star, 4 light-years distant, at a speed of 0.9c.

�1 � �2	�c2	
��
1 � (��c) cos �

How much younger is she upon her return than her twin sister
who remained behind?

1.7 Relativistic Momentum

24. (a) An electron’s speed is doubled from 0.2c to 0.4c. By what
ratio does its momentum increase? (b) What happens to the
momentum ratio when the electron’s speed is doubled again
from 0.4c to 0.8c?

25. All definitions are arbitrary, but some are more useful than oth-
ers. What is the objection to defining linear momentum as p �

mv instead of the more complicated p � �mv?

26. Verify that

� 1 �

1.8 Mass and Energy

27. Dynamite liberates about 5.4 � 106 J/kg when it explodes.
What fraction of its total energy content is this?

28. A certain quantity of ice at 0°C melts into water at 0°C and in
so doing gains 1.00 kg of mass. What was its initial mass?

29. At what speed does the kinetic energy of a particle equal its rest
energy?

30. How many joules of energy per kilogram of rest mass are
needed to bring a spacecraft from rest to a speed of 0.90c?

31. An electron has a kinetic energy of 0.100 MeV. Find its speed
according to classical and relativistic mechanics.

32. Verify that, for E 		 E0,

� 1 � � �
2

33. A particle has a kinetic energy 20 times its rest energy. Find the
speed of the particle in terms of c.

34. (a) The speed of a proton is increased from 0.20c to 0.40c. By
what factor does its kinetic energy increase? (b) The proton
speed is again doubled, this time to 0.80c. By what factor does
its kinetic energy increase now?

35. How much work (in MeV) must be done to increase the speed
of an electron from 1.2 � 108 m/s to 2.4 � 108 m/s?

36. (a) Derive a formula for the minimum kinetic energy needed by
a particle of rest mass m to emit Cerenkov radiation in a
medium of index of refraction n. [Hint: Start from Eqs. (1.21)
and (1.23).] (b) Use this formula to find KEmin for an electron
in a medium of n � 1.5.

37. Prove that �
1
2

��m�2, does not equal the kinetic energy of a particle
moving at relativistic speeds.

38. A moving electron collides with a stationary electron and an
electron-positron pair comes into being as a result (a positron is
a positively charged electron). When all four particles have the
same velocity after the collision, the kinetic energy required for
this process is a minimum. Use a relativistic calculation to show
that KEmin � 6mc2, where m is the rest mass of the electron.

E0
�
E

1
�
2

�
�
c

p2

�
m2c2

1
��
�1 � �2	�c2	
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M/2 M/2

Initial center of mass
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New center of mass

Radiation is
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v

Figure 1.27 The box has moved the distance S to the left when
it stops.

39. An alternative derivation of the mass-energy formula E0 � mc2,
also given by Einstein, is based on the principle that the
location of the center of mass (CM) of an isolated system
cannot be changed by any process that occurs inside the
system. Figure 1.27 shows a rigid box of length L that rests
on a frictionless surface; the mass M of the box is equally
divided between its two ends. A burst of electromagnetic
radiation of energy E0 is emitted by one end of the box.
According to classical physics, the radiation has the momen-
tum p � E0�c, and when it is emitted, the box recoils with the
speed � 
 E0�Mc so that the total momentum of the system
remains zero. After a time t 
 L�c the radiation reaches the
other end of the box and is absorbed there, which brings the
box to a stop after having moved the distance S. If the CM of
the box is to remain in its original place, the radiation must
have transferred mass from one end to the other. Show that
this amount of mass is m � E0�c2.

1.9 Energy and Momentum

40. Find the SI equivalents of the mass unit MeV/c2 and the
momentum unit MeV/c.

41. In its own frame of reference, a proton takes 5 min to cross the
Milky Way galaxy, which is about 105 light-years in diameter.
(a) What is the approximate energy of the proton in electronvolts?
(b) About how long would the proton take to cross the galaxy as
measured by an observer in the galaxy’s reference frame?

42. What is the energy of a photon whose momentum is the same
as that of a proton whose kinetic energy is 10.0 MeV?

43. Find the momentum (in MeV/c) of an electron whose speed is
0.600c.

44. Find the total energy and kinetic energy (in GeV) and the
momentum (in GeV/c) of a proton whose speed is 0.900c. The
mass of the proton is 0.938 GeV/c2.

45. Find the momentum of an electron whose kinetic energy equals
its rest energy of 511 keV.

46. Verify that ��c � pc�E.

47. Find the speed and momentum (in GeV/c) of a proton whose
total energy is 3.500 GeV.

48. Find the total energy of a neutron (m � 0.940 GeV/c2) whose
momentum is 1.200 GeV/c.

49. A particle has a kinetic energy of 62 MeV and a momentum of
335 MeV/c. Find its mass (in MeV/c2) and speed (as a fraction
of c).

50. (a) Find the mass (in GeV/c2) of a particle whose total energy
is 4.00 GeV and whose momentum is 1.45 GeV/c. (b) Find the
total energy of this particle in a reference frame in which its
momentum is 2.00 GeV/c.

Appendix I: The Lorentz Transformation

51. An observer detects two explosions, one that occurs near her at
a certain time and another that occurs 2.00 ms later 100 km
away. Another observer finds that the two explosions occur at
the same place. What time interval separates the explosions to
the second observer?

52. An observer detects two explosions that occur at the same time,
one near her and the other 100 km away. Another observer
finds that the two explosions occur 160 km apart. What time
interval separates the explosions to the second observer?

53. A spacecraft moving in the �x direction receives a light sig-
nal from a source in the xy plane. In the reference frame of
the fixed stars, the speed of the spacecraft is � and the signal
arrives at an angle 
 to the axis of the spacecraft. (a) With
the help of the Lorentz transformation find the angle 
	 at
which the signal arrives in the reference frame of the space-
craft. (b) What would you conclude from this result about
the view of the stars from a porthole on the side of the
spacecraft?

54. A body moving at 0.500c with respect to an observer disinte-
grates into two fragments that move in opposite directions rela-
tive to their center of mass along the same line of motion as the
original body. One fragment has a velocity of 0.600c in the
backward direction relative to the center of mass and the other
has a velocity of 0.500c in the forward direction. What veloci-
ties will the observer find?

55. A man on the moon sees two spacecraft, A and B, coming to-
ward him from opposite directions at the respective speeds of
0.800c and 0.900c. (a) What does a man on A measure for the
speed with which he is approaching the moon? For the speed
with which he is approaching B? (b) What does a man on
B measure for the speed with which he is approaching the
moon? For the speed with which he is approaching A?

56. An electron whose speed relative to an observer in a laboratory
is 0.800c is also being studied by an observer moving in the
same direction as the electron at a speed of 0.500c relative to
the laboratory. What is the kinetic energy (in MeV) of the elec-
tron to each observer?
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CHAPTER 2

Particle Properties of Waves

The penetrating ability of x-rays enabled them to reveal the frog which this snake had
swallowed. The snake’s jaws are very loosely joined and so can open widely.

2.1 ELECTROMAGNETIC WAVES
Coupled electric and magnetic oscillations that
move with the speed of light and exhibit typical
wave behavior

2.2 BLACKBODY RADIATION
Only the quantum theory of light can explain its
origin

2.3 PHOTOELECTRIC EFFECT
The energies of electrons liberated by light
depend on the frequency of the light

2.4 WHAT IS LIGHT?
Both wave and particle

2.5 X-RAYS
They consist of high-energy photons

2.6 X-RAY DIFFRACTION
How x-ray wavelengths can be determined

2.7 COMPTON EFFECT
Further confirmation of the photon model

2.8 PAIR PRODUCTION
Energy into matter

2.9 PHOTONS AND GRAVITY
Although they lack rest mass, photons behave as
though they have gravitational mass
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I
n our everyday experience there is nothing mysterious or ambiguous about the
concepts of particle and wave. A stone dropped into a lake and the ripples that
spread out from its point of impact apparently have in common only the ability

to carry energy and momentum from one place to another. Classical physics, which
mirrors the “physical reality” of our sense impressions, treats particles and waves as
separate components of that reality. The mechanics of particles and the optics of waves
are traditionally independent disciplines, each with its own chain of experiments and
principles based on their results.

The physical reality we perceive has its roots in the microscopic world of atoms and
molecules, electrons and nuclei, but in this world there are neither particles nor waves
in our sense of these terms. We regard electrons as particles because they possess charge
and mass and behave according to the laws of particle mechanics in such familiar de-
vices as television picture tubes. We shall see, however, that it is just as correct to in-
terpret a moving electron as a wave manifestation as it is to interpret it as a particle
manifestation. We regard electromagnetic waves as waves because under suitable cir-
cumstances they exhibit diffraction, interference, and polarization. Similarly, we shall
see that under other circumstances electromagnetic waves behave as though they con-
sist of streams of particles. Together with special relativity, the wave-particle duality is
central to an understanding of modern physics, and in this book there are few argu-
ments that do not draw upon either or both of these fundamental ideas.

2.1   ELECTROMAGNETIC WAVES

Coupled electric and magnetic oscillations that move with the speed of light
and exhibit typical wave behavior

In 1864 the British physicist James Clerk Maxwell made the remarkable suggestion
that accelerated electric charges generate linked electric and magnetic disturbances that
can travel indefinitely through space. If the charges oscillate periodically, the distur-
bances are waves whose electric and magnetic components are perpendicular to each
other and to the direction of propagation, as in Fig. 2.1.

From the earlier work of Faraday, Maxwell knew that a changing magnetic field can
induce a current in a wire loop. Thus a changing magnetic field is equivalent in its
effects to an electric field. Maxwell proposed the converse: a changing electric field has
a magnetic field associated with it. The electric fields produced by electromagnetic
induction are easy to demonstrate because metals offer little resistance to the flow of
charge. Even a weak field can lead to a measurable current in a metal. Weak magnetic
fields are much harder to detect, however, and Maxwell’s hypothesis was based on a
symmetry argument rather than on experimental findings.

Figure 2.1 The electric and magnetic fields in an electromagnetic wave vary together. The fields are
perpendicular to each other and to the direction of propagation of the wave.

Particle Properties of Waves 53

Electric field

Direction
of wave

Magnetic field

bei48482_ch02.qxd  2/4/02  11:30 AM  Page 53



54 Chapter Two

If Maxwell was right, electromagnetic (em) waves must occur in which constantly
varying electric and magnetic fields are coupled together by both electromagnetic in-
duction and the converse mechanism he proposed. Maxwell was able to show that the
speed c of electromagnetic waves in free space is given by

c � � 2.998 � 108 m/s

where �0 is the electric permittivity of free space and �0 is its magnetic permeability.
This is the same as the speed of light waves. The correspondence was too great to be
accidental, and Maxwell concluded that light consists of electromagnetic waves.

During Maxwell’s lifetime the notion of em waves remained without direct experi-
mental support. Finally, in 1888, the German physicist Heinrich Hertz showed that em
waves indeed exist and behave exactly as Maxwell had predicted. Hertz generated the
waves by applying an alternating current to an air gap between two metal balls. The
width of the gap was such that a spark occurred each time the current reached a peak.
A wire loop with a small gap was the detector; em waves set up oscillations in the loop
that produced sparks in the gap. Hertz determined the wavelength and speed of the
waves he generated, showed that they have both electric and magnetic components,
and found that they could be reflected, refracted, and diffracted.

Light is not the only example of an em wave. Although all such waves have the
same fundamental nature, many features of their interaction with matter depend upon

1
�
��0�0�

James Clerk Maxwell (1831–
1879) was born in Scotland
shortly before Michael Faraday
discovered electromagnetic induc-
tion. At nineteen he entered Cam-
bridge University to study physics
and mathematics. While still a stu-
dent, he investigated the physics of
color vision and later used his
ideas to make the first color pho-
tograph. Maxwell became known

to the scientific world at twenty-four when he showed that the
rings of Saturn could not be solid or liquid but must consist of
separate small bodies. At about this time Maxwell became in-
terested in electricity and magnetism and grew convinced that
the wealth of phenomena Faraday and others had discovered
were not isolated effects but had an underlying unity of some
kind. Maxwell’s initial step in establishing that unity came in
1856 with the paper “On Faraday’s Lines of Force,” in which
he developed a mathematical description of electric and mag-
netic fields.

Maxwell left Cambridge in 1856 to teach at a college in
Scotland and later at King’s College in London. In this period
he expanded his ideas on electricity and magnetism to create a
single comprehensive theory of electromagnetism. The funda-
mental equations he arrived at remain the foundations of the
subject today. From these equations Maxwell predicted that
electromagnetic waves should exist that travel with the speed

of light, described the properties the waves should have, and
surmised that light consisted of electromagnetic waves. Sadly,
he did not live to see his work confirmed in the experiments
of the German physicist Heinrich Hertz.

Maxwell’s contributions to kinetic theory and statistical
mechanics were on the same profound level as his contribu-
tions to electromagnetic theory. His calculations showed that
the viscosity of a gas ought to be independent of its pressure,
a surprising result that Maxwell, with the help of his wife, con-
firmed in the laboratory. They also found that the viscosity was
proportional to the absolute temperature of the gas. Maxwell’s
explanation for this proportionality gave him a way to estimate
the size and mass of molecules, which until then could only be
guessed at. Maxwell shares with Boltzmann credit for the equa-
tion that gives the distribution of molecular energies in a gas.

In 1865 Maxwell returned to his family’s home in Scotland.
There he continued his research and also composed a treatise
on electromagnetism that was to be the standard text on the
subject for many decades. It was still in print a century later.
In 1871 Maxwell went back to Cambridge to establish and
direct the Cavendish Laboratory, named in honor of the pio-
neering physicist Henry Cavendish. Maxwell died of cancer at
the age of forty-eight in 1879, the year in which Albert Ein-
stein was born. Maxwell had been the greatest theoretical physi-
cist of the nineteenth century; Einstein was to be the greatest
theoretical physicist of the twentieth century. (By a similar 
coincidence, Newton was born in the year of Galileo’s death.)
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Figure 2.2 The spectrum of electromagnetic radiation.

their frequencies. Light waves, which are em waves the eye responds to, span only a
brief frequency interval, from about 4.3 � 1014 Hz for red light to about 7.5 � 1014

Hz for violet light. Figure 2.2 shows the em wave spectrum from the low frequencies
used in radio communication to the high frequencies found in x-rays and gamma rays.

A characteristic property of all waves is that they obey the principle of superposition:

When two or more waves of the same nature travel past a point at the same time,
the instantaneous amplitude there is the sum of the instantaneous amplitudes of
the individual waves.

Instantaneous amplitude refers to the value at a certain place and time of the quan-
tity whose variations constitute the wave. (“Amplitude” without qualification refers to
the maximum value of the wave variable.) Thus the instantaneous amplitude of a wave
in a stretched string is the displacement of the string from its normal position; that of
a water wave is the height of the water surface relative to its normal level; that of a
sound wave is the change in pressure relative to the normal pressure. Since the elec-
tric and magnetic fields in a light wave are related by E � cB, its instantaneous amplitude
can be taken as either E or B. Usually E is used, since it is the electric fields of light
waves whose interactions with matter give rise to nearly all common optical effects.
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The interference of water waves. Constructive interference occurs along the line
AB and destructive interference occurs along the line CD.

+

(a) b)

+ = =

(

Figure 2.3 (a) In constructive interference, superposed waves in phase reinforce each other. (b) In destructive
interference, waves out of phase partially or completely cancel each other.

When two or more trains of light waves meet in a region, they interfere to produce
a new wave there whose instantaneous amplitude is the sum of those of the original
waves. Constructive interference refers to the reinforcement of waves with the same
phase to produce a greater amplitude, and destructive interference refers to the partial
or complete cancellation of waves whose phases differ (Fig. 2.3). If the original waves
have different frequencies, the result will be a mixture of constructive and destructive
interference, as in Fig. 3.4.

The interference of light waves was first demonstrated in 1801 by Thomas Young,
who used a pair of slits illuminated by monochromatic light from a single source (Fig. 2.4).
From each slit secondary waves spread out as though originating at the slit; this is an ex-
ample of diffraction, which, like interference, is a characteristic wave phenomenon. Ow-
ing to interference, the screen is not evenly lit but shows a pattern of alternate bright
and dark lines. At those places on the screen where the path lengths from the two slits
differ by an odd number of half wavelengths (��2, 3��2, 5��2, . . .), destructive inter-
ference occurs and a dark line is the result. At those places where the path lengths are
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Figure 2.4 Origin of the interference pattern in Young’s experiment. Constructive interference occurs where the difference in path lengths
from the slits to the screen is �, �, 2�, . . . . Destructive interference occurs where the path difference is ��2, 3��2, 5��2, . . . .

equal or differ by a whole number of wavelengths (�, 2�, 3�, . . .), constructive inter-
ference occurs and a bright line is the result. At intermediate places the interference is
only partial, so the light intensity on the screen varies gradually between the bright and
dark lines.

Interference and diffraction are found only in waves—the particles we are familiar
with do not behave in those ways. If light consisted of a stream of classical particles,
the entire screen would be dark. Thus Young’s experiment is proof that light consists
of waves. Maxwell’s theory further tells us what kind of waves they are: electromag-
netic. Until the end of the nineteenth century the nature of light seemed settled forever.

2.2   BLACKBODY RADIATION

Only the quantum theory of light can explain its origin

Following Hertz’s experiments, the question of the fundamental nature of light
seemed clear: light consisted of em waves that obeyed Maxwell’s theory. This cer-
tainty lasted only a dozen years. The first sign that something was seriously amiss
came from attempts to understand the origin of the radiation emitted by bodies of
matter.

We are all familiar with the glow of a hot piece of metal, which gives off visible light
whose color varies with the temperature of the metal, going from red to yellow to white
as it becomes hotter and hotter. In fact, other frequencies to which our eyes do not
respond are present as well. An object need not be so hot that it is luminous for it to
be radiating em energy; all objects radiate such energy continuously whatever their
temperatures, though which frequencies predominate depends on the temperature. At
room temperature most of the radiation is in the infrared part of the spectrum and
hence is invisible.

The ability of a body to radiate is closely related to its ability to absorb radiation.
This is to be expected, since a body at a constant temperature is in thermal equilib-
rium with its surroundings and must absorb energy from them at the same rate as it
emits energy. It is convenient to consider as an ideal body one that absorbs all radi-
ation incident upon it, regardless of frequency. Such a body is called a blackbody.

The point of introducing the idealized blackbody in a discussion of thermal ra-
diation is that we can now disregard the precise nature of whatever is radiating, since

Particle Properties of Waves 57
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Figure 2.6 Blackbody spectra. The spectral distribution of energy in the radiation depends only on
the temperature of the body. The higher the temperature, the greater the amount of radiation and the
higher the frequency at which the maximum emission occurs. The dependence of the latter frequency
on temperature follows a formula called Wien’s displacement law, which is discussed in Sec. 9.6.

Incident

Light ray

Figure 2.5 A hole in the wall of a
hollow object is an excellent ap-
proximation of a blackbody.

The color and brightness of an
object heated until it glows, such
as the filament of this light bulb,
depends upon its temperature,
which here is about 3000 K. An
object that glows white is hotter
than it is when it glows red, and
it gives off more light as well.

all blackbodies behave identically. In the laboratory a blackbody can be approximated
by a hollow object with a very small hole leading to its interior (Fig. 2.5). Any ra-
diation striking the hole enters the cavity, where it is trapped by reflection back and
forth until it is absorbed. The cavity walls are constantly emitting and absorbing ra-
diation, and it is in the properties of this radiation (blackbody radiation) that we
are interested.

Experimentally we can sample blackbody radiation simply by inspecting what
emerges from the hole in the cavity. The results agree with everyday experience. A
blackbody radiates more when it is hot than when it is cold, and the spectrum of a
hot blackbody has its peak at a higher frequency than the peak in the spectrum of a
cooler one. We recall the behavior of an iron bar as it is heated to progressively higher
temperatures: at first it glows dull red, then bright orange-red, and eventually it be-
comes “white hot.” The spectrum of blackbody radiation is shown in Fig. 2.6 for two
temperatures.

The Ultraviolet Catastrophe

Why does the blackbody spectrum have the shape shown in Fig. 2.6? This prob-
lem was examined at the end of the nineteenth century by Lord Rayleigh and James
Jeans. The details of their calculation are given in Chap. 9. They started by con-
sidering the radiation inside a cavity of absolute temperature T whose walls are
perfect reflectors to be a series of standing em waves (Fig. 2.7). This is a three-
dimensional generalization of standing waves in a stretched string. The condition
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Figure 2.7 Em radiation in a cav-
ity whose walls are perfect reflec-
tors consists of standing waves
that have nodes at the walls,
which restricts their possible
wavelengths. Shown are three
possible wavelengths when the
distance between opposite walls
is L.

for standing waves in such a cavity is that the path length from wall to wall, whatever
the direction, must be a whole number of half-wavelengths, so that a node occurs
at each reflecting surface. The number of independent standing waves G(�)d� in
the frequency interval between � and d� per unit volume in the cavity turned out
to be

G(�)d� � (2.1)

This formula is independent of the shape of the cavity. As we would expect, the higher
the frequency �, the shorter the wavelength and the greater the number of possible
standing waves.

The next step is to find the average energy per standing wave. According to the
theorem of equipartition of energy, a mainstay of classical physics, the average energy
per degree of freedom of an entity (such as a molecule of an ideal gas) that is a mem-
ber of a system of such entities in thermal equilibrium at the temperature T is �

1
2

�kT.
Here k is Boltzmann’s constant:

Boltzmann’s constant k � 1.381 � 10�23 J/K

A degree of freedom is a mode of energy possession. Thus a monatomic ideal gas
molecule has three degrees of freedom, corresponding to kinetic energy of motion in
three independent directions, for an average total energy of �

3
2

�kT.
A one-dimensional harmonic oscillator has two degrees of freedom, one that corre-

sponds to its kinetic energy and one that corresponds to its potential energy. Because
each standing wave in a cavity originates in an oscillating electric charge in the cavity
wall, two degrees of freedom are associated with the wave and it should have an average
energy of 2(�

1
2

�)kT:

�� � kT (2.2)

The total energy u(�) d� per unit volume in the cavity in the frequency interval from
� to � � d� is therefore

u(�) d� � ��G(�) d� � �2 d� (2.3)

This radiation rate is proportional to this energy density for frequencies between � and
� � d�. Equation (2.3), the Rayleigh-Jeans formula, contains everything that classi-
cal physics can say about the spectrum of blackbody radiation.

Even a glance at Eq. (2.3) shows that it cannot possibly be correct. As the fre-
quency � increases toward the ultraviolet end of the spectrum, this formula predicts
that the energy density should increase as �2. In the limit of infinitely high fre-
quencies, u(�) d� therefore should also go to infinity. In reality, of course, the energy
density (and radiation rate) falls to 0 as � S � (Fig. 2.8). This discrepancy became
known as the ultraviolet catastrophe of classical physics. Where did Rayleigh and
Jeans go wrong?

8�kT
�

c3

Rayleigh-Jeans 
formula

Classical average energy
per standing wave

8��2d�
�

c3

Density of standing
waves in cavity

Particle Properties of Waves 59

bei48482_ch02.qxd  1/16/02  1:52 PM  Page 59



60 Chapter Two

Planck Radiation Formula

In 1900 the German physicist Max Planck used “lucky guesswork” (as he later called it)
to come up with a formula for the spectral energy density of blackbody radiation:

u(�) d� � (2.4)

Here h is a constant whose value is

Planck’s constant h � 6.626 � 10�34 J � s

�3 d�
��
eh��kT � 1

8�h
�

c3

Planck radiation
formula
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Figure 2.8 Comparison of the Rayleigh-Jeans formula for the spectrum of the radiation from a black-
body at 1500 K with the observed spectrum. The discrepancy is known as the ultraviolet catastrophe
because it increases with increasing frequency. This failure of classical physics led Planck to the dis-
covery that radiation is emitted in quanta whose energy is h�.

Max Planck (1858–1947) was
born in Kiel and educated in Mu-
nich and Berlin. At the University
of Berlin he studied under Kirch-
hoff and Helmholtz, as Hertz had
done earlier. Planck realized that
blackbody radiation was important
because it was a fundamental effect
independent of atomic structure,
which was still a mystery in the late
nineteenth century, and worked at
understanding it for six years be-

fore finding the formula the radiation obeyed. He “strived from
the day of its discovery to give it a real physical interpretation.”
The result was the discovery that radiation is emitted in energy
steps of h�. Although this discovery, for which he received the
Nobel Prize in 1918, is now considered to mark the start of

modern physics, Planck himself remained skeptical for a long
time of the physical reality of quanta. As he later wrote, “My
vain attempts to somehow reconcile the elementary quantum
with classical theory continued for many years and cost me
great effort. . . . Now I know for certain that the quantum of
action has a much more fundamental significance than I orig-
inally suspected.”

Like many physicists, Planck was a competent musician (he
sometimes played with Einstein) and in addition enjoyed moun-
tain climbing. Although Planck remained in Germany during
the Hitler era, he protested the Nazi treatment of Jewish scien-
tists and lost his presidency of the Kaiser Wilhelm Institute as
a result. In 1945 one of his sons was implicated in a plot to
kill Hitler and was executed. After World War II the Institute
was renamed after Planck and he was again its head until his
death.
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At high frequencies, h� 		 kT and eh��kT S �, which means that u(�) d� S 0 as
observed. No more ultraviolet catastrophe. At low frequencies, where the Rayleigh-
Jeans formula is a good approximation to the data (see Fig. 2.8), h� 

 kT and h��kT


 1. In general,

ex � 1 � x � � � � � �

If x is small, ex � 1 � x, and so for h��kT 

 1 we have

� � h� 

 kT

Thus at low frequencies Planck’s formula becomes

u(�) d� � �3 � � d� � �2 d�

which is the Rayleigh-Jeans formula. Planck’s formula is clearly at least on the right
track; in fact, it has turned out to be completely correct.

Next Planck had the problem of justifying Eq. (2.4) in terms of physical principles.
A new principle seemed needed to explain his formula, but what was it? After several
weeks of “the most strenuous work of my life,” Planck found the answer: The oscilla-
tors in the cavity walls could not have a continuous distribution of possible energies
� but must have only the specific energies

�n � nh� n � 0, 1, 2, � � � (2.5)

An oscillator emits radiation of frequency � when it drops from one energy state to the
next lower one, and it jumps to the next higher state when it absorbs radiation of
frequency �. Each discrete bundle of energy h� is called a quantum (plural quanta)
from the Latin for “how much.”

With oscillator energies limited to nh�, the average energy per oscillator in the cavity
walls—and so per standing wave—turned out to be not �� � kT as for a continuous
distribution of oscillator energies, but instead

� � (2.6)

This average energy leads to Eq. (2.4). Blackbody radiation is further discussed in
Chap. 9.

Example 2.1

Assume that a certain 660-Hz tuning fork can be considered as a harmonic oscillator whose vi-
brational energy is 0.04 J. Compare the energy quanta of this tuning fork with those of an atomic
oscillator that emits and absorbs orange light whose frequency is 5.00 � 1014 Hz.

h�
��
eh��kT � 1

Actual average energy
per standing wave

Oscillator energies

8�kT
�

c3

kT
�
h�

8�h
�

c3

kT
�
h�

1
��

1 � �
k
h
T
�
� � 1

1
�
eh�� kT�1

x3

�
3!

x2

�
2!
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Solution

(a) For the tuning fork,

h�1 � (6.63 � 10�34 J � s) (660 s�1) � 4.38 � 10�31 J

The total energy of the vibrating tines of the fork is therefore about 1029 times the quantum
energy h�. The quantization of energy in the tuning fork is obviously far too small to be observed,
and we are justified in regarding the fork as obeying classical physics.

(b) For the atomic oscillator,

h�2 � (6.63 � 10�34 J � s) (5.00 � 1014 s�1) � 3.32 � 10�19 J

In electronvolts, the usual energy unit in atomic physics,

h�2 � � 2.08 eV

This is a significant amount of energy on an atomic scale, and it is not surprising that classical
physics fails to account for phenomena on this scale.

The concept that the oscillators in the cavity walls can interchange energy with
standing waves in the cavity only in quanta of h� is, from the point of view of classi-
cal physics, impossible to understand. Planck regarded his quantum hypothesis as an
“act of desperation” and, along with other physicists of his time, was unsure of how
seriously to regard it as an element of physical reality. For many years he held that,
although the energy transfers between electric oscillators and em waves apparently are
quantized, em waves themselves behave in an entirely classical way with a continuous
range of possible energies.

2.3   PHOTOELECTRIC EFFECT

The energies of electrons liberated by light depend on the frequency 
of the light

During his experiments on em waves, Hertz noticed that sparks occurred more readily in
the air gap of his transmitter when ultraviolet light was directed at one of the metal balls.
He did not follow up this observation, but others did. They soon discovered that the cause
was electrons emitted when the frequency of the light was sufficiently high. This phe-
nomenon is known as the photoelectric effect and the emitted electrons are called pho-
toelectrons. It is one of the ironies of history that the same work to demonstrate that light
consists of em waves also gave the first hint that this was not the whole story.

Figure 2.9 shows how the photoelectric effect was studied. An evacuated tube con-
tains two electrodes connected to a source of variable voltage, with the metal plate whose
surface is irradiated as the anode. Some of the photoelectrons that emerge from this sur-
face have enough energy to reach the cathode despite its negative polarity, and they con-
stitute the measured current. The slower photoelectrons are repelled before they get to
the cathode. When the voltage is increased to a certain value V0, of the order of several
volts, no more photoelectrons arrive, as indicated by the current dropping to zero. This
extinction voltage corresponds to the maximum photoelectron kinetic energy.

3.32 � 10�19 J
��
1.60 � 10�19 J/eV
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Figure 2.9 Experimental observation of the photoelectric effect.

The existence of the photoelectric effect is not surprising. After all, light waves carry
energy, and some of the energy absorbed by the metal may somehow concentrate on
individual electrons and reappear as their kinetic energy. The situation should be like
water waves dislodging pebbles from a beach. But three experimental findings show
that no such simple explanation is possible.

1 Within the limits of experimental accuracy (about 10�9 s), there is no time interval
between the arrival of light at a metal surface and the emission of photoelectrons. How-
ever, because the energy in an em wave is supposed to be spread across the wavefronts,
a period of time should elapse before an individual electron accumulates enough energy
(several eV) to leave the metal. A detectable photoelectron current results when 10�6

W/m2 of em energy is absorbed by a sodium surface. A layer of sodium 1 atom thick
and 1 m2 in area contains about 1019 atoms, so if the incident light is absorbed in the
uppermost atomic layer, each atom receives energy at an average rate of 10�25 W. At
this rate over a month would be needed for an atom to accumulate energy of the mag-
nitude that photoelectrons from a sodium surface are observed to have.
2 A bright light yields more photoelectrons than a dim one of the same frequency, but
the electron energies remain the same (Fig. 2.10). The em theory of light, on the con-
trary, predicts that the more intense the light, the greater the energies of the electrons.
3 The higher the frequency of the light, the more energy the photoelectrons have 
(Fig. 2.11). Blue light results in faster electrons than red light. At frequencies below a
certain critical frequency �0, which is characteristic of each particular metal, no elec-
trons are emitted. Above �0 the photoelectrons range in energy from 0 to a maximum
value that increases linearly with increasing frequency (Fig. 2.12). This observation,
also, cannot be explained by the em theory of light.

Quantum Theory of Light

When Planck’s derivation of his formula appeared, Einstein was one of the first—
perhaps the first—to understand just how radical the postulate of energy quantization

Particle Properties of Waves 63

Retarding potential
P

h
ot

oe
le

ct
ro

n
 c

u
rr

en
t

V0 V

Frequency = v
= constant

0

3I

2I

I

Figure 2.10 Photoelectron cur-
rent is proportional to light in-
tensity I for all retarding voltages.
The stopping potential V0,  which
corresponds to the maximum
photoelectron energy, is the same
for all intensities of light of the
same frequency �.

Figure 2.11 The stopping poten-
tial V0, and hence the maximum
photoelectron energy, depends on
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Figure 2.12 Maximum photoelectron kinetic energy KEmax versus frequency of incident light for three
metal surfaces.

of oscillators was: “It was as if the ground was pulled from under one.” A few years
later, in 1905, Einstein realized that the photoelectric effect could be understood if the
energy in light is not spread out over wavefronts but is concentrated in small packets,
or photons. (The term photon was coined by the chemist Gilbert Lewis in 1926.) Each
photon of light of frequency � has the energy h�, the same as Planck’s quantum energy.
Planck had thought that, although energy from an electric oscillator apparently had to
be given to em waves in separate quanta of h� each, the waves themselves behaved
exactly as in conventional wave theory. Einstein’s break with classical physics was more
drastic: Energy was not only given to em waves in separate quanta but was also car-
ried by the waves in separate quanta.

The three experimental observations listed above follow directly from Einstein’s hy-
pothesis. (1) Because em wave energy is concentrated in photons and not spread out,
there should be no delay in the emission of photoelectrons. (2) All photons of fre-
quency � have the same energy, so changing the intensity of a monochromatic light
beam will change the number of photoelectrons but not their energies. (3) The higher
the frequency �, the greater the photon energy h� and so the more energy the photo-
electrons have.

What is the meaning of the critical frequency �0 below which no photoelectrons are
emitted? There must be a minimum energy � for an electron to escape from a partic-
ular metal surface or else electrons would pour out all the time. This energy is called
the work function of the metal, and is related to �0 by the formula

Work function � � h�0 (2.7)

The greater the work function of a metal, the more energy is needed for an electron
to leave its surface, and the higher the critical frequency for photoelectric emission
to occur.

Some examples of photoelectric work functions are given in Table 2.1. To pull an
electron from a metal surface generally takes about half as much energy as that needed
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Table 2.1 Photoelectric Work Functions

Metal Symbol Work Function, eV

Cesium Cs 1.9
Potassium K 2.2
Sodium Na 2.3
Lithium Li 2.5
Calcium Ca 3.2
Copper Cu 4.7
Silver Ag 4.7
Platinum Pt 6.4

All light-sensitive detectors, including the eye and the one used in this video camera, are based
on the absorption of energy from photons of light by electrons in the atoms the light falls on.

to pull an electron from a free atom of that metal (see Fig. 7.10); for instance, the
ionization energy of cesium is 3.9 eV compared with its work function of 1.9 eV. Since
the visible spectrum extends from about 4.3 to about 7.5 � 1014 Hz, which corre-
sponds to quantum energies of 1.7 to 3.3 eV, it is clear from Table 2.1 that the pho-
toelectric effect is a phenomenon of the visible and ultraviolet regions.

According to Einstein, the photoelectric effect in a given metal should obey the
equation

Photoelectric effect h� � KEmax � � (2.8)

where h� is the photon energy, KEmax is the maximum photoelectron energy (which is
proportional to the stopping potential), and � is the minimum energy needed for an
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E = hv0

Metal

E = hv

KE = 0

KEmax = hv – hv0

Figure 2.13 If the energy h�0 (the work function of the surface) is needed to remove an electron from
a metal surface, the maximum electron kinetic energy will be h� � h�0 when light of frequency � is
directed at the surface.

electron to leave the metal. Because � � h�0, Eq. (2.8) can be rewritten (Fig. 2.13)

h� � KEmax � h�0

KEmax � h� � h�0 � h(� � �0) (2.9)

This formula accounts for the relationships between KEmax and � plotted in Fig. 2.12
from experimental data. If Einstein was right, the slopes of the lines should all be equal
to Planck’s constant h, and this is indeed the case.

In terms of electronvolts, the formula E � h� for photon energy becomes

E � � �� � (4.136 � 10�15)� eV � s (2.10)

If we are given instead the wavelength � of the light, then since � � c�� we have

E � �

(2.11)

Example 2.2

Ultraviolet light of wavelength 350 nm and intensity 1.00 W/m2 is directed at a potassium sur-
face. (a) Find the maximum KE of the photoelectrons. (b) If 0.50 percent of the incident pho-
tons produce photoelectrons, how many are emitted per second if the potassium surface has an
area of 1.00 cm2?

Solution

(a) From Eq. (2.11) the energy of the photons is, since 1 nm � 1 nanometer � 10�9 m,

Ep � � 3.5 eV
1.24 � 10�6 eV � m
���
(350 nm)(10�9 m/nm)

1.240 � 10�6 eV � m
���

�

(4.136 � 10�15 eV � s)(2.998 � 108 m/s)
�����

�

Photon 
energy

6.626 � 10�34 J � s
���
1.602 � 10�19 J/eV

Photon
energy
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Thermionic Emission

E instein’s interpretation of the photoelectric effect is supported by studies of thermionic emis-
sion. Long ago it was discovered that the presence of a very hot object increases the elec-

tric conductivity of the surrounding air. Eventually the reason for this effect was found to be the
emission of electrons from such an object. Thermionic emission makes possible the operation
of such devices as television picture tubes, in which metal filaments or specially coated cathodes
at high temperature supply dense streams of electrons.

The emitted electrons evidently obtain their energy from the thermal agitation of the parti-
cles of the metal, and we would expect the electrons to need a certain minimum energy to
escape. This minimum energy can be determined for many surfaces, and it is always close to
the photoelectric work function for the same surfaces. In photoelectric emission, photons of
light provide the energy required by an electron to escape, while in thermionic emission heat
does so.

•
e

e

•

•

(a)

(b)

•
•

Figure 2.14 (a) The wave theory
of light explains diffraction and
interference, which the quantum
theory cannot account for. (b) The
quantum theory explains the pho-
toelectric effect, which the wave
theory cannot account for.

Table 2.1 gives the work function of potassium as 2.2 eV, so

KEmax � h� � � � 3.5 eV � 2.2 eV � 1.3 eV

(b) The photon energy in joules is 5.68 � 10�19 J. Hence the number of photons that reach the
surface per second is

np � � � � 1.76 � 1014 photons/s

The rate at which photoelectrons are emitted is therefore

ne � (0.0050)np � 8.8 � 1011 photoelectrons/s

(1.00 W/m2) (1.00 � 10�4 m2)
����

5.68 � 10�19 J/photon

(P�A)(A)
�

Ep

E�t
�
Ep

2.4   WHAT IS LIGHT?

Both wave and particle

The concept that light travels as a series of little packets is directly opposed to the wave
theory of light (Fig. 2.14). Both views have strong experimental support, as we have
seen. According to the wave theory, light waves leave a source with their energy spread
out continuously through the wave pattern. According to the quantum theory, light
consists of individual photons, each small enough to be absorbed by a single electron.
Yet, despite the particle picture of light it presents, the quantum theory needs the fre-
quency of the light to describe the photon energy.

Which theory are we to believe? A great many scientific ideas have had to be re-
vised or discarded when they were found to disagree with new data. Here, for the first
time, two different theories are needed to explain a single phenomenon. This situation
is not the same as it is, say, in the case of relativistic versus newtonian mechanics, where
one turns out to be an approximation of the other. The connection between the wave
and quantum theories of light is something else entirely.

To appreciate this connection, let us consider the formation of a double-slit in-
terference pattern on a screen. In the wave model, the light intensity at a place on
the screen depends on E2

—
, the average over a complete cycle of the square of the in-

stantaneous magnitude E of the em wave’s electric field. In the particle model, this
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intensity depends instead on Nh�, where N is the number of photons per second
per unit area that reach the same place on the screen. Both descriptions must give
the same value for the intensity, so N is proportional to E2

—
. If N is large enough,

somebody looking at the screen would see the usual double-slit interference pat-
tern and would have no reason to doubt the wave model. If N is small—perhaps
so small that only one photon at a time reaches the screen—the observer would
find a series of apparently random flashes and would assume that he or she is watch-
ing quantum behavior.

If the observer keeps track of the flashes for long enough, though, the pattern they
form will be the same as when N is large. Thus the observer is entitled to conclude
that the probability of finding a photon at a certain place and time depends on the value
of E 2

—
there. If we regard each photon as somehow having a wave associated with it,

the intensity of this wave at a given place on the screen determines the likelihood that
a photon will arrive there. When it passes through the slits, light is behaving as a wave
does. When it strikes the screen, light is behaving as a particle does. Apparently light
travels as a wave but absorbs and gives off energy as a series of particles.

We can think of light as having a dual character. The wave theory and the quan-
tum theory complement each other. Either theory by itself is only part of the story
and can explain only certain effects. A reader who finds it hard to understand how
light can be both a wave and a stream of particles is in good company: shortly before
his death, Einstein remarked that “All these fifty years of conscious brooding have
brought me no nearer to the answer to the question, ‘What are light quanta?’ ” The
“true nature” of light includes both wave and particle characters, even though there is
nothing in everyday life to help us visualize that.

2.5   X-RAYS

They consist of high-energy photons

The photoelectric effect provides convincing evidence that photons of light can transfer
energy to electrons. Is the inverse process also possible? That is, can part or all of the
kinetic energy of a moving electron be converted into a photon? As it happens, the in-
verse photoelectric effect not only does occur but had been discovered (though not
understood) before the work of Planck and Einstein.

In 1895 Wilhelm Roentgen found that a highly penetrating radiation of unknown
nature is produced when fast electrons impinge on matter. These x-rays were soon
found to travel in straight lines, to be unaffected by electric and magnetic fields, to
pass readily through opaque materials, to cause phosphorescent substances to glow,
and to expose photographic plates. The faster the original electrons, the more pene-
trating the resulting x-rays, and the greater the number of electrons, the greater the in-
tensity of the x-ray beam.

Not long after this discovery it became clear that x-rays are em waves. Electro-
magnetic theory predicts that an accelerated electric charge will radiate em waves,
and a rapidly moving electron suddenly brought to rest is certainly accelerated. Ra-
diation produced under these circumstances is given the German name
bremsstrahlung (“braking radiation”). Energy loss due to bremsstrahlung is more
important for electrons than for heavier particles because electrons are more violently
accelerated when passing near nuclei in their paths. The greater the energy of an
electron and the greater the atomic number of the nuclei it encounters, the more en-
ergetic the bremsstrahlung.
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In 1912 a method was devised for measuring the wavelengths of x-rays. A dif-
fraction experiment had been recognized as ideal, but as we recall from physical
optics, the spacing between adjacent lines on a diffraction grating must be of the
same order of magnitude as the wavelength of the light for satisfactory results, and
gratings cannot be ruled with the minute spacing required by x-rays. Max von Laue
realized that the wavelengths suggested for x-rays were comparable to the spacing
between adjacent atoms in crystals. He therefore proposed that crystals be used to
diffract x-rays, with their regular lattices acting as a kind of three-dimensional grat-
ing. In experiments carried out the following year, wavelengths from 0.013 to 0.048
nm were found, 10�4 of those in visible light and hence having quanta 104 times
as energetic.

Electromagnetic radiation with wavelengths from about 0.01 to about 10 nm falls
into the category of x-rays. The boundaries of this category are not sharp: the shorter-
wavelength end overlaps gamma rays and the longer-wavelength end overlaps ultravi-
olet light (see Fig. 2.2).

Figure 2.15 is a diagram of an x-ray tube. A cathode, heated by a filament through
which an electric current is passed, supplies electrons by thermionic emission.
The high potential difference V maintained between the cathode and a metallic tar-
get accelerates the electrons toward the latter. The face of the target is at an angle
relative to the electron beam, and the x-rays that leave the target pass through the

Wilhelm Konrad Roentgen
(1845–1923) was born in Lennep,
Germany, and studied in Holland
and Switzerland. After periods at
several German universities,
Roentgen became professor of
physics at Würzburg where, on
November 8, 1895, he noticed
that a sheet of paper coated with
barium platinocyanide glowed
when he switched on a nearby
cathode-ray tube that was entirely

covered with black cardboard. In a cathode-ray tube electrons

are accelerated in a vacuum by an electric field, and it was
the impact of these electrons on the glass end of the tube that
produced the penetrating “x” (since their nature was then
unknown) rays that caused the salt to glow. Roentgen said of
his discovery that, when people heard of it, they would say,
“Roentgen has probably gone crazy.” In fact, x-rays were an
immediate sensation, and only two months later were being
used in medicine. They also stimulated research in new di-
rections; Becquerel’s discovery of radioactivity followed within
a year. Roentgen received the first Nobel Prize in physics in
1902. He refused to benefit financially from his work and died
in poverty in the German inflation that followed the end of
World War I.

Target Cathode

X-rays
Evacuated

tube

Electrons

–+

V

Figure 2.15 An x-ray tube. The higher the accelerating voltage V, the faster the electrons and the
shorter the wavelengths of the x-rays.
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Figure 2.16 X-ray spectra of tungsten at various accelerating potentials.

In modern x-ray tubes like these,
circulating oil carries heat away
from the target and releases it to
the outside air through a heat
exchanger. The use of x-rays as a
diagnostic tool in medicine is
based upon the different extents
to which different tissues absorb
them. Because of its calcium con-
tent, bone is much more opaque
to x-rays than muscle, which in
turn is more opaque than fat. To
enhance contrast, “meals” that con-
tain barium are given to patients to
better display their digestive sys-
tems, and other compounds may
be injected into the bloodstream to
enable the condition of blood ves-
sels to be studied.
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Figure 2.17 X-ray spectra of tungsten and molybdenum at 35 kV accelerating potential.

side of the tube. The tube is evacuated to permit the electrons to get to the target
unimpeded.

As mentioned earlier, classical electromagnetic theory predicts bremsstrahlung when
electrons are accelerated, which accounts in general for the x-rays produced by an x-ray
tube. However, the agreement between theory and experiment is not satisfactory in cer-
tain important respects. Figures 2.16 and 2.17 show the x-ray spectra that result when
tungsten and molybdenum targets are bombarded by electrons at several different accel-
erating potentials. The curves exhibit two features electromagnetic theory cannot explain:

1 In the case of molybdenum, intensity peaks occur that indicate the enhanced pro-
duction of x-rays at certain wavelengths. These peaks occur at specific wavelengths for
each target material and originate in rearrangements of the electron structures of the
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target atoms after having been disturbed by the bombarding electrons. This phenom-
enon will be discussed in Sec. 7.9; the important thing to note at this point is the pres-
ence of x-rays of specific wavelengths, a decidedly nonclassical effect, in addition to a
continuous x-ray spectrum.
2 The x-rays produced at a given accelerating potential V vary in wavelength, but none
has a wavelength shorter than a certain value �min. Increasing V decreases �min. At a
particular V, �min is the same for both the tungsten and molybdenum targets. Duane
and Hunt found experimentally that �min is inversely proportional to V; their precise
relationship is

X-ray production �min � V � m (2.12)

The second observation fits in with the quantum theory of radiation. Most of the
electrons that strike the target undergo numerous glancing collisions, with their energy
going simply into heat. (This is why the targets in x-ray tubes are made from high-
melting-point metals such as tungsten, and a means of cooling the target is usually em-
ployed.) A few electrons, though, lose most or all of their energy in single collisions
with target atoms. This is the energy that becomes x-rays.

X-rays production, then, except for the peaks mentioned in observation 1 above,
represents an inverse photoelectric effect. Instead of photon energy being transformed
into electron KE, electron KE is being transformed into photon energy. A short wave-
length means a high frequency, and a high frequency means a high photon energy h�.

1.24 � 10�6

��
V

In a CT (computerized tomography) scanner, a series of x-ray exposures of a patient
taken from different directions are combined by a computer to give cross-sectional
images of the parts of the body being examined. In effect, the tissue is sliced up by the
computer on the basis of the x-ray exposures, and any desired slice can be displayed.
This technique enables an abnormality to be detected and its exact location established,
which might be impossible to do from an ordinary x-ray picture. (The word tomogra-
phy comes from tomos, Greek for “cut.”)

bei48482_ch02.qxd  1/16/02  1:52 PM  Page 71



Since work functions are only a few electronvolts whereas the accelerating poten-
tials in x-ray tubes are typically tens or hundreds of thousands of volts, we can ignore
the work function and interpret the short wavelength limit of Eq. (2.12) as corre-
sponding to the case where the entire kinetic energy KE � Ve of a bombarding elec-
tron is given up to a single photon of energy h�max. Hence

Ve � h�max �

�min � � V � m

which is the Duane-Hunt formula of Eq. (2.12)—and, indeed, the same as Eq. (2.11)
except for different units. It is therefore appropriate to regard x-ray production as the
inverse of the photoelectric effect.

Example 2.3

Find the shortest wavelength present in the radiation from an x-ray machine whose accelerat-
ing potential is 50,000 V.

Solution

From Eq. (2.12) we have

�min � � 2.48 � 10�11 m � 0.0248 nm

This wavelength corresponds to the frequency

�max � � � 1.21 � 1019 Hz

2.6   X-RAY DIFFRACTION

How x-ray wavelengths can be determined

A crystal consists of a regular array of atoms, each of which can scatter em waves. The
mechanism of scattering is straightforward. An atom in a constant electric field be-
comes polarized since its negatively charged electrons and positively charged nucleus
experience forces in opposite directions. These forces are small compared with the
forces holding the atom together, and so the result is a distorted charge distribution
equivalent to an electric dipole. In the presence of the alternating electric field of an
em wave of frequency �, the polarization changes back and forth with the same fre-
quency �. An oscillating electric dipole is thus created at the expense of some of the
energy of the incoming wave. The oscillating dipole in turn radiates em waves of fre-
quency �, and these secondary waves go out in all directions except along the dipole
axis. (In an assembly of atoms exposed to unpolarized radiation, the latter restriction
does not apply since the contributions of the individual atoms are random.)

In wave terminology, the secondary waves have spherical wave fronts in place of
the plane wave fronts of the incoming waves (Fig. 2.18). The scattering process, then,

3.00 � 108 m�s
��
2.48 � 10�11 m

c
�
�min

1.24 � 10�6 V � m
��

5.00 � 104 V

1.240 � 10�6

��
V

hc
�
Ve

hc
�
�min
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Figure 2.18 The scattering of electromagnetic radiation by a group of atoms. Incident plane waves are
reemitted as spherical waves.
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involves atoms that absorb incident plane waves and reemit spherical waves of the
same frequency.

A monochromatic beam of x-rays that falls upon a crystal will be scattered in all di-
rections inside it. However, owing to the regular arrangement of the atoms, in certain
directions the scattered waves will constructively interfere with one another while in
others they will destructively interfere. The atoms in a crystal may be thought of as
defining families of parallel planes, as in Fig. 2.19, with each family having a charac-
teristic separation between its component planes. This analysis was suggested in 1913
by W. L Bragg, in honor of whom the above planes are called Bragg planes.

The conditions that must be fulfilled for radiation scattered by crystal atoms to un-
dergo constructive interference may be obtained from a diagram like that in Fig. 2.20.
A beam containing x-rays of wavelength � is incident upon a crystal at an angle � with
a family of Bragg planes whose spacing is d. The beam goes past atom A in the first
plane and atom B in the next, and each of them scatters part of the beam in random
directions. Constructive interference takes place only between those scattered rays that
are parallel and whose paths differ by exactly �, 2�, 3�, and so on. That is, the path
difference must be n�, where n is an integer. The only rays scattered by A and B for
which this is true are those labeled I and II in Fig. 2.20.

The first condition on I and II is that their common scattering angle be equal to
the angle of incidence � of the original beam. (This condition, which is independent

d2

+

Cl–

d1

+

Figure 2.19 Two sets of Bragg planes in a NaCl crystal.
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The interference pattern pro-
duced by the scattering of x-rays
from ions in a crystal of NaCl. The
bright spots correspond to the di-
rections where x-rays scattered
from various layers in the crystal
interfere constructively. The cubic
pattern of the NaCl lattice is sug-
gested by he fourfold symmetry
of the pattern. The large central
spot is due to the unscattered
x-ray beam.

Detector

Crystal

Path of
detectorCollimators

X-rays

θ

θ

Figure 2.21 X-ray spectrometer.

Path difference
= 2d sin θ

d

θ

θθ

A

B
d sin θ

θ

I

II

Figure 2.20 X-ray scattering from a cubic crystal.

of wavelength, is the same as that for ordinary specular reflection in optics: angle of
incidence � angle of reflection.) The second condition is that

2d sin � � n� n � 1, 2, 3, � � � (2.13)

since ray II must travel the distance 2d sin � farther than ray I. The integer n is the
order of the scattered beam.

The schematic design of an x-ray spectrometer based upon Bragg’s analysis is shown
in Fig. 2.21. A narrow beam of x-rays falls upon a crystal at an angle �, and a detector
is placed so that it records those rays whose scattering angle is also �. Any x-rays reach-
ing the detector therefore obey the first Bragg condition. As � is varied, the detector
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Figure 2.22 (a) The scattering of a photon by an electron is called the Compton effect. Energy and momentum are conserved in such an
event, and as a result the scattered photon has less energy (longer wavelength) than the incident photon. (b) Vector diagram of the momenta
and their components of the incident and scattered photons and the scattered electron.

will record intensity peaks corresponding to the orders predicted by Eq. (2.13). If the
spacing d between adjacent Bragg planes in the crystal is known, the x-ray wavelength
� may be calculated.

2.7   COMPTON EFFECT

Further confirmation of the photon model

According to the quantum theory of light, photons behave like particles except for their
lack of rest mass. How far can this analogy be carried? For instance, can we consider
a collision between a photon and an electron as if both were billiard balls?

Figure 2.22 shows such a collision: an x-ray photon strikes an electron (assumed
to be initially at rest in the laboratory coordinate system) and is scattered away from
its original direction of motion while the electron receives an impulse and begins to
move. We can think of the photon as losing an amount of energy in the collision that
is the same as the kinetic energy KE gained by the electron, although actually separate
photons are involved. If the initial photon has the frequency � associated with it, the
scattered photon has the lower frequency ��, where

Loss in photon energy � gain in electron energy

h� � h�� � KE (2.14)

From Chap. 1 we recall that the momentum of a massless particle is related to its
energy by the formula

E � pc (1.25)

Since the energy of a photon is h�, its momentum is

Photon momentum p � � (2.15)
h�
�
c

E
�
c
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Momentum, unlike energy, is a vector quantity that incorporates direction as well
as magnitude, and in the collision momentum must be conserved in each of two
mutually perpendicular directions. (When more than two bodies participate in a
collision, momentum must be conserved in each of three mutually perpendicular
directions.) The directions we choose here are that of the original photon and one
perpendicular to it in the plane containing the electron and the scattered photon
(Fig. 2.22).

The initial photon momentum is h��c, the scattered photon momentum is h���c, and
the initial and final electron momenta are respectively 0 and p. In the original photon
direction

Initial momentum � final momentum

� 0 � cos � � p cos � (2.16)

and perpendicular to this direction

Initial momentum � final momentum

0 � sin � � p sin � (2.17)

The angle � is that between the directions of the initial and scattered photons, and �
is that between the directions of the initial photon and the recoil electron. From Eqs.
(2.14), (2.16), and (2.17) we can find a formula that relates the wavelength difference
between initial and scattered photons with the angle � between their directions, both
of which are readily measurable quantities (unlike the energy and momentum of the
recoil electron).

The first step is to multiply Eqs. (2.16) and (2.17) by c and rewrite them as

pc cos � � h� � h�� cos �

pc sin � � h�� sin �

By squaring each of these equations and adding the new ones together, the angle � is
eliminated, leaving

p2c2 � (h�)2 � 2(h�)(h��) cos � � (h��)2 (2.18)

Next we equate the two expressions for the total energy of a particle

E � KE � mc2 (1.20)

E � �m2c4 �� p2c2� (1.24)

from Chap. 1 to give

(KE � mc2)2 � m2c4 � p2c2

p2c2 � KE2 � 2mc2 KE

h��
�

c

h��
�

c

h�
�
c
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Since

KE � h� � h��

we have

p2c2 � (h�)2 � 2(h�)(h��) � (h��)2 � 2mc2(h� � h��) (2.19)

Substituting this value of p2c2 in Eq. (2.18), we finally obtain

2mc2(h� � h��) � 2(h�)(h��)(1 � cos �) (2.20)

This relationship is simpler when expressed in terms of wavelength �. Dividing
Eq. (2.20) by 2h2 c2,

� � � � (1 � cos �)

and so, since ��c � 1�� and ���c � 1���,

� � � �

Compton effect �� � � � (1 � cos �) (2.21)

Equation (2.21) was derived by Arthur H. Compton in the early 1920s, and the phe-
nomenon it describes, which he was the first to observe, is known as the Compton
effect. It constitutes very strong evidence in support of the quantum theory of radiation.

Equation (2.21) gives the change in wavelength expected for a photon that is scat-
tered through the angle � by a particle of rest mass m. This change is independent of
the wavelength � of the incident photon. The quantity

Compton wavelength �C � (2.22)

is called the Compton wavelength of the scattering particle. For an electron
�C � 2.426 � 10�12 m, which is 2.426 pm (1 pm � 1 picometer � 10�12 m). In
terms of �C, Eq. (2.21) becomes

Compton effect �� � � � �C(1 � cos �) (2.23)

The Compton wavelength gives the scale of the wavelength change of the incident
photon. From Eq. (2.23) we note that the greatest wavelength change possible corre-
sponds to � � 180°, when the wavelength change will be twice the Compton wave-
length �C. Because �C � 2.426 pm for an electron, and even less for other particles
owing to their larger rest masses, the maximum wavelength change in the Compton
effect is 4.852 pm. Changes of this magnitude or less are readily observable only in
x-rays: the shift in wavelength for visible light is less than 0.01 percent of the initial
wavelength, whereas for x-rays of � � 0.1 nm it is several percent. The Compton effect
is the chief means by which x-rays lose energy when they pass through matter.

h
�
mc

h
�
mc

1 � cos �
��

���

1
�
��

1
�
�

mc
�
h

��
�
c

�
�
c

��
�
c

�
�
c

mc
�
h
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Arthur Holly Compton (1892–
1962), a native of Ohio, was edu-
cated at College of Wooster and
Princeton. While at Washington
University in St. Louis he found
that x-rays increase in wavelength
when scattered, which he ex-
plained in 1923 on the basis of the
quantum theory of light. This work
convinced remaining doubters of
the reality of photons.

After receiving the Nobel Prize in 1927, Compton, now at
the University of Chicago, studied cosmic rays and helped es-
tablish that they are fast charged particles (today known to be
atomic nuclei, largely protons) that circulate in space and are
not high-energy gamma rays as many had thought. He did this
by showing that cosmic-ray intensity varies with latitude, which
makes sense only if they are ions whose paths are influenced
by the earth’s magnetic field. During World War II Compton
was one of the leaders in the development of the atomic bomb.

Example 2.4

X-rays of wavelength 10.0 pm are scattered from a target. (a) Find the wavelength of the x-rays
scattered through 45°. (b) Find the maximum wavelength present in the scattered x-rays. (c) Find
the maximum kinetic energy of the recoil electrons.

Solution

(a) From Eq. (2.23), �� � � � �C(1 � cos �), and so

�� � � � �C(1 � cos 45°)

� 10.0 pm � 0.293�C

� 10.7 pm

(b) �� � � is a maximum when (1 � cos �) � 2, in which case

�� � � � 2�C � 10.0 pm � 4.9 pm � 14.9 pm

(c) The maximum recoil kinetic energy is equal to the difference between the energies of the
incident and scattered photons, so

KEmax � h(� � ��) � hc � � �
where �� is given in (b). Hence

KEmax � � � �
� 6.54 � 10�15 J

which is equal to 40.8 keV.

The experimental demonstration of the Compton effect is straightforward. As in
Fig. 2.23, a beam of x-rays of a single, known wavelength is directed at a target, and
the wavelengths of the scattered x-rays are determined at various angles �. The results,
shown in Fig. 2.24, exhibit the wavelength shift predicted by Eq. (2.21), but at each
angle the scattered x-rays also include many that have the initial wavelength. This is
not hard to understand. In deriving Eq. (2.21) it was assumed that the scattering par-
ticle is able to move freely, which is reasonable since many of the electrons in matter

1
�
14.9 pm

1
�
10.0 pm

(6.626 � 10�34 J � s)(3.00 � 108 m/s)
����

10�12 m/pm

1
�
��

1
�
�
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are only loosely bound to their parent atoms. Other electrons, however, are very tightly
bound and when struck by a photon, the entire atom recoils instead of the single elec-
tron. In this event the value of m to use in Eq. (2.21) is that of the entire atom, which
is tens of thousands of times greater than that of an electron, and the resulting Comp-
ton shift is accordingly so small as to be undetectable.

2.8 PAIR PRODUCTION

Energy into matter

As we have seen, in a collision a photon can give an electron all of its energy (the pho-
toelectric effect) or only part (the Compton effect). It is also possible for a photon to
materialize into an electron and a positron, which is a positively charged electron. In
this process, called pair production, electromagnetic energy is converted into matter.
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Figure 2.23 Experimental demonstration of the Compton effect.

Figure 2.24 Experimental confirmation of Compton scattering. The greater the scattering angle, the greater the wavelength
change, in accord with Eq. (2.21).
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Photon

Positron

Electron–

+
Nucleus

Figure 2.25 In the process of pair production, a photon of sufficient energy materializes into an elec-
tron and a positron.

Bubble-chamber photograph of electron-positron pair formation. A magnetic field perpendicular to
the page caused the electron and positron to move in opposite curved paths, which are spirals be-
cause the particles lost energy as they moved through the chamber. In a bubble chamber, a liquid
(here, hydrogen) is heated above its normal boiling point under a pressure great enough to keep it
liquid. The pressure is then released, and bubbles form around any ions present in the resulting un-
stable superheated liquid. A charged particle moving through the liquid at this time leaves a track of
bubbles that can be photographed.

No conservation principles are violated when an electron-positron pair is created
near an atomic nucleus (Fig. 2.25). The sum of the charges of the electron (q � 	e)
and of the positron (q � �e) is zero, as is the charge of the photon; the total energy,
including rest energy, of the electron and positron equals the photon energy; and lin-
ear momentum is conserved with the help of the nucleus, which carries away enough
photon momentum for the process to occur. Because of its relatively enormous mass,
the nucleus absorbs only a negligible fraction of the photon energy. (Energy and lin-
ear momentum could not both be conserved if pair production were to occur in empty
space, so it does not occur there.)
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Figure 2.26 Vector diagram of the momenta involved if a photon were to materialize into an electron-
positron pair in empty space. Because such an event cannot conserve both energy and momentum, it
does not occur. Pair production always involves an atomic nucleus that carries away part of the initial
photon momentum.

The rest energy mc2 of an electron or positron is 0.51 MeV, hence pair production
requires a photon energy of at least 1.02 MeV. Any additional photon energy becomes
kinetic energy of the electron and positron. The corresponding maximum photon wave-
length is 1.2 pm. Electromagnetic waves with such wavelengths are called gamma rays,
symbol 
, and are found in nature as one of the emissions from radioactive nuclei and
in cosmic rays.

The inverse of pair production occurs when a positron is near an electron and the
two come together under the influence of their opposite electric charges. Both parti-
cles vanish simultaneously, with the lost mass becoming energy in the form of two
gamma-ray photons:

e� � e� S 
 � 


The total mass of the positron and electron is equivalent to 1.02 MeV, and each pho-
ton has an energy h� of 0.51 MeV plus half the kinetic energy of the particles relative
to their center of mass. The directions of the photons are such as to conserve both en-
ergy and linear momentum, and no nucleus or other particle is needed for this pair
annihilation to take place.

Example 2.5

Show that pair production cannot occur in empty space.

Solution

From conservation of energy,

h� � 2
mc2

where h� is the photon energy and 
mc2 is the total energy of each member of the electron-
position pair. Figure 2.26 is a vector diagram of the linear momenta of the photon, electron,
and positron. The angles � are equal in order that momentum be conserved in the transverse
direction. In the direction of motion of the photon, for momentum to be conserved it must
be true that

� 2p cos �

h� � 2pc cos �

h�
�
c
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Since p � 
m� for the electron and positron,

h� � 2
mc2� � cos �

Because ��c 
 1 and cos � 
 1,

h� 
 2
mc2

But conservation of energy requires that h� � 2
mc2. Hence it is impossible for pair produc-
tion to conserve both energy and momentum unless some other object is involved in the process
to carry away part of the initial photon momentum.

Example 2.6

An electron and a positron are moving side by side in the �x direction at 0.500c when they an-
nihilate each other. Two photons are produced that move along the x axis. (a) Do both photons
move in the �x direction? (b) What is the energy of each photon?

Solution

(a) In the center-of-mass (CM) system (which is the system moving with the original particles),
the photons move off in opposite directions to conserve momentum. They must also do so in
the lab system because the speed of the CM system is less than the speed c of the photons.
(b) Let p1 be the momentum of the photon moving in the �x direction and p2 be the momen-
tum of the photon moving in the �x direction. Then conservation of momentum (in the lab
system) gives

p1 � p2 � 2
m� �

� � 0.590 MeV/c

Conservation of energy gives

p1c � p2c � 2
mc2 � � � 1.180 MeV

and so p1 � p2 � 1.180 MeV/c

Now we add the two results and solve for p1 and p2:

(p1 � p2) � (p1 � p2) � 2p1 � (0.590 � 1.180) MeV/c

p1 � 0.885 MeV/c

p2 � (p1 � p2) � p1 � 0.295 MeV/c

The photon energies are accordingly

E1 � p1c � 0.885 MeV E2 � p2c � 0.295 MeV

Photon Absorption

The three chief ways in which photons of light, x-rays, and gamma rays interact with
matter are summarized in Fig. 2.27. In all cases photon energy is transferred to elec-
trons which in turn lose energy to atoms in the absorbing material.

2(0.511 MeV)
��
�1 � (0�.500)2�

2mc2

��
�1 � �2��c2�

2(0.511 MeV/c2)(c2)(0.500c)�c2

����
�1 � (0�.500)2�

2(mc2)(��c2)
��
�1 � ���c2�

�
�
c
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Figure 2.27 X- and gamma rays interact with matter chiefly through the photoelectric effect, Comp-
ton scattering, and pair production. Pair production requires a photon energy of at least 1.02 MeV.
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Figure 2.28 The relative probabilities of the photoelectric effect, Compton scattering, and pair
production as functions of energy in carbon (a light element) and lead (a heavy element).

At low photon energies the photoelectric effect is the chief mechanism of energy
loss. The importance of the photoelectric effect decreases with increasing energy, to be
succeeded by Compton scattering. The greater the atomic number of the absorber, the
higher the energy at which the photoelectric effect remains significant. In the lighter
elements, Compton scattering becomes dominant at photon energies of a few tens of
keV, whereas in the heavier ones this does not happen until photon energies of nearly
1 MeV are reached (Fig. 2.28).
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Figure 2.29 Linear attentuation coefficients for photons in lead.

Pair production becomes increasingly likely the more the photon energy exceeds
the threshold of 1.02 MeV. The greater the atomic number of the absorber, the lower
the energy at which pair production takes over as the principal mechanism of energy
loss by gamma rays. In the heaviest elements, the crossover energy is about 4 MeV, but
it is over 10 MeV for the lighter ones. Thus gamma rays in the energy range typical of
radioactive decay interact with matter largely through Compton scattering.

The intensity I of an x- or gamma-ray beam is equal to the rate at which it trans-
ports energy per unit cross-sectional area of the beam. The fractional energy �dI�I lost
by the beam in passing through a thickness dx of a certain absorber is found to be pro-
portional to dx:

� � � dx (2.24)

The proportionality constant � is called the linear attenuation coefficient and its
value depends on the energy of the photons and on the nature of the absorbing material.
Integrating Eq. (2.24) gives

Radiation intensity I � I0e�� x (2.25)

The intensity of the radiation decreases exponentially with absorber thickness x.
Figure 2.29 is a graph of the linear attenuation coefficient for photons in lead as a func-
tion of photon energy. The contribution to � of the photoelectric effect, Compton scat-
tering, and pair production are shown.

We can use Eq. (2.25) to relate the thickness x of absorber needed to reduce the
intensity of an x- or gamma-ray beam by a given amount to the attenuation coefficient
�. If the ratio of the final and initial intensities is I�I0,

� e��x � e�x ln � �x

Absorber thickness x � (2.26)
ln (I0�I)
�

�

I0
�
I

I0
�
I

I
�
I0

dI
�
I
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Example 2.7

The linear attenuation coefficient for 2.0-MeV gamma rays in water is 4.9 m�1. (a) Find the rel-
ative intensity of a beam of 2.0-MeV gamma rays after it has passed through 10 cm of water.
(b) How far must such a beam travel in water before its intensity is reduced to 1 percent of its
original value?

Solution

(a) Here �x � (4.9 m�1)(0.10 m) � 0.49 and so, from Eq. (2.25)

� e�� x � e�0.49 � 0.61

The intensity of the beam is reduced to 61 percent of its original value after passing through
10 cm of water.
(b) Since I0�I � 100, Eq. (2.26) yields

x � � � 0.94 m

2.9 PHOTONS AND GRAVITY

Although they lack rest mass, photons behave as though they have
gravitational mass

In Sec. 1.10 we learned that light is affected by gravity by virtue of the curvature of
spacetime around a mass. Another way to approach the gravitational behavior of light
follows from the observation that, although a photon has no rest mass, it nevertheless
interacts with electrons as though it has the inertial mass

m � � (2.27)

(We recall that, for a photon, p � h��c and � � c.) According to the principle of equiv-
alence, gravitational mass is always equal to inertial mass, so a photon of frequency �
ought to act gravitationally like a particle of mass h��c2.

The gravitational behavior of light can be demonstrated in the laboratory. When we
drop a stone of mass m from a height H near the earth’s surface, the gravitational pull of
the earth accelerates it as it falls and the stone gains the energy mgH on the way to the
ground. The stone’s final kinetic energy 12 m�2 is equal to mgH, so its final speed is �2gH�.

All photons travel with the speed of light and so cannot go any faster. However, a
photon that falls through a height H can manifest the increase of mgH in its energy by
an increase in frequency from � to �� (Fig. 2.30). Because the frequency change is
extremely small in a laboratory-scale experiment, we can neglect the corresponding
change in the photon’s “mass” h��c2. 

h�
�
c2

p
�
�

Photon “mass”

ln100
�
4.9 m�1

ln(I0�I)
�

�

I
�
I0
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H

KE = mgH

KE = 0 E = hv

E = hv + hv
c2 gH = hv′

Figure 2.30 A photon that falls in a gravitational field gains energy, just as a stone does. This gain in
energy is manifested as an increase in frequency from � to ��.

Hence,

final photon energy � initial photon energy � increase in energy

h�� � h� � mgH

and so

h�� � h� � � � gH

h�� � h��1 � � (2.28)

Example 2.8

The increase in energy of a fallen photon was first observed in 1960 by Pound and Rebka at
Harvard. In their work H was 22.5 m. Find the change in frequency of a photon of red light
whose original frequency is 7.3 � 1014 Hz when it falls through 22.5 m.

Solution

From Eq. (2.28) the change in frequency is

�� � � � � ��

� � 1.8 Hz

Pound and Rebka actually used gamma rays of much higher frequency, as described in Exercise 53.

(9.8 m/s2)(22.5 m)(7.3 � 1014 Hz)
����

(3.0 � 108 m/s)2

gH
�
c2

gH
�
c2

h�
�
c2
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Figure 2.31 The frequency of a photon emitted from the surface of a star decreases as it moves away
from the star.

R

mass = M

v v′

Gravitational Red Shift

An interesting astronomical effect is suggested by the gravitational behavior of light. If
the frequency associated with a photon moving toward the earth increases, then the
frequency of a photon moving away from it should decrease.

The earth’s gravitational field is not particularly strong, but the fields of many stars
are. Suppose a photon of initial frequency � is emitted by a star of mass M and radius
R, as in Fig. 2.31. The potential energy of a mass m on the star’s surface is

PE � �

where the minus sign is required because the force between M and m is attractive. The
potential energy of a photon of “mass” h��c2 on the star’s surface is therefore

PE � �

and its total energy E, the sum of PE and its quantum energy h�, is

E � h� � � h��1 � �
At a larger distance from the star, for instance at the earth, the photon is beyond

the star’s gravitational field but its total energy remains the same. The photon’s energy
is now entirely electromagnetic, and

E � h��

where �� is the frequency of the arriving photon. (The potential energy of the photon
in the earth’s gravitational field is negligible compared with that in the star’s field.)
Hence

h�� � h��1 � �
�1 �

GM
�
c2R

��
�
�

GM
�
c2R

GM
�
c2R

GMh�
�

c2R

GMh�
�

c2R

GMm
�

R
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Quasars and Galaxies

I n even the most powerful telescope, a quasar appears as a sharp point of light, just as a star
does. Unlike stars, quasars are powerful sources of radio waves; hence their name, a contrac-

tion of quast-stellar radio sources. Hundreds of quasars have been discovered, and there seem to
be many more. Though a typical quasar is smaller than the solar system, its energy output may
be thousands of times the output of our entire Milky Way galaxy.

Most astronomers believe that at the heart of every quasar is a black hole whose mass is at
least that of 100 million suns. As nearby stars are pulled toward the black hole, their matter is
squeezed and heated to produce the observed radiation. While being swallowed, a star may lib-
erate 10 times as much energy as it would have given off had it lived out a normal life. A diet
of a few stars a year seems enough to keep a quasar going at the observed rates. It is possible
that quasars are the cores of newly formed gafaxies. Did all galaxies once undergo a quasar phase?
Nobody can say as yet, but there is evidence that all galaxies, including the Milky Way, contain
massive black holes at their centers.

and the relative frequency change is

� � 1 � � (2.29)

The photon has a lower frequency at the earth, corresponding to its loss in energy as
it leaves the field of the star.

A photon in the visible region of the spectrum is thus shifted toward the red end,
and this phenomenon is accordingly known as the gravitational red shift. It is different
from the doppler red shift observed in the spectra of distant galaxies due to their
apparent recession from the earth, a recession that seems to be due to a general
expansion of the universe.

As we shall learn in Chap. 4, when suitably excited the atoms of every element emit
photons of certain specific frequencies only. The validity of Eq. (2.29) can therefore be
checked by comparing the frequencies found in stellar spectra with those in spectra
obtained in the laboratory. For most stars, including the sun, the ratio M/R is too small
for a gravitational red shift to be apparent. However, for a class of stars known as white
dwarfs, it is just on the limit of measurement—and has been observed. A white dwarf
is an old star whose interior consists of atoms whose electron structures have collapsed
and so it is very small: a typical white dwarf is about the size of the earth but has the
mass of the sun.

Black Holes

An interesting question is, what happens if a star is so dense that GM�c2R � 1? If this
is the case, then from Eq. (2.29) we see that no photon can ever leave the star, since
to do so requires more energy than its initial energy h�. The red shift would, in effect,
have then stretched the photon wavelength to infinity. A star of this kind cannot radi-
ate and so would be invisible—a black hole in space.

In a situation in which gravitational energy is comparable with total energy, as for
a photon in a black hole, general relativity must be applied in detail. The correct cri-
terion for a star to be a black hole turns out to be GM�c2R � 1

2. The Schwarzschild
radius RS of a body of mass M is defined as

GM
�
c2R

��
�
�

� � ��
�

�

��
�
�

Gravitational 
red shift
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2.2 Blackbody Radiation

1. If Planck’s constant were smaller than it is, would quantum
phenomena be more or less conspicuous than they are now?

2. Express the Planck radiation formula in terms of wavelength.

2.3 Photoelectric Effect

3. Is it correct to say that the maximum photoelectron energy
KEmax is proportional to the frequency � of the incident light?
If not, what would a correct statement of the relationship
between KEmax and � be?

4. Compare the properties of particles with those of waves. Why
do you think the wave aspect of light was discovered earlier
than its particle aspect?

5. Find the energy of a 700-nm photon.

6. Find the wavelength and frequency of a 100-MeV photon.

7. A 1.00-kW radio transmitter operates at a frequency of
880 kHz. How many photons per second does it emit?

8. Under favorable circumstances the human eye can detect 1.0
� 10�18 J of electromagnetic energy. How many 600-nm
photons does this represent?

E X E R C I S E S

“Why,” said the Dodo, “the best way to explain it is to do it.” —Lewis Carroll, Alice’s Adventures in Wonderland

Exercises 89

RS � (2.30)

The body is a black hole if all its mass is inside a sphere with this radius. The bound-
ary of a black hole is called its event horizon. The escape speed from a black hole is
equal to the speed of the light c at the Schwarzschild radius, hence nothing at all can
ever leave a black hole. For a star with the sun’s mass, RS is 3 km, a quarter of a mil-
lion times smaller than the sun’s present radius. Anything passing near a black hole
will be sucked into it, never to return to the outside world.

Since it is invisible, how can a black hole be detected? A black hole that is a mem-
ber of a double-star system (double stars are quite common) will reveal its presence
by its gravitational pull on the other star; the two stars circle each other. In addition,
the intense gravitational field of the black hole will attract matter from the other star,
which will be compressed and heated to such high temperatures that x-rays will be
emitted profusely. One of a number of invisible objects that astronomers believe on
this basis to be black holes is known as Cygnus X-1. Its mass is perhaps 8 times that
of the sun, and its radius may be only about 10 km. The region around a black hole
that emits x-rays should extend outward for several hundred kilometers.

Only very heavy stars end up as black holes. Lighter stars evolve into white dwarfs
and neutron stars, which as their name suggests consist largely of neutrons (see Sec.
9.11). But as time goes on, the strong gravitational fields of both white dwarfs and
neutron stars attract more and more cosmic dust and gas. When they have gathered
up enough mass, they too will become black holes. If the universe lasts long enough,
then everything in it may be in the form of black holes.

Black holes are also believed to be at the cores of galaxies. Again, the clues come
from the motions of nearby bodies and from the amount and type of radiation emit-
ted. Stars close to a galactic center are observed to move so rapidly that only the grav-
itational pull of an immense mass could keep them in their orbits instead of flying off.
How immense? As much as a billion times the sun’s mass. And, as in the case of black
holes that were once stars, radiation pours out of galactic centers so copiously that only
black holes could be responsible.

2GM
�

c2

Schwarzschild
radius
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9. Light from the sun arrives at the earth, an average of 1.5
� 1011 m away, at the rate of 1.4 � 103 W/m2 of area perpendi-
cular to the direction of the light. Assume that sunlight is mono-
chromatic with a frequency of 5.0 � 1014 Hz. (a) How many
photons fall per second on each square meter of the earth’s sur-
face directly facing the sun? (b) What is the power output of the
sun, and how many photons per second does it emit? (c) How
many photons per cubic meter are there near the earth?

10. A detached retina is being “welded” back in place using 20-ms
pulses from a 0.50-W laser operating at a wavelength of
632 nm. How many photons are in each pulse?

11. The maximum wavelength for photoelectric emission in tungsten
is 230 nm. What wavelength of light must be used in order for
electrons with a maximum energy of 1.5 eV to be ejected?

12. The minimum frequency for photoelectric emission in copper is
1.1 � 1015 Hz. Find the maximum energy of the photoelec-
trons (in electronvolts) when light of frequency 1.5 � 1015 Hz
is directed on a copper surface.

13. What is the maximum wavelength of light that will cause
photoelectrons to be emitted from sodium? What will the
maximum kinetic energy of the photoelectrons be if 200-nm
light falls on a sodium surface?

14. A silver ball is suspended by a string in a vacuum chamber and
ultraviolet light of wavelength 200 nm is directed at it. What
electrical potential will the ball acquire as a result?

15. 1.5 mW of 400-nm light is directed at a photoelectric cell. If
0.10 percent of the incident photons produce photoelectrons,
find the current in the cell.

16. Light of wavelength 400 nm is shone on a metal surface in an
apparatus like that of Fig. 2.9. The work function of the metal
is 2.50 eV. (a) Find the extinction voltage, that is, the retarding
voltage at which the photoelectron current disappears. (b) Find
the speed of the fastest photoelectrons.

17. A metal surface illuminated by 8.5 � 1014 Hz light emits
electrons whose maximum energy is 0.52 eV. The same surface
illuminated by 12.0 � 1014 Hz hight emits electrons whose
maximum energy is 1.97 eV. From these data find Planck’s
constant and the work function of the surface.

18. The work function of a tungsten surface is 5.4 eV. When the
surface is illuminated by light of wavelength 175 nm, the maxi-
mum photoelectron energy is 1.7 eV. Find Planck’s constant
from these data.

19. Show that it is impossible for a photon to give up all its energy
and momentum to a free electron. This is the reason why the
photoelectric effect can take place only when photons strike
bound electrons.

2.5 X-Rays

20. What voltage must be applied to an x-ray tube for it to emit
x-rays with a minimum wavelength of 30 pm?

21. Electrons are accelerated in television tubes through potential
differences of about 10 kV. Find the highest frequency of the
electromagnetic waves emitted when these electrons strike the
screen of the tube. What kind of waves are these?

2.6 X-Ray Diffraction

22. The smallest angle of Bragg scattering in potassium chloride
(KCl) is 28.4° for 0.30-nm x-rays. Find the distance between
atomic planes in potassium chloride.

23. The distance between adjacent atomic planes in calcite (CaCO3)
is 0.300 nm. Find the smallest angle of Bragg scattering for
0.030-nm x-rays.

24. Find the atomic spacing in a crystal of rock salt (NaCl), whose
structure is shown in Fig. 2.19. The density of rock salt is 2.16
� 103 kg/m3 and the average masses of the Na and Cl atoms
are respectively 3.82 � 10�26 kg and 5.89 � 10�26 kg.

2.7 Compton Effect

25. What is the frequency of an x-ray photon whose momentum is
1.1 � 10�23 kg � m/s?

26. How much energy must a photon have if it is to have the mo-
mentum of a 10-MeV proton?

27. In Sec. 2.7 the x-rays scattered by a crystal were assumed to un-
dergo no change in wavelength. Show that this assumption is
reasonable by calculating the Compton wavelength of a Na atom
and comparing it with the typical x-ray wavelength of 0.1 nm.

28. A monochromatic x-ray beam whose wavelength is 55.8 pm is
scattered through 46°. Find the wavelength of the scattered
beam.

29. A beam of x-rays is scattered by a target. At 45� from the beam
direction the scattered x-rays have a wavelength of 2.2 pm.
What is the wavelength of the x-rays in the direct beam?

30. An x-ray photon whose initial frequency was 1.5 � 1019 Hz
emerges from a collision with an electron with a frequency of
1.2 � 1019 Hz. How much kinetic energy was imparted to the
electron?

31. An x-ray photon of initial frequency 3.0 � 1019 Hz collides with
an electron and is scattered through 90°. Find its new frequency.

32. Find the energy of an x-ray photon which can impart a maxi-
mum energy of 50 keV to an electron.

33. At what scattering angle will incident 100-keV x-rays leave a
target with an energy of 90 keV?

34. (a) Find the change in wavelength of 80-pm x-rays that are
scattered 120° by a target. (b) Find the angle between the direc-
tions of the recoil electron and the incident photon. (c) Find
the energy of the recoil electron.

35. A photon of frequency � is scattered by an electron initially at
rest. Verify that the maximum kinetic energy of the recoil elec-
tron is KEmax � (2h2�2�mc2)�(1 � 2h��mc2).

36. In a Compton-effect experiment in which the incident x-rays
have a wavelength of 10.0 pm, the scattered x-rays at a certain
angle have a wavelength of 10.5 pm. Find the momentum
(magnitude and direction) of the corresponding recoil electrons.

37. A photon whose energy equals the rest energy of the electron
undergoes a Compton collision with an electron. If the electron
moves off at an angle of 40° with the original photon direction,
what is the energy of the scattered photon?
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38. A photon of energy E is scattered by a particle of rest energy
E0. Find the maximum kinetic energy of the recoiling particle
in terms of E and E0.

2.8 Pair Production

39. A positron collides head on with an electron and both are anni-
hilated. Each particle had a kinetic energy of 1.00 MeV. Find
the wavelength of the resulting photons.

40. A positron with a kinetic energy of 2.000 MeV collides with an
electron at rest and the two particles are annihilated. Two pho-
tons are produced; one moves in the same direction as the in-
coming positron and the other moves in the opposite direction.
Find the energies of the photons.

41. Show that, regardless of its initial energy, a photon cannot un-
dergo Compton scattering through an angle of more than 60°
and still be able to produce an electron-positron pair. (Hint:
Start by expressing the Compton wavelength of the electron in
terms of the maximum photon wavelength needed for pair
production.)

42. (a) Verify that the minimum energy a photon must have to cre-
ate an electron-positron pair in the presence of a stationary nu-
cleus of mass M is 2mc2(1 � m�M), where m is the electron
rest mass. (b) Find the minimum energy needed for pair pro-
duction in the presence of a proton.

43. (a) Show that the thickness x1�2 of an absorber required to
reduce the intensity of a beam of radiation by a factor of 2 is
given by x1�2 � 0.693��. (b) Find the absorber thickness
needed to produce an intensity reduction of a factor of 10.

44. (a) Show that the intensity of the radiation absorbed in a thick-
ness x of an absorber is given by I0�x when �x 

 1. (b) If
�x � 0.100, what is the percentage error in using this formula
instead of Eq. (2.25)?

45. The linear absorption coefficient for 1-MeV gamma rays in lead
is 78 m�1. Find the thickness of lead required to reduce by
half the intensity of a beam of such gamma rays.

46. The linear absorption coefficient for 50-keV x-rays in sea-level
air is 5.0 � 10�3 m�1. By how much is the intensity of a beam
of such x-rays reduced when it passes through 0.50 m of air?
Through 5.0 m of air?

47. The linear absorption coefficients for 2.0-MeV gamma rays are
4.9 m�1 in water and 52 m�1 in lead. What thickness of water
would give the same shielding for such gamma rays as 10 mm
of lead?

48. The linear absorption coefficient of copper for 80-keV x-rays is
4.7 � 104 m�1. Find the relative intensity of a beam of 80-keV
x-rays after it has passed through a 0.10-mm copper foil.

49. What thickness of copper is needed to reduce the intensity of
the beam in Exercise 48 by half?

50. The linear absorption coefficients for 0.05-nm x-rays in lead
and in iron are, respectively, 5.8 � 104 m�1 and 1.1 �
104 m�1. How thick should an iron shield be in order to pro-
vide the same protection from these x-rays as 10 mm of lead?

2.9 Photons and Gravity

51. The sun’s mass is 2.0 � 1030 kg and its radius is 7.0 � 108 m.
Find the approximate gravitational red shift in light of wave-
length 500 nm emitted by the sun.

52. Find the approximate gravitational red shift in 500-nm light
emitted by a white dwarf star whose mass is that of the sun but
whose radius is that of the earth, 6.4 � 106 m.

53. As discussed in Chap. 12, certain atomic nuclei emit photons
in undergoing transitions from “excited” energy states to their
“ground” or normal states. These photons constitute gamma
rays. When a nucleus emits a photon, it recoils in the opposite
direction. (a) The 57

27Co nucleus decays by K capture to 57
26Fe,

which then emits a photon in losing 14.4 keV to reach its
ground state. The mass of a 57

26Fe atom is 9.5 � 10�26 kg. By
how much is the photon energy reduced from the full
14.4 keV available as a result of having to share energy and
momentum with the recoiling atom? (b) In certain crystals the
atoms are so tightly bound that the entire crystal recoils when
a gamma-ray photon is emitted, instead of the individual atom.
This phenomenon is known as the Mössbauer effect. By how
much is the photon energy reduced in this situation if the ex-
cited 57

26Fe nucleus is part of a 1.0-g crystal? (c) The essentially
recoil-free emission of gamma rays in situations like that of b
means that it is possible to construct a source of virtually
monoenergetic and hence monochromatic photons. Such a
source was used in the experiment described in Sec. 2.9. What
is the original frequency and the change in frequency of a
14.4-keV gamma-ray photon after it has fallen 20 m near the
earth’s surface?

54. Find the Schwarzschild radius of the earth, whose mass is
5.98 � 1024 kg.

55. The gravitational potential energy U relative to infinity of a
body of mass m at a distance R from the center of a body of
mass M is U � �GmM�R. (a) If R is the radius of the body of
mass M, find the escape speed �e of the body, which is the
minimum speed needed to leave it permanently. (b) Obtain
a formula for the Schwarzschild radius of the body by setting
�e � c, the speed of light, and solving for R. (Of course, a
relativistic calculation is correct here, but it is interesting to
see what a classical calculation produces.)
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CHAPTER 3

Wave Properties of Particles

In a scanning electron microscope, an electron beam that scans a specimen causes secondary
electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display
suggests the three-dimensional form of the specimen. The high resolution of this image of a red
spider mite on a leaf is a consequence of the wave nature of moving electrons.

3.1 DE BROGLIE WAVES
A moving body behaves in certain ways as
though it has a wave nature

3.2 WAVES OF WHAT?
Waves of probability

3.3 DESCRIBING A WAVE
A general formula for waves

3.4 PHASE AND GROUP VELOCITIES
A group of waves need not have the same
velocity as the waves themselves

3.5 PARTICLE DIFFRACTION
An experiment that confirms the existence of 
de Broglie waves

3.6 PARTICLE IN A BOX
Why the energy of a trapped particle is
quantized

3.7 UNCERTAINTY PRINCIPLE I
We cannot know the future because we cannot
know the present

3.8 UNCERTAINTY PRINCIPLE II
A particle approach gives the same result

3.9 APPLYING THE UNCERTAINTY PRINCIPLE
A useful tool, not just a negative statement
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L ooking back, it may seem odd that two decades passed between the 1905
discovery of the particle properties of waves and the 1924 speculation that
particles might show wave behavior. It is one thing, however, to suggest a rev-

olutionary concept to explain otherwise mysterious data and quite another to suggest
an equally revolutionary concept without a strong experimental mandate. The latter is
just what Louis de Broglie did in 1924 when he proposed that moving objects have
wave as well as particle characteristics. So different was the scientific climate at the
time from that around the turn of the century that de Broglie’s ideas soon received
respectful attention, whereas the earlier quantum theory of light of Planck and Einstein
had been largely ignored despite its striking empirical support. The existence of de
Broglie waves was experimentally demonstrated by 1927, and the duality principle they
represent provided the starting point for Schrödinger’s successful development of
quantum mechanics in the previous year.

Wave Properties of Particles 93

Louis de Broglie (1892–1987),
although coming from a French
family long identified with diplo-
macy and the military and initially
a student of history, eventually
followed his older brother
Maurice in a career in physics. His
doctoral thesis in 1924 contained
the proposal that moving bodies
have wave properties that com-
plement their particle properties:
these “seemingly incompatible
conceptions can each represent an

aspect of the truth. . . . They may serve in turn to represent
the facts without ever entering into direct conflict.” Part of
de Broglie’s inspiration came from Bohr’s theory of the hydro-
gen atom, in which the electron is supposed to follow only cer-
tain orbits around the nucleus. “This fact suggested to me the
idea that electrons . . . could not be considered simply as par-
ticles but that periodicity must be assigned to them also.” Two
years later Erwin Schrödinger used the concept of de Broglie
waves to develop a general theory that he and others applied
to explain a wide variety of atomic phenomena. The existence
of de Broglie waves was confirmed in diffraction experiments
with electron beams in 1927, and in 1929 de Broglie received
the Nobel Prize.

3.1   DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature

A photon of light of frequency � has the momentum

p � �

since �� � c. The wavelength of a photon is therefore specified by its momentum
according to the relation

Photon wavelength � � (3.1)

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity �
is p � �m�, and its de Broglie wavelength is accordingly 

� � (3.2)
h

�
�m�

De Broglie 
wavelength

h
�
p

h
�
�

h�
�
c
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The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) � is the
relativistic factor

� �

As in the case of em waves, the wave and particle aspects of moving bodies can never
be observed at the same time. We therefore cannot ask which is the “correct” descrip-
tion. All that can be said is that in certain situations a moving body resembles a wave
and in others it resembles a particle. Which set of properties is most conspicuous depends
on how its de Broglie wavelength compares with its dimensions and the dimensions of
whatever it interacts with.

Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an
electron with a velocity of 107 m/s.

Solution

(a) Since � �� c, we can let � � 1. Hence

� � � � 4.8 � 10�34 m

The wavelength of the golf ball is so small compared with its dimensions that we would not
expect to find any wave aspects in its behavior.

(b) Again � �� c, so with m � 9.1 � 10�31 kg, we have

� � � � 7.3 � 10�11 m

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for
instance, is 5.3 � 10�11 m. It is therefore not surprising that the wave character of moving elec-
trons is the key to understanding atomic structure and behavior.

Example 3.2

Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm � 1.000 �
10�15 m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest
energy of E0 � 0.938 GeV. To find out, we use Eq. (3.2) to determine pc:

pc � (�m�)c � � � 1.240 � 109 eV

� 1.2410 GeV

Since pc � E0 a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is

E � �E2
0 � p�2c2� � �(0.938� GeV)2� � (1.�2340 G�eV)2� � 1.555 GeV

(4.136 � 10�15 eV 	 s)(2.998 � 108 m/s)
�����

1.000 � 10�15 m

hc
�
�

6.63 � 10�34 J 	 s
���
(9.1 � 10�31 kg)(107 m/s)

h
�
m�

6.63 � 10�34 J 	 s
���
(0.046 kg)(30 m/s)

h
�
m�

1
��
�1 � �

2��c2�
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The corresponding kinetic energy is

KE � E � E0 � (1.555 � 0.938) GeV � 0.617 GeV � 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However,
he was able to show that it accounted in a natural way for the energy quantization—
the restriction to certain specific energy values—that Bohr had had to postulate in his
1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few
years Eq. (3.2) was verified by experiments involving the diffraction of electrons by
crystals. Before we consider one of these experiments, let us look into the question of
what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2   WAVES OF WHAT?

Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface.
In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What
is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function,
symbol 
 (the Greek letter psi). The value of the wave function associated with a mov-
ing body at the particular point x, y, z in space at the time t is related to the likelihood
of finding the body there at the time.

Max Born (1882–1970) grew up in
Breslau, then a German city but to-
day part of Poland, and received a
doctorate in applied mathematics at
Göttingen in 1907. Soon afterward
he decided to concentrate on
physics, and was back in Göttingen
in 1909 as a lecturer. There he
worked on various aspects of the
theory of crystal lattices, his “cen-
tral interest” to which he often re-
turned in later years. In 1915, at

Planck’s recommendation, Born became professor of physics in
Berlin where, among his other activities, he played piano to
Einstein’s violin. After army service in World War I and a period
at Frankfurt University, Born was again in Göttingen, now as pro-
fessor of physics. There a remarkable center of theoretical physics
developed under his leadership: Heisenberg and Pauli were
among his assistants and Fermi, Dirac, Wigner, and Goeppert
were among those who worked with him, just to name future
Nobel Prize winners. In those days, Born wrote, “There was com-
plete freedom of teaching and learning in German universities,
with no class examinations, and no control of students. The Uni-
versity just offered lectures and the student had to decide for
himself which he wished to attend.”

Born was a pioneer in going from “the bright realm of classi-
cal physics into the still dark and unexplored underworld of the
new quantum mechanics;” he was the first to use the latter term.
From Born came the basic concept that the wave function 
 of
a particle is related to the probability of finding it. He began with
an idea of Einstein, who “sought to make the duality of particles
(light quanta or photons) and waves comprehensible by inter-
preting the square of the optical wave amplitude as probability
density for the occurrence of photons. This idea could at once
be extended to the 
-function: �
�2 must represent the proba-
bility density for electrons (or other particles). To assert this was
easy; but how was it to be proved? For this purpose atomic scat-
tering processes suggested themselves.” Born’s development of
the quantum theory of atomic scattering (collisions of atoms with
various particles) not only verified his “new way of thinking about
the phenomena of nature” but also founded an important branch
of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period,
like so many other scientists. He became a British subject and
was associated with Cambridge and then Edinburg universities
until he retired in 1953. Finding the Scottish climate harsh and
wishing to contribute to the democratization of postwar Germany,
Born spent the rest of his life in Bad Pyrmont, a town near
Göttingen. His textbooks on modern physics and on optics were
standard works on these subjects for many years.

bei48482_ch03_qxd  1/16/02  1:50 PM  Page 95



The wave function 
 itself, however, has no direct physical significance. There is a
simple reason why 
 cannot by interpreted in terms of an experiment. The probabil-
ity that something be in a certain place at a given time must lie between 0 (the object
is definitely not there) and 1 (the object is definitely there). An intermediate proba-
bility, say 0.2, means that there is a 20% chance of finding the object. But the ampli-
tude of a wave can be negative as well as positive, and a negative probability, say �0.2,
is meaningless. Hence 
 by itself cannot be an observable quantity.

This objection does not apply to �
�2, the square of the absolute value of the wave
function, which is known as probability density:

The probability of experimentally finding the body described by the wave function

 at the point x, y, z, at the time t is proportional to the value of �
�2 there at t.

A large value of �
�2 means the strong possibility of the body’s presence, while a small
value of �
�2 means the slight possibility of its presence. As long as �
�2 is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Al-
though we can speak of the wave function 
 that describes a particle as being spread
out in space, this does not mean that the particle itself is thus spread out. When an ex-
periment is performed to detect electrons, for instance, a whole electron is either found
at a certain time and place or it is not; there is no such thing as a 20 percent of an elec-
tron. However, it is entirely possible for there to be a 20 percent chance that the elec-
tron be found at that time and place, and it is this likelihood that is specified by �
�2.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpreta-
tion: “The dividing line between the wave and particle nature of matter and radiation
is the moment ‘now.’ As this moment steadily advances through time it coagulates a
wavy future into a particle past. . . . Everything in the future is a wave, everything in
the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measure-
ment is performed, this is a reasonable way to think about the situation. (The philoso-
pher Søren Kierkegaard may have been anticipating this aspect of modern physics when
he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described
by the same wave function 
, the actual density (number per unit volume) of objects
at x, y, z at the time t is proportional to the corresponding value of �
�2. It is instruc-
tive to compare the connection between 
 and the density of particles it describes with
the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic
wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is
given by the simple formula � � h��m�, to find their amplitude 
 as a function of
position and time is often difficult. How to calculate 
 is discussed in Chap. 5 and
the ideas developed there are applied to the structure of the atom in Chap. 6. Until
then we can assume that we know as much about 
 as each situation requires.

3.3   DESCRIBING A WAVE

A general formula for waves

How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving
body, we expect that this wave has the same velocity as that of the body. Let us see if
this is true.
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If we call the de Broglie wave velocity �p, we can apply the usual formula

�p � ��

to find �p. The wavelength � is simply the de Broglie wavelength � � h��m�. To find
the frequency, we equate the quantum expression E � h� with the relativistic formula
for total energy E � �mc2 to obtain

h� � �mc2

� �

The de Broglie wave velocity is therefore

�p � �� � � �� � � (3.3)

Because the particle velocity � must be less than the velocity of light c, the de Broglie
waves always travel faster than light! In order to understand this unexpected result, we
must look into the distinction between phase velocity and group velocity. (Phase ve-
locity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity
we consider a string stretched along the x axis whose vibrations are in the y direction,
as in Fig. 3.1, and are simple harmonic in character. If we choose t � 0 when the
displacement y of the string at x � 0 is a maximum, its displacement at any future
time t at the same place is given by the formula

y � A cos 2��t (3.4)

c2

�
�

h
�
�m�

�mc2

�
h

De Broglie phase
velocity

�mc2

�
h
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Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the
displacement of a point on the string varies with time.
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where A is the amplitude of the vibrations (that is, their maximum displacement on
either side of the x axis) and � their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a
function of time t. A complete description of wave motion in a stretched string, how-
ever, should tell us what y is at any point on the string at any time. What we want is
a formula giving y as a function of both x and t.

To obtain such a formula, let us imagine that we shake the string at x � 0 when 
t � 0, so that a wave starts to travel down the string in the �x direction (Fig. 3.2).
This wave has some speed �p that depends on the properties of the string. The wave
travels the distance x � �pt in the time t, so the time interval between the formation
of the wave at x � 0 and its arrival at the point x is x��p. Hence the displacement y
of the string at x at any time t is exactly the same as the value of y at x � 0 at the
earlier time t � x��p. By simply replacing t in Eq. (3.4) with t � x��p, then, we have
the desired formula giving y in terms of both x and t:

y � A cos 2���t � � (3.5)

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x � 0.
Equation (3.5) may be rewritten

y � A cos 2���t � �
Since the wave speed �p is given by �p � �� we have

y � A cos 2���t � � (3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).
Perhaps the most widely used description of a wave, however, is still another form

of Eq. (3.5). The quantities angular frequency � and wave number k are defined by
the formulas

x
�
�

Wave formula

�x
�
�p

x
�
�p

Wave formula
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Figure 3.2 Wave propagation.

t = 0

x

y

t = t

x

y

vpt

bei48482_ch03_qxd  1/16/02  1:50 PM  Page 98



� � 2�� (3.7)

k � � (3.8)

The unit of � is the radian per second and that of k is the radian per meter. An-
gular frequency gets its name from uniform circular motion, where a particle that moves
around a circle � times per second sweeps out 2�� rad/s. The wave number is equal
to the number of radians corresponding to a wave train 1 m long, since there are 2� rad
in one complete wave.

In terms of � and k, Eq. (3.5) becomes

y � A cos (�t � kx) (3.9)

In three dimensions k becomes a vector k normal to the wave fronts and x is re-
placed by the radius vector r. The scalar product k � r is then used instead of kx in
Eq. (3.9).

3.4   PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as 
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the
probability that it will be found at a particular place at a particular time. It is clear that
de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9),
which describes an indefinite series of waves all with the same amplitude A. Instead,
we expect the wave representation of a moving body to correspond to a wave packet,
or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which
the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats.
When two sound waves of the same amplitude but of slightly different frequencies
are produced simultaneously, the sound we hear has a frequency equal to the aver-
age of the two original frequencies and its amplitude rises and falls periodically.
The amplitude fluctuations occur as many times per second as the difference be-
tween the two original frequencies. If the original sounds have frequencies of,
say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with
two loudness peaks, called beats, per second. The production of beats is illustrated
in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposi-
tion of individual waves of different wavelengths whose interference with one another
results in the variation in amplitude that defines the group shape. If the velocities of
the waves are the same, the velocity with which the wave group travels is the common
phase velocity. However, if the phase velocity varies with wavelength, the different
individual waves do not proceed together. This situation is called dispersion. As a
result the wave group has a velocity different from the phase velocities of the waves
that make it up. This is the case with de Broglie waves.

Wave formula

�
�
�p

2�
�
�

Wave number

Angular frequency
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Figure 3.3 A wave group.

Wave group
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It is not hard to find the velocity �g with which a wave group travels. Let us sup-
pose that the wave group arises from the combination of two waves that have the same
amplitude A but differ by an amount �� in angular frequency and an amount �k in
wave number. We may represent the original waves by the formulas

y1 � A cos (�t � kx)

y2 � A cos [(� � ��) t � (k � �k)x]

The resultant displacement y at any time t and any position x is the sum of y1 and y2.
With the help of the identity

cos � � cos 	 � 2 cos �
1
2

�(� � 	) cos �
1
2

�(� � 	)

and the relation

cos(�
) � cos 


we find that

y � y1 � y2

� 2A cos �
1
2

�[(2� � ��) t � (2k � �k)x] cos �
1
2

�(�� t � �k x)

Since �� and �k are small compared with � and k respectively,

2� � �� � 2�

2k � �k � 2k

and so

Beats y � 2A cos (�t � kx) cos � t � x� (3.10)
�k
�
2

��
�

2
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Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.
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Equation (3.10) represents a wave of angular frequency � and wave number k
that has superimposed upon it a modulation of angular frequency �

1
2

��� and of wave
number �

1
2

��k.
The effect of the modulation is to produce successive wave groups, as in Fig. 3.4.

The phase velocity �p is

Phase velocity �p � (3.11)

and the velocity �g of the wave groups is

Group velocity �g � (3.12)

When � and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

Group velocity �g � (3.13)

Depending on how phase velocity varies with wave number in a particular situa-
tion, the group velocity may be less or greater than the phase velocities of its member
waves. If the phase velocity is the same for all wavelengths, as is true for light waves
in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a
body of mass m moving with the velocity � are

� � 2�� �

� (3.14)

k � �

� (3.15)

Both � and k are functions of the body’s velocity �.
The group velocity �g of the de Broglie waves associated with the body is

�g � �

Now �

�
2�m

��
h(1 � �2�c2)3�2

dk
�
d�

2�m�
��
h(1 � �2�c2)3�2

d�
�
d�

d��d�
�
dk�d�

d�
�
dk

2�m�
��
h�1 � �2��c2�

Wave number of
de Broglie waves

2��m�
�

h

2�
�
�

2�mc2

��
h�1 � �2��c2�

Angular frequency of
de Broglie waves

2��mc2

�
h

d�
�
dk

��
�
�k

�
�
k
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Electron Microscopes

T he wave nature of moving electrons is the basis of the electron microscope, the first of
which was built in 1932. The resolving power of any optical instrument, which is limited

by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen.
In the case of a good microscope that uses visible light, the maximum useful magnification is
about 500�; higher magnifications give larger images but do not reveal any more detail. Fast
electrons, however, have wavelengths very much shorter than those of visible light and are eas-
ily controlled by electric and magnetic fields because of their charge. X-rays also have short wave-
lengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses
to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent
screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby
blurring the image, a thin specimen is used and the entire system is evacuated.

The technology of magnetic “lenses” does not permit the full theoretical resolution of electron
waves to be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm,
but the actual resolution they can provide in an electron microscope may be only about 0.1 nm.
However, this is still a great improvement on the 	200-nm resolution of an optical microscope,
and magnifications of over 1,000,000� have been achieved with electron microscopes.

102 Chapter Three

Figure 3.5 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifi-
cations. The electron beam in an
electron microscope is focused
by magnetic fields.

Electron source

Magnetic
condensing lens

Object

Magnetic
objective lens

Electron paths

Magnetic
projection
lens

Image

Electron micrograph showing bacteriophage viruses in an
Escherichia coli bacterium. The bacterium is approximately
1 �m across.

An electron microscope.
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and so the group velocity turns out to be

�g � � (3.16)

The de Broglie wave group associated with a moving body travels with the same
velocity as the body.

The phase velocity �p of de Broglie waves is, as we found earlier,

�p � � (3.3)

This exceeds both the velocity of the body � and the velocity of light c, since � � c.
However, �p has no physical significance because the motion of the wave group, not
the motion of the individual waves that make up the group, corresponds to the mo-
tion of the body, and �g � c as it should be. The fact that �p � c for de Broglie waves
therefore does not violate special relativity.

Example 3.3

An electron has a de Broglie wavelength of 2.00 pm � 2.00 � 10�12 m. Find its kinetic energy
and the phase and group velocities of its de Broglie waves.

Solution

(a) The first step is to calculate pc for the electron, which is

pc � � � 6.20 � 105 eV

� 620 keV

The rest energy of the electron is E0 � 511 keV, so

KE � E � E0 � �E2
0 � (�pc)2� � E0 � �(511 k�eV)2 �� (620�keV)2� � 511 keV

� 803 keV � 511 keV � 292 keV

(b) The electron velocity can be found from

E �

to be

� � c
1 ��� � c
1 � ����
2� � 0.771c

Hence the phase and group velocities are respectively

�p � � � 1.30c

�g � � � 0.771c

c2

�
0.771c

c2

�
�

511 keV
�
803 keV

E2
0�

E2

E0
��

�1 � �2��c2�

(4.136 � 10�15 eV 	 s)(3.00 � 108 m/s)
�����

2.00 � 10�12 m

hc
�
�

c2

�
�

�
�
k

De Broglie phase
velocity

De Broglie group
velocity
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3.5 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In
1927 Clinton Davisson and Lester Germer in the United States and G. P. Thomson in
England independently confirmed de Broglie’s hypothesis by demonstrating that elec-
tron beams are diffracted when they are scattered by the regular atomic arrays of crys-
tals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P.’s father, had
earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-
particle duality seems to have been the family business.) We shall look at the experi-
ment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using
an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary
beam, the angle at which they reach the target, and the position of the detector could
all be varied. Classical physics predicts that the scattered electrons will emerge in all
directions with only a moderate dependence of their intensity on scattering angle and
even less on the energy of the primary electrons. Using a block of nickel as the target,
Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their ap-
paratus and oxidize the metal surface. To reduce the oxide to pure nickel, the target
was baked in a hot oven. After this treatment, the target was returned to the appara-
tus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered
electron intensity with angle, distinct maxima and minima were observed whose
positions depended upon the electron energy! Typical polar graphs of electron intensity
after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity
at any angle is proportional to the distance of the curve at that angle from the point
of scattering. If the intensity were the same at all scattering angles, the curves would
be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect?
Why did it not appear until after the nickel target was baked?

De Broglie’s hypothesis suggested that electron waves were being diffracted by the
target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received
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Figure 3.6 The Davisson-Germer
experiment.

Electron gun

Electron
detector

Incident
beam

Scattered
beam

Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered elec-
trons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of
atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering
relative to one family of these planes were both 65° (see Fig. 3.8).
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support when it was realized that heating a block of nickel at high temperature causes
the many small individual crystals of which it is normally composed to form into a
single large crystal, all of whose atoms are arranged in a regular lattice.

Let us see whether we can verify that de Broglie waves are responsible for the findings
of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed
perpendicularly at the nickel target and a sharp maximum in the electron distribution
occurred at an angle of 50° with the original beam. The angles of incidence and
scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The
spacing of the planes in this family, which can be measured by x-ray diffraction, is
0.091 nm. The Bragg equation for maxima in the diffraction pattern is

n � � 2d sin 
 (2.13)

Here d � 0.091 nm and 
 � 65°. For n � 1 the de Broglie wavelength � of the
diffracted electrons is

� � 2d sin 
 � (2)(0.091 nm)(sin65
) � 0.165 nm

Now we use de Broglie’s formula � � h��m� to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc2 of 0.51 MeV, so we can let � � 1. Since

KE � �
1
2

� m�2

the electron momentum m� is

m� � �2mKE�

� �(2)(9.1� � 10��31 kg)(�54 eV)�(1.6 �� 10�19� J/eV)�
� 4.0 � 10�24 kg 	 m/s

The electron wavelength is therefore

� � � � 1.66 � 10�10 m � 0.166 nm

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer
experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving
bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than in-
dicated above because the energy of an electron increases when it enters a crystal by
an amount equal to the work function of the surface. Hence the electron speeds in the
experiment were greater inside the crystal and the de Broglie wavelengths there shorter
than the values outside. Another complication arises from interference between waves
diffracted by different families of Bragg planes, which restricts the occurrence of maxima
to certain combinations of electron energy and angle of incidence rather than merely
to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The
diffraction of neutrons and of whole atoms when scattered by suitable crystals has been
observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been
used for investigating crystal structures.

6.63 � 10�34 J 	 s
���
4.0 � 10�24 kg 	 m/s

h
�
m�
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Figure 3.8 The diffraction of the
de Broglie waves by the target is
responsible for the results of
Davisson and Germer.
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3.6   PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when
the particle is restricted to a certain region of space instead of being able to move freely.

The simplest case is that of a particle that bounces back and forth between the walls of
a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the
particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently
small so that we can ignore relativistic considerations. Simple as it is, this model situation
requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in
Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a
string stretched between the box’s walls. In both cases the wave variable (transverse
displacement for the string, wave function 
 for the moving particle) must be 0 at
the walls, since the waves stop there. The possible de Broglie wavelengths of the par-
ticle in the box therefore are determined by the width L of the box, as in Fig. 3.10.
The longest wavelength is specified by � � 2L, the next by � � L, then � � 2L�3,
and so forth. The general formula for the permitted wavelengths is

�n � n � 1, 2, 3, . . . (3.17)

Because m� � h��, the restrictions on de Broglie wavelength � imposed by the
width of the box are equivalent to limits on the momentum of the particle and, in turn,
to limits on its kinetic energy. The kinetic energy of a particle of momentum m� is

KE � �
1
2

� m�2 � �

The permitted wavelengths are �n � 2L�n, and so, because the particle has no potential
energy in this model, the only energies it can have are

h2

�
2m�2

(m�)2

�
2m

2L
�
n

De Broglie
wavelengths of
trapped particle

106 Chapter Three

Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

L

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

λ = L

λ = 2LΨ1

Ψ2

Ψ3

L

λ = 2L
3

Neutron diffraction by a quartz crystal. The peaks represent directions in which con-
structive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne
National Laboratory)
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En � n � 1, 2, 3, . . . (3.18)

Each permitted energy is called an energy level, and the integer n that specifies an
energy level En is called its quantum number.

We can draw three general conclusions from Eq. (3.18). These conclusions apply
to any particle confined to a certain region of space (even if the region does not have
a well-defined boundary), for instance an atomic electron held captive by the attraction
of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is � � h�m�, a speed of � � 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E � 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 � 10�34 J 	 s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.

Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.
Find its permitted energies.

Solution

Here m � 9.1 � 10�31 kg and L � 0.10 nm � 1.0 � 10�10 m, so that the permitted electron
energies are

En � � 6.0 � 10�18n2 J

� 38n2 eV

The minimum energy the electron can have is 38 eV, corresponding to n � 1. The sequence of
energy levels continues with E2 � 152 eV, E3 � 342 eV, E4 � 608 eV, and so on (Fig. 3.11). If
such a box existed, the quantization of a trapped electron’s energy would be a prominent feature
of the system. (And indeed energy quantization is prominent in the case of an atomic electron.)

Example 3.5

A 10-g marble is in a box 10 cm across. Find its permitted energies.

Solution

With m � 10 g � 1.0 � 10�2 kg and L � 10 cm � 1.0 � 10�1 m,

En �

� 5.5 � 10�64n2 J

(n2)(6.63 � 10�34 J 	 s)2

����
(8)(1.0 � 10�2 kg)(1.0 � 10�1 m)2

(n2)(6.63 � 10�34 J 	 s)2

�����
(8)(9.1 � 10�31 kg)(1.0 � 10�10 m)2

n2h2

�
8mL2

Particle in a box
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Figure 3.11 Energy levels of an
electron confined to a box
0.1 nm wide.

n = 2

700

600

500

400

300

200

100

0

n = 1

n = 3

n = 4

E
n

er
gy

, e
V

bei48482_ch03_qxd  1/16/02  1:51 PM  Page 107



The minimum energy the marble can have is 5.5 � 10�64 J, corresponding to n � 1. A marble
with this kinetic energy has a speed of only 3.3 � 10�31 m/s and therefore cannot be experi-
mentally distinguished from a stationary marble. A reasonable speed a marble might have is, say,
�
1
3

� m/s—which corresponds to the energy level of quantum number n � 1030! The permissible
energy levels are so very close together, then, that there is no way to determine whether the
marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence
in the domain of everyday experience, quantum effects are imperceptible, which accounts for
the success of Newtonian mechanics in this domain.

3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits
to the accuracy with which we can measure such “particle” properties as position and
momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The par-
ticle that corresponds to this wave group may be located anywhere within the group
at a given time. Of course, the probability density �
�2 is a maximum in the middle of
the group, so it is most likely to be found there. Nevertheless, we may still find the
particle anywhere that �
�2 is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be speci-
fied (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well
defined; there are not enough waves to measure � accurately. This means that since 
� � h��m�, the particle’s momentum �m� is not a precise quantity. If we make a series
of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly
defined wavelength. The momentum that corresponds to this wavelength is therefore
a precise quantity, and a series of measurements will give a narrow range of values. But
where is the particle located? The width of the group is now too great for us to be able
to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:

It is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the
most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quan-
titative basis. The simplest example of the formation of wave groups is that given in
Sec. 3.4, where two wave trains slightly different in angular frequency � and wave
number k were superposed to yield the series of groups shown in Fig. 3.4. A moving
body corresponds to a single wave group, not a series of them, but a single wave group
can also be thought of in terms of the superposition of trains of harmonic waves. How-
ever, an infinite number of wave trains with different frequencies, wave numbers, and
amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group 
(x) can be represented by the Fourier integral


(x) � ��

0
g(k) cos kx dk (3.19)

108 Chapter Three

Figure 3.12 (a) A narrow de
Broglie wave group. The position
of the particle can be precisely
determined, but the wavelength
(and hence the particle's momen-
tum) cannot be established be-
cause there are not enough waves
to measure accurately. (b) A wide
wave group. Now the wavelength
can be precisely determined but
not the position of the particle.
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where the function g(k) describes how the amplitudes of the waves that contribute to

(x) vary with wave number k. This function is called the Fourier transform of 
(x),
and it specifies the wave group just as completely as 
(x) does. Figure 3.14 contains
graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the
Fourier transform of an infinite train of harmonic waves is also included. There is only
a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from
k � 0 to k � �, but for a group whose length �x is finite, the waves whose ampli-
tudes g(k) are appreciable have wave numbers that lie within a finite interval �k. As
Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers
needed to describe it, and vice versa.

The relationship between the distance �x and the wave-number spread �k depends
upon the shape of the wave group and upon how �x and �k are defined. The minimum
value of the product �x �k occurs when the envelope of the group has the familiar
bell shape of a Gaussian function. In this case the Fourier transform happens to be a
Gaussian function also. If �x and �k are taken as the standard deviations of the
respective functions 
(x) and g(k), then this minimum value is �x �k � �

1
2

�. Because
wave groups in general do not have Gaussian forms, it is more realistic to express the
relationship between �x and �k as

�x �k � �
1
2

� (3.20)
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Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is
also a Gaussian function.
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Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with dif-
ferent wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (�x smaller) but a poorly defined
wavelength and a large uncertainty �p in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.
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Gaussian Function

W hen a set of measurements is made of some quantity x in which the experimental errors
are random, the result is often a Gaussian distribution whose form is the bell-shaped

curve shown in Fig. 3.15. The standard deviation � of the measurements is a measure of the
spread of x values about the mean of x0, where � equals the square root of the average of the
squared deviations from x0. If N measurements were made,

� � 
�

N

i �1

(x1� � x0)�2�
The width of a Gaussian curve at half its maximum value is 2.35�.

The Gaussian function f(x) that describes the above curve is given by

f(x) � e�(x � x0)2�2�2

where f(x) is the probability that the value x be found in a particular measurement. Gaussian
functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to
say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while
mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x1 and
x2, is given by the area of the f(x) curve between these limits. This area is the integral

Px1x2
� �x2

x1

f(x) dx

An interesting questions is what fraction of a series of measurements has values within a stan-
dard deviation of the mean value x0. In this case x1 � x0 � � and x2 � x0 � �, and

Px0�� � �x0��

x0��
f(x) dx � 0.683

Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A
similar calculation shows that 95.4 percent of the measurements fall within two standard
deviations of the mean value.

1
�
� �2��

Gaussian function

1
�
N

Standard deviation

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian
function f(x). The mean value of x is x0, and the total width of the curve at half its maximum value
is 2.35�, where � is the standard deviation of the distribution. The total probability of finding a value
of x within a standard deviation of x0 is equal to the shaded area and is 68.3 percent.

σ

1.0

0.5

x0 x

f(x)

σ
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The de Broglie wavelength of a particle of momentum p is ��h�p and the
corresponding wave number is

k � �

In terms of wave number the particle’s momentum is therefore

p �

Hence an uncertainty �k in the wave number of the de Broglie waves associated with the
particle results in an uncertainty �p in the particle’s momentum according to the formula

�p �

Since �x �k � �
1
2

�, �k � 1�(2�x) and

�x �p � (3.21)

This equation states that the product of the uncertainty �x in the position of an ob-
ject at some instant and the uncertainty �p in its momentum component in the x di-
rection at the same instant is equal to or greater than h�4�.

If we arrange matters so that �x is small, corresponding to a narrow wave group,
then �p will be large. If we reduce �p in some way, a broad wave group is inevitable
and �x will be large.

h
�
4�

Uncertainty 
principle

h �k
�
2�

hk
�
2�

2�p
�

h

2�
�
�

Werner Heisenberg (1901–1976)
was born in Duisberg, Germany,
and studied theoretical physics at
Munich, where he also became an
enthusiastic skier and moun-
taineer. At Göttingen in 1924 as an
assistant to Max Born, Heisenberg
became uneasy about mechanical
models of the atom: “Any picture
of the atom that our imagination
is able to invent is for that very

reason defective,” he later remarked. Instead he conceived an
abstract approach using matrix algebra. In 1925, together with
Born and Pascual Jordan, Heisenberg developed this approach
into a consistent theory of quantum mechanics, but it was so
difficult to understand and apply that it had very little impact
on physics at the time. Schrödinger’s wave formulation of
quantum mechanics the following year was much more suc-
cessful; Schrödinger and others soon showed that the wave and
matrix versions of quantum mechanics were mathematically
equivalent.

In 1927, working at Bohr’s institute in Copenhagen, Heisen-
berg developed a suggestion by Wolfgang Pauli into the uncer-
tainty principle. Heisenberg initially felt that this principle was
a consequence of the disturbances inevitably produced by any

measuring process. Bohr, on the other hand, thought that the
basic cause of the uncertainties was the wave-particle duality,
so that they were built into the natural world rather than solely
the result of measurement. After much argument Heisenberg
came around to Bohr’s view. (Einstein, always skeptical about
quantum mechanics, said after a lecture by Heisenberg on the
uncertainty principle: “Marvelous, what ideas the young people
have these days. But I don’t believe a word of it.”) Heisenberg
received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists
to remain in Germany during the Nazi period. In World War II
he led research there on atomic weapons, but little progress had
been made by the war’s end. Exactly why remains unclear, al-
though there is no evidence that Heisenberg, as he later claimed,
had moral qualms about creating such weapons and more or
less deliberately dragged his feet. Heisenberg recognized early
that “an explosive of unimaginable consequences” could be de-
veloped, and he and his group should have been able to have
gotten farther than they did. In fact, alarmed by the news that
Heisenberg was working on an atomic bomb, the U.S. govern-
ment sent the former Boston Red Sox catcher Moe Berg to shoot
Heisenberg during a lecture in neutral Switzerland in 1944.
Berg, sitting in the second row, found himself uncertain from
Heisenberg’s remarks about how advanced the German program
was, and kept his gun in his pocket.
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These uncertainties are due not to inadequate apparatus but to the imprecise charac-
ter in nature of the quantities involved. Any instrumental or statistical uncertainties that
arise during a measurement only increase the product �x �p. Since we cannot know ex-
actly both where a particle is right now and what its momentum is, we cannot say any-
thing definite about where it will be in the future or how fast it will be moving then. We
cannot know the future for sure because we cannot know the present for sure. But our igno-
rance is not total: we can still say that the particle is more likely to be in one place than
another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity h�2� appears often in modern physics because it turns out to be the 
basic unit of angular momentum. It is therefore customary to abbreviate h�2� by the
symbol � (“h-bar”):

� � � 1.054 � 10�34 J 	 s

In the remainder of this book � is used in place of h�2�. In terms of �, the uncer-
tainty principle becomes

�x �p � (3.22)

Example 3.6

A measurement establishes the position of a proton with an accuracy of �1.00 � 10�11 m. Find
the uncertainty in the proton’s position 1.00 s later. Assume � �� c.

Solution

Let us call the uncertainty in the proton’s position �x0 at the time t � 0. The uncertainty in its
momentum at this time is therefore, from Eq. (3.22),

�p �

Since � �� c, the momentum uncertainty is �p � �(m�) � m �� and the uncertainty in the
proton’s velocity is

�� � �

The distance x the proton covers in the time t cannot be known more accurately than

�x � t �� �

Hence �x is inversely proportional to �x0: the more we know about the proton’s position at 
t � 0, the less we know about its later position at t � 0. The value of �x at t � 1.00 s is

�x �

� 3.15 � 103 m

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread
out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the compo-
nent waves vary with wave number and a large range of wave numbers must have been present
to produce the narrow original wave group. See Fig. 3.14.

(1.054 � 10�34 J 	 s)(1.00 s)
�����
(2)(1.672 � 10�27 kg)(1.00 � 10�11 m)

�t
�
2m �x0

�
�
2m �x0

�p
�
m

�
�
2�x0

�
�
2

Uncertainty 
principle

h
�
2�
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3.8 UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle prop-
erties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain mo-
ment. To do so, we must touch it with something that will carry the required information
back to us. That is, we must poke it with a stick, shine light on it, or perform some sim-
ilar act. The measurement process itself thus requires that the object be interfered with in
some way. If we consider such interferences in detail, we are led to the same uncertainty
principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength �, as in Fig. 3.17. Each
photon of this light has the momentum h��. When one of these photons bounces
off the electron (which must happen if we are to “see” the electron), the electron’s

Wave Properties of Particles 113

Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.

Wave packet
Classical particle

Ψ 2 t1
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x
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Figure 3.17 An electron cannot be observed without changing its momentum.
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original momentum will be changed. The exact amount of the change �p cannot be
predicted, but it will be of the same order of magnitude as the photon momentum
h��. Hence

�p � (3.23)

The longer the wavelength of the observing photon, the smaller the uncertainty in the
electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot
expect to determine the electron’s location with perfect accuracy regardless of the in-
strument used. A reasonable estimate of the minimum uncertainty in the measurement
might be one photon wavelength, so that

�x � � (3.24)

The shorter the wavelength, the smaller the uncertainty in location. However, if we use
light of short wavelength to increase the accuracy of the position measurement, there will
be a corresponding decrease in the accuracy of the momentum measurement because
the higher photon momentum will disturb the electron’s motion to a greater extent. Light
of long wavelength will give a more accurate momentum but a less accurate position.

Combining Eqs. (3.23) and (3.24) gives

�x �p � h (3.25)

This result is consistent with Eq. (3.22), �x �p � ��2.
Arguments like the preceding one, although superficially attractive, must be 

approached with caution. The argument above implies that the electron can possess a
definite position and momentum at any instant and that it is the measurement process
that introduces the indeterminacy in �x �p. On the contrary, this indeterminacy is
inherent in the nature of a moving body. The justification for the many “derivations” of
this kind is first, they show it is impossible to imagine a way around the uncertainty
principle; and second, they present a view of the principle that can be appreciated in
a more familiar context than that of wave groups.

3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement

Planck’s constant h is so small that the limitations imposed by the uncertainty princi-
ple are significant only in the realm of the atom. On such a scale, however, this principle
is of great help in understanding many phenomena. It is worth keeping in mind that
the lower limit of ��2 for �x �p is rarely attained. More usually �x �p � �, or even
(as we just saw) �x �p � h.

Example 3.7

A typical atomic nucleus is about 5.0 � 10�15 m in radius. Use the uncertainty principle to
place a lower limit on the energy an electron must have if it is to be part of a nucleus.

h
�
�
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Solution

Letting �x � 5.0 � 10�5 m we have

�p � � � 1.1 � 10�20 kg 	 m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at
least comparable in magnitude. An electron with such a momentum has a kinetic energy KE
many times greater than its rest energy mc2. From Eq. (1.24) we see that we can let KE � pc
here to a sufficient degree of accuracy. Therefore

KE � pc � (1.1 � 10�20 kg 	 m/s)(3.0 � 108 m/s) � 3.3 � 10�12 J

Since 1 eV � 1.6 � 10�19 J, the kinetic energy of an electron must exceed 20 MeV if it is to
be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never
have more than a small fraction of this energy, from which we conclude that nuclei cannot con-
tain electrons. The electron an unstable nucleus may emit comes into being at the moment the
nucleus decays (see Secs. 11.3 and 12.5).

Example 3.8

A hydrogen atom is 5.3 � 10�11 m in radius. Use the uncertainty principle to estimate the min-
imum energy an electron can have in this atom.

Solution

Here we find that with � x � 5.3 � 10�11 m.

� p � � 9.9 � 10�25 kg 	 m/s

An electron whose momentum is of this order of magnitude behaves like a classical particle, and
its kinetic energy is

KE � � � 5.4 � 10�19 J

which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom
is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish
to measure the energy E emitted during the time interval �t in an atomic process. If
the energy is in the form of em waves, the limited time available restricts the accuracy
with which we can determine the frequency � of the waves. Let us assume that the
minimum uncertainty in the number of waves we count in a wave group is one wave.
Since the frequency of the waves under study is equal to the number of them we count
divided by the time interval, the uncertainty �� in our frequency measurement is

�� �
1

�
�t

(9.9 � 10�25 kg 	 m/s)2

���
(2)(9.1 � 10�31 kg)

p2

�
2m

�
�
2� x

1.054 � 10�34 J 	 s
���
(2)(5.0 � 10�15 m)

�
�
2� x
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The corresponding energy uncertainty is

�E � h ��

and so

�E � or �E �t � h

A more precise calculation based on the nature of wave groups changes this result to

�E �t � (3.26)

Equation (3.26) states that the product of the uncertainty �E in an energy meas-
urement and the uncertainty �t in the time at which the measurement is made is equal
to or greater than ��2. This result can be derived in other ways as well and is a gen-
eral one not limited to em waves.

Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,
as described in Chap. 4. The average period that elapses between the excitation of an atom and
the time it radiates is 1.0 � 10�8 s. Find the inherent uncertainty in the frequency of the 
photon.

Solution

The photon energy is uncertain by the amount

�E � � � 5.3 � 10�27 J

The corresponding uncertainty in the frequency of light is

�� � � 8 � 106 Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the
radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not
appear with the precise frequency �. For a photon whose frequency is, say, 5.0 � 1014 Hz, 
���� � 1.6 � 10�8. In practice, other phenomena such as the doppler effect contribute more
than this to the broadening of spectral lines.

�E
�

h

1.054 � 10�34 J 	 s
���

2(1.0 � 10�8 s)

�
�
2�t

�
�
2

Uncertainties in 
energy and time

h
�
�t
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Exercises 117

E X E R C I S E S

It is only the first step that takes the effort. —Marquise du Deffand

3.1 De Broglie Waves

1. A photon and a particle have the same wavelength. Can any-
thing be said about how their linear momenta compare? About
how the photon’s energy compares with the particle’s total
energy? About how the photon’s energy compares with the
particle’s kinetic energy?

2. Find the de Broglie wavelength of (a) an electron whose speed is
1.0 � 108 m/s, and (b) an electron whose speed is 2.0 � 108 m/s.

3. Find the de Broglie wavelength of a 1.0-mg grain of sand
blown by the wind at a speed of 20 m/s.

4. Find the de Broglie wavelength of the 40-keV electrons used in
a certain electron microscope.

5. By what percentage will a nonrelativistic calculation of the
de Broglie wavelength of a 100-keV electron be in error?

6. Find the de Broglie wavelength of a 1.00-MeV proton. Is a rela-
tivistic calculation needed?

7. The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the
kinetic energy (in eV) of a neutron with a de Broglie wave-
length of 0.282 nm. Is a relativistic calculation needed? Such
neutrons can be used to study crystal structure.

8. Find the kinetic energy of an electron whose de Broglie wave-
length is the same as that of a 100-keV x-ray.

9. Green light has a wavelength of about 550 nm. Through what
potential difference must an electron be accelerated to have this
wavelength?

10. Show that the de Broglie wavelength of a particle of mass m
and kinetic energy KE is given by

� �

11. Show that if the total energy of a moving particle greatly
exceeds its rest energy, its de Broglie wavelength is nearly the
same as the wavelength of a photon with the same total energy.

12. (a) Derive a relativistically correct formula that gives the 
de Broglie wavelength of a charged particle in terms of the po-
tential difference V through which it has been accelerated.
(b) What is the nonrelativistic approximation of this formula,
valid for eV �� mc2?

3.4 Phase and Group Velocities

13. An electron and a proton have the same velocity. Compare the
wavelengths and the phase and group velocities of their 
de Broglie waves.

14. An electron and a proton have the same kinetic energy.
Compare the wavelengths and the phase and group velocities of
their de Broglie waves.

hc
��
�KE(KE� � 2m�c2)�

15. Verify the statement in the text that, if the phase velocity is the
same for all wavelengths of a certain wave phenomenon (that
is, there is no dispersion), the group and phase velocities are
the same.

16. The phase velocity of ripples on a liquid surface is �2�S���
�,
where S is the surface tension and 
 the density of the liquid.
Find the group velocity of the ripples.

17. The phase velocity of ocean waves is �g��2��, where g is the
acceleration of gravity. Find the group velocity of ocean waves.

18. Find the phase and group velocities of the de Broglie waves of
an electron whose speed is 0.900c.

19. Find the phase and group velocities of the de Broglie waves of
an electron whose kinetic energy is 500 keV.

20. Show that the group velocity of a wave is given by �g �

d��d(1��).

21. (a) Show that the phase velocity of the de Broglie waves of a
particle of mass m and de Broglie wavelength � is given by

�p � c
1 � ����
2�

(b) Compare the phase and group velocities of an electron
whose de Broglie wavelength is exactly 1 � 10�13 m.

22. In his original paper, de Broglie suggested that E � h� and 
p � h��, which hold for electromagnetic waves, are also valid
for moving particles. Use these relationships to show that the
group velocity �g of a de Broglie wave group is given by dE�dp,
and with the help of Eq. (1.24), verify that �g � � for a particle
of velocity �.

3.5 Particle Diffraction

23. What effect on the scattering angle in the Davisson-Germer
experiment does increasing the electron energy have?

24. A beam of neutrons that emerges from a nuclear reactor contains
neutrons with a variety of energies. To obtain neutrons with an
energy of 0.050 eV, the beam is passed through a crystal whose
atomic planes are 0.20 nm apart. At what angles relative to the
original beam will the desired neutrons be diffracted?

25. In Sec. 3.5 it was mentioned that the energy of an electron en-
tering a crystal increases, which reduces its de Broglie wavelength.
Consider a beam of 54-eV electrons directed at a nickel target.
The potential energy of an electron that enters the target changes
by 26 eV. (a) Compare the electron speeds outside and inside the
target. (b) Compare the respective de Broglie wavelengths.

26. A beam of 50-keV electrons is directed at a crystal and
diffracted electrons are found at an angle of 50
 relative to the
original beam. What is the spacing of the atomic planes of the
crystal? A relativistic calculation is needed for �.

mc�
�

h
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3.6 Particle in a Box

27. Obtain an expression for the energy levels (in MeV) of a neu-
tron confined to a one-dimensional box 1.00 � 10�14 m wide.
What is the neutron’s minimum energy? (The diameter of an
atomic nucleus is of this order of magnitude.)

28. The lowest energy possible for a certain particle trapped in a
certain box is 1.00 eV. (a) What are the next two higher ener-
gies the particle can have? (b) If the particle is an electron, how
wide is the box?

29. A proton in a one-dimensional box has an energy of 400 keV in
its first excited state. How wide is the box?

3.7 Uncertainty Principle I
3.8 Uncertainty Principle II
3.9 Applying the Uncertainty Principle

30. Discuss the prohibition of E � 0 for a particle trapped in a
box L wide in terms of the uncertainty principle. How does
the minimum momentum of such a particle compare with the
momentum uncertainty required by the uncertainty principle if
we take �x � L?

31. The atoms in a solid possess a certain minimum zero-point
energy even at 0 K, while no such restriction holds for the
molecules in an ideal gas. Use the uncertainty principle to
explain these statements.

32. Compare the uncertainties in the velocities of an electron and a
proton confined in a 1.00-nm box.

33. The position and momentum of a 1.00-keV electron are simulta-
neously determined. If its position is located to within 0.100 nm,
what is the percentage of uncertainty in its momentum?

34. (a) How much time is needed to measure the kinetic energy of
an electron whose speed is 10.0 m/s with an uncertainty of no
more than 0.100 percent? How far will the electron have
traveled in this period of time? (b) Make the same calculations

for a 1.00-g insect whose speed is the same. What do these
sets of figures indicate?

35. How accurately can the position of a proton with � �� c be
determined without giving it more than 1.00 keV of kinetic
energy?

36. (a) Find the magnitude of the momentum of a particle in a
box in its nth state. (b) The minimum change in the particle’s
momentum that a measurement can cause corresponds to a
change of �1 in the quantum number n. If �x � L, show that
�p �x � ��2.

37. A marine radar operating at a frequency of 9400 MHz emits
groups of electromagnetic waves 0.0800 �s in duration. The
time needed for the reflections of these groups to return
indicates the distance to a target. (a) Find the length of each
group and the number of waves it contains. (b) What is the
approximate minimum bandwidth (that is, spread of frequen-
cies) the radar receiver must be able to process?

38. An unstable elementary particle called the eta meson has a rest
mass of 549 MeV/c2 and a mean lifetime of 7.00 � 10�19 s.
What is the uncertainty in its rest mass?

39. The frequency of oscillation of a harmonic oscillator of mass m
and spring constant C is � � �C�m��2�. The energy of the
oscillator is E � p2�2m � C x2�2, where p is its momentum
when its displacement from the equilibrium position is x. In
classical physics the minimum energy of the oscillator is 
Emin � 0. Use the uncertainty principle to find an expression
for E in terms of x only and show that the minimum energy is
actually Emin � h��2 by setting dE�dx � 0 and solving for Emin.

40. (a) Verify that the uncertainty principle can be expressed in the
form �L �
 � ��2, where �L is the uncertainty in the angular
momentum of a particle and �
 is the uncertainty in its
angular position. (Hint: Consider a particle of mass m moving
in a circle of radius r at the speed �, for which L � m�r.)
(b) At what uncertainty in L will the angular position of a parti-
cle become completely indeterminate?
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Solid-state infrared laser cutting 1.6-mm steel sheet. This laser uses an yttrium-aluminum-
garnet crystal doped with neodymium. The neodymium is pumped with radiation from
small semiconductor lasers, a highly efficient method.
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F
ar in the past people began to suspect that matter, despite appearing continu-
ous, has a definite structure on a microscopic level beyond the direct reach of
our senses. This suspicion did not take on a more concrete form until a little

over a century and a half ago. Since then the existence of atoms and molecules, the
ultimate particles of matter in its common forms, has been amply demonstrated, and
their own ultimate particles, electrons, protons, and neutrons, have been identified and
studied as well. In this chapter and in others to come our chief concern will be the
structure of the atom, since it is this structure that is responsible for nearly all the prop-
erties of matter that have shaped the world around us.

Every atom consists of a small nucleus of protons and neutrons with a number
of electrons some distance away. It is tempting to think that the electrons circle the 
nucleus as planets do the sun, but classical electromagnetic theory denies the pos-
sibility of stable electron orbits. In an effort to resolve this paradox, Niels Bohr ap-
plied quantum ideas to atomic structure in 1913 to obtain a model which, despite
its inadequacies and later replacement by a quantum-mechanical description of
greater accuracy and usefulness, still remains a convenient mental picture of the
atom. Bohr’s theory of the hydrogen atom is worth examining both for this reason
and because it provides a valuable transition to the more abstract quantum theory
of the atom.

4.1 THE NUCLEAR ATOM

An atom is largely empty space

Most scientists of the late nineteenth century accepted the idea that the chemical 
elements consist of atoms, but they knew almost nothing about the atoms themselves.
One clue was the discovery that all atoms contain electrons. Since electrons carry 
negative charges whereas atoms are neutral, positively charged matter of some kind
must be present in atoms. But what kind? And arranged in what way?

One suggestion, made by the British physicist J. J. Thomson in 1898, was that atoms
are just positively charged lumps of matter with electrons embedded in them, like
raisins in a fruitcake (Fig. 4.1). Because Thomson had played an important role in 
discovering the electron, his idea was taken seriously. But the real atom turned out to
be quite different.

The most direct way to find out what is inside a fruitcake is to poke a finger into
it, which is essentially what Hans Geiger and Ernest Marsden did in 1911. At the sug-
gestion of Ernest Rutherford, they used as probes the fast alpha particles emitted by
certain radioactive elements. Alpha particles are helium atoms that have lost two elec-
trons each, leaving them with a charge of �2e.

Geiger and Marsden placed a sample of an alpha-emitting substance behind a lead
screen with a small hole in it, as in Fig. 4.2, so that a narrow beam of alpha particles
was produced. This beam was directed at a thin gold foil. A zinc sulfide screen, which
gives off a visible flash of light when struck by an alpha particle, was set on the other
side of the foil with a microscope to see the flashes.

It was expected that the alpha particles would go right through the foil with hardly
any deflection. This follows from the Thomson model, in which the electric charge in-
side an atom is assumed to be uniformly spread through its volume. With only weak
electric forces exerted on them, alpha particles that pass through a thin foil ought to
be deflected only slightly, 1° or less.

120 Chapter Four

Figure 4.1 The Thomson model
of the atom. The Rutherford scat-
tering experiment showed it to be
incorrect.
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What Geiger and Marsden actually found was that although most of the alpha 
particles indeed were not deviated by much, a few were scattered through very large
angles. Some were even scattered in the backward direction. As Rutherford remarked,
“It was as incredible as if you fired a 15-inch shell at a piece of tissue paper and it
came back and hit you.”

Alpha particles are relatively heavy (almost 8000 electron masses) and those used
in this experiment had high speeds (typically 2 � 107 m/s), so it was clear that 
powerful forces were needed to cause such marked deflections. The only way to 
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Figure 4.2 The Rutherford scattering experiment.
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Ernest Rutherford (1871–1937),
a native of New Zealand, was
on his family’s farm digging pota-
toes when he learned that he had
won a scholarship for graduate
study at Cambridge University in
England. “This is the last potato I
will every dig,” he said, throwing
down his spade. Thirteen years
later he received the Nobel Prize in
chemistry.

At Cambridge, Rutherford was a research student under 
J. J. Thomson, who would soon announce the discovery of the
electron. Rutherford’s own work was on the newly found phe-
nomenon of radioactivity, and he quickly distinguished between
alpha and beta particles, two of the emissions of radioactive ma-
terials. In 1898 he went to McGill University in Canada, where
he found that alpha particles are the nuclei of helium atoms
and that the radioactive decay of an element gives rise to an-
other element. Working with the chemist Frederick Soddy and
others, Rutherford traced the successive transformations of ra-
dioactive elements, such as uranium and radium, until they end
up as stable lead.

In 1907 Rutherford returned to England as professor of physics
at Manchester, where in 1911 he showed that the nuclear model
of the atom was the only one that could explain the observed scat-
tering of alpha particles by thin metal foils. Rutherford’s last im-
portant discovery, reported in 1919, was the disintegration of
nitrogen nuclei when bombarded with alpha particles, the first
example of the artificial transmutation of elements into other el-
ements. After other similar experiments, Rutherford suggested that
all nuclei contain hydrogen nuclei, which he called protons. He
also proposed that a neutral particle was present in nuclei as well.

In 1919 Rutherford became director of the Cavendish Lab-
oratory at Cambridge, where under his stimulus great strides
in understanding the nucleus continued to be made. James
Chadwick discovered the neutron there in 1932. The Cavendish
Laboratory was the site of the first accelerator for producing
high-energy particles. With the help of this accelerator, fusion
reactions in which light nuclei unite to form heavier nuclei were
observed for the first time.

Rutherford was not infallible: only a few years before the
discovery of fission and the building of the first nuclear reac-
tor, he dismissed the idea of practical uses for nuclear energy
as “moonshine.” He died in 1937 of complications of a hernia
and was buried near Newton in Westminster Abbey.
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explain the results, Rutherford found, was to picture an atom as being composed of a
tiny nucleus in which its positive charge and nearly all its mass are concentrated, with
the electrons some distance away (Fig. 4.3). With an atom being largely empty space,
it is easy to see why most alpha particles go right through a thin foil. However, when
an alpha particle happens to come near a nucleus, the intense electric field there scat-
ters it through a large angle. The atomic electrons, being so light, do not appreciably
affect the alpha particles.

The experiments of Geiger and Marsden and later work of a similar kind also 
supplied information about the nuclei of the atoms that composed the various tar-
get foils. The deflection of an alpha particle when it passes near a nucleus depends
on the magnitude of the nuclear charge. Comparing the relative scattering of alpha
particles by different foils thus provides a way to find the nuclear charges of the
atoms involved.

All the atoms of any one element turned out to have the same unique nuclear charge,
and this charge increased regularly from element to element in the periodic table. The
nuclear charges always turned out to be multiples of �e; the number Z of unit 
positive charges in the nuclei of an element is today called the atomic number of the 
element. We know now that protons, each with a charge �e, provide the charge on a
nucleus, so the atomic number of an element is the same as the number of protons in
the nuclei of its atoms.

Ordinary matter, then, is mostly empty space. The solid wood of a table, the steel
that supports a bridge, the hard rock underfoot, all are simply collections of tiny charged
particles comparatively farther away from one another than the sun is from the 
planets. If all the actual matter, electrons and nuclei, in our bodies could somehow be
packed closely together, we would shrivel to specks just visible with a microscope.

Rutherford Scattering Formula

The formula that Rutherford obtained for alpha particle scattering by a thin foil on the
basis of the nuclear model of the atom is

N(�) � (4.1)

This formula is derived in the Appendix to this chapter. The symbols in Eq. (4.1) have
the following meanings:

N(�) � number of alpha particles per unit area that reach the screen at a
scattering angle of �

Ni � total number of alpha particles that reach the screen
n � number of atoms per unit volume in the foil
Z � atomic number of the foil atoms
r � distance of the screen from the foil

KE � kinetic energy of the alpha particles
t � foil thickness

The predictions of Eq. (4.1) agreed with the measurements of Geiger and Marsden,
which supported the hypothesis of the nuclear atom. This is why Rutherford is credited

NintZ2e4

���
(8��0)2r2 KE2 sin4(��2)

Rutherford
scattering formula
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Figure 4.3 The Rutherford model
of the atom.
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with the “discovery” of the nucleus. Because N(�) is inversely proportional to sin4 (��2)
the variation of N(�) with � is very pronounced (Fig. 4.4): only 0.14 percent of the
incident alpha particles are scattered by more than 1°.

Nuclear Dimensions

In his derivation of Eq. (4.1) Rutherford assumed that the size of a target nucleus is
small compared with the minimum distance R to which incident alpha particles 
approach the nucleus before being deflected away. Rutherford scattering therefore gives
us a way to find an upper limit to nuclear dimensions.

Let us see what the distance of closest approach R was for the most energetic alpha
particles employed in the early experiments. An alpha particle will have its smallest R
when it approaches a nucleus head on, which will be followed by a 180° scattering.
At the instant of closest approach the initial kinetic energy KE of the particle is entirely
converted to electric potential energy, and so at that instant

KEinitial � PE �

since the charge of the alpha particle is 2e and that of the nucleus is Ze. Hence

R � (4.2)
2Ze2

��
4��0KEinitial

Distance of closest
approach

2Ze2

�
R

1
�
4��0
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Figure 4.4 Rutherford scattering. N(�) is the number of alpha particles per unit area that reach the
screen at a scattering angle of �; N(180°) is this number for backward scattering. The experimental
findings follow this curve, which is based on the nuclear model of the atom.
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The maximum KE found in alpha particles of natural origin is 7.7 MeV, which is 
1.2 � 10�12 J. Since 1�4��0 � 9.0 � 109 N � m2/C2, 

R �

� 3.8 � 10�16 Z m

The atomic number of gold, a typical foil material, is Z � 79, so that

R (Au) � 3.0 � 10�14 m

The radius of the gold nucleus is therefore less than 3.0 � 10�14 m, well under 
10�4 the radius of the atom as a whole.

In more recent years particles of much higher energies than 7.7 MeV have been
artificially accelerated, and it has been found that the Rutherford scattering formula
does indeed eventually fail to agree with experiment. These experiments and the in-
formation they provide on actual nuclear dimensions are discussed in Chap. 11.
The radius of the gold nucleus turns out to be about �15� of the value of R (Au) found
above.

(2)(9.0 � 109 N � m2/C2)(1.6 � 10�19 C)2 Z
�����

1.2 � 10�12 J

4.2 ELECTRON ORBITS

The planetary model of the atom and why it fails

The Rutherford model of the atom, so convincingly confirmed by experiment, pictures
a tiny, massive, positively charged nucleus surrounded at a relatively great distance by
enough electrons to render the atom electrically neutral as a whole. The electrons can-
not be stationary in this model, because there is nothing that can keep them in place
against the electric force pulling them to the nucleus. If the electrons are in motion,
however, dynamically stable orbits like those of the planets around the sun are pos-
sible (Fig. 4.5).

Let us look at the classical dynamics of the hydrogen atom, whose single electron
makes it the simplest of all atoms. We assume a circular electron orbit for convenience,
though it might as reasonably be assumed to be elliptical in shape. The centripetal
force

Fc �
m�2

�
r

Figure 4.5 Force balance in the
hydrogen atom.

Electron

r

–e
v

F F+e
Proton

Neutron Stars

T he density of nuclear matter is about 2.4 � 1017 kg/m3, which is equivalent to 4 bil-
lion tons per cubic inch. As discussed in Sec. 9.11, neutron stars are stars whose atoms

have been so compressed that most of their protons and electrons have fused into neutrons,
which are the most stable form of matter under enormous pressures. The densities of neu-
tron stars are comparable to those of nuclei: a neutron star packs the mass of one or two
suns into a sphere only about 10 km in radius. If the earth were this dense, it would fit into
a large apartment house.
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holding the electron in an orbit r from the nucleus is provided by the electric force

Fe �

between them. The condition for a dynamically stable orbit is

Fc � Fe

� (4.3)

The electron velocity � is therefore related to its orbit radius r by the formula

� � (4.4)

The total energy E of the electron in a hydrogen atom is the sum of its kinetic and
potential energies, which are

KE � m�2 PE � �

(The minus sign follows from the choice of PE � 0 at r � �, that is, when the 
electron and proton are infinitely far apart.) Hence

E � KE � PE � �

Substituting for � from Eq. (4.4) gives

E � �

E � � (4.5)

The total energy of the electron is negative. This holds for every atomic electron and
reflects the fact that it is bound to the nucleus. If E were greater than zero, an electron
would not follow a closed orbit around the nucleus.

Actually, of course, the energy E is not a property of the electron alone but is a prop-
erty of the system of electron � nucleus. The effect of the sharing of E between the
electron and the nucleus is considered in Sec. 4.7.

Example 4.1

Experiments indicate that 13.6 eV is required to separate a hydrogen atom into a proton and an
electron; that is, its total energy is E � �13.6 eV. Find the orbital radius and velocity of the
electron in a hydrogen atom.

e2

�
8��0r

Total energy of
hydrogen atom

e2

�
4��0r

e2

�
8��0r

e2

�
4��0r

m�2

�
2

e2

�
4��0r

1
�
2

e
��
�4��0m�r�

Electron velocity

e2

�
r2

1
�
4��0

m�2

�
r

e2

�
r2

1
�
4��0
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Solution

Since 13.6 eV � 2.2 � 10�18 J, from Eq. (4.5)

r � � � �

� 5.3 � 10�11 m

An atomic radius of this magnitude agrees with estimates made in other ways. The electron’s
velocity can be found from Eq. (4.4):

� � �

� 2.2 � 106 m�s

Since � 		 c, we can ignore special relativity when considering the hydrogen atom.

The Failure of Classical Physics

The analysis above is a straightforward application of Newton’s laws of motion and
Coulomb’s law of electric force—both pillars of classical physics—and is in accord with
the experimental observation that atoms are stable. However, it is not in accord with
electromagnetic theory—another pillar of classical physics—which predicts that accel-
erated electric charges radiate energy in the form of em waves. An electron pursuing
a curved path is accelerated and therefore should continuously lose energy, spiraling
into the nucleus in a fraction of a second (Fig. 4.6).

But atoms do not collapse. This contradiction further illustrates what we saw in the
previous two chapters: The laws of physics that are valid in the macroworld do not
always hold true in the microworld of the atom.

1.6 � 10 �19 C
������
�(4�)(8�.85 ��10�12�F�m)(9�.1 � 1�0�31 k�g)(5.3�� 10��11 m)�

e
��
�4��0m�r�

(1.6 � 10�19 C)2

�����
(8�)(8.85 � 10�12 F/m)( �2.2 � 10�18 J)

e2

�
8��0E

Figure 4.6 An atomic electron
should, classically, spiral rapidly
into the nucleus as it radiates
energy due to its acceleration.

Electron

Proton+e

–e

Is Rutherford's Analysis Valid?

A n interesting question comes up at this point. When he derived his scattering formula,
Rutherford used the same laws of physics that prove such dismal failures when applied

to atomic stability. Might it not be that this formula is not correct and that in reality the atom
does not resemble Rutherford’s model of a small central nucleus surrounded by distant elec-
trons? This is not a trivial point. It is a curious coincidence that the quantum-mechanical
analysis of alpha particle scattering by thin foils yields precisely the same formula that Ruther-
ford found.

To verify that a classical calculation ought to be at least approximately correct, we note
that the de Broglie wavelength of an alpha particle whose speed is 2.0 � 107 m�s is

� � �

� 5.0 � 10�15 m

As we saw in Sec. 4.1, the closest an alpha particle with this wavelength ever gets to a gold
nucleus is 3.0 � 10�14 m, which is six de Broglie wavelengths. It is therefore just reasonable to
regard the alpha particle as a classical particle in the interaction. We are correct in thinking of
the atom in terms of Rutherford’s model, though the dynamics of the atomic electrons—which
is another matter—requires a nonclassical approach.

6.63 � 10�34 J � s
����
(6.6 � 10�27 kg)(2.0 � 107 m�s)

h
�
m�
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Classical physics fails to provide a meaningful analysis of atomic structure because
it approaches nature in terms of “pure” particles and “pure” waves. In reality particles
and waves have many properties in common, though the smallness of Planck’s con-
stant makes the wave-particle duality imperceptible in the macroworld. The usefulness
of classical physics decreases as the scale of the phenomena under study decreases, and
we must allow for the particle behavior of waves and the wave behavior of particles to
understand the atom. In the rest of this chapter we shall see how the Bohr atomic
model, which combines classical and modern notions, accomplishes part of the latter
task. Not until we consider the atom from the point of view of quantum mechanics,
which makes no compromise with the intuitive notions we pick up in our daily lives,
will we find a really successful theory of the atom.

4.3 ATOMIC SPECTRA

Each element has a characteristic line spectrum

Atomic stability is not the only thing that a successful theory of the atom must account
for. The existence of spectral lines is another important aspect of the atom that finds
no explanation in classical physics.

We saw in Chap. 2 that condensed matter (solids and liquids) at all temperatures
emits em radiation in which all wavelengths are present, though with different
intensities. The observed features of this radiation were explained by Planck without
reference to exactly how it was produced by the radiating material or to the nature of
the material. From this it follows that we are witnessing the collective behavior of a
great many interacting atoms rather than the characteristic behavior of the atoms of a
particular element.

At the other extreme, the atoms or molecules in a rarefied gas are so far apart on
the average that they only interact during occasional collisions. Under these circum-
stances we would expect any emitted radiation to be characteristic of the particular
atoms or molecules present, which turns out to be the case.

When an atomic gas or vapor at somewhat less than atmospheric pressure is suitably
“excited,” usually by passing an electric current through it, the emitted radiation has a
spectrum which contains certain specific wavelengths only. An idealized arrangement for
observing such atomic spectra is shown in Fig. 4.7; actual spectrometers use diffraction

Atomic Structure 127

Figure 4.7 An idealized spectrometer.
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gratings. Figure 4.8 shows the emission line spectra of several elements. Every element
displays a unique line spectrum when a sample of it in the vapor phase is excited. Spec-
troscopy is therefore a useful tool for analyzing the composition of an unknown substance.

When white light is passed through a gas, the gas is found to absorb light of cer-
tain of the wavelengths present in its emission spectrum. The resulting absorption line
spectrum consists of a bright background crossed by dark lines that correspond to the
missing wavelengths (Fig. 4.9); emission spectra consist of bright lines on a dark back-
ground. The spectrum of sunlight has dark lines in it because the luminous part of the

Figure 4.8 Some of the principal lines in the emission spectra of hydrogen, helium, and mercury.

700 nm
Red

600 nm 500 nm 400 nm
VioletOrange Yellow Green Blue

Mercury

Helium

Hydrogen

Figure 4.9 The dark lines in the absorption spectrum of an element correspond to bright lines in its
emission spectrum.

Absorption spectrum
of sodium vapor

Emission spectrum
of sodium vapor

Gas atoms excited by electric currents in these tubes radiate light
of wavelengths characteristic of the gas used.
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sun, which radiates very nearly like a blackbody heated to 5800 K, is surrounded by
an envelope of cooler gas that absorbs light of certain wavelengths only. Most other
stars have spectra of this kind.

The number, intensity, and exact wavelengths of the lines in the spectrum of an 
element depend upon temperature, pressure, the presence of electric and magnetic
fields, and the motion of the source. It is possible to tell by examining its spectrum
not only what elements are present in a light source but much about their physical
state. An astronomer, for example, can establish from the spectrum of a star which 
elements its atmosphere contains, whether they are ionized, and whether the star is
moving toward or away from the earth.

Spectral Series

A century ago the wavelengths in the spectrum of an element were found to fall into
sets called spectral series. The first such series was discovered by J. J. Balmer in 1885
in the course of a study of the visible part of the hydrogen spectrum. Figure 4.10 shows
the Balmer series. The line with the longest wavelength, 656.3 nm, is designated
H�, the next, whose wavelength is 486.3 nm, is designated H�, and so on. As the
wave-length decreases, the lines are found closer together and weaker in intensity until
the series limit at 364.6 nm is reached, beyond which there are no further separate
lines but only a faint continuous spectrum. Balmer’s formula for the wavelengths of
this series is

Balmer � R � � � n � 3, 4, 5, � � � (4.6)

The quantity R, known as the Rydberg constant, has the value

Rydberg constant R � 1.097 � 107 m�1 � 0.01097 nm�1

The H� line corresponds to n � 3, the H� line to n � 4, and so on. The series limit
corresponds to n � �, so that it occurs at a wavelength of 4�R, in agreement with
experiment.

The Balmer series contains wavelengths in the visible portion of the hydrogen spec-
trum. The spectral lines of hydrogen in the ultraviolet and infrared regions fall into
several other series. In the ultraviolet the Lyman series contains the wavelengths given
by the formula

1
�
n2

1
�
22

1
�
�

Figure 4.10 The Balmer series of hydrogen. The H� line is red, the H� line is blue, the H	 and H


lines are violet, and the other lines are in the near ultraviolet.
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Lyman � R � � � n � 2, 3, 4, � � � (4.7)

In the infrared, three spectral series have been found whose lines have the wavelengths
specified by the formulas

Paschen � R � � � n � 4, 5, 6, � � � (4.8)

Brackett � R � � � n � 5, 6, 7, � � � (4.9)

Pfund � R � � � n � 6, 7, 8, � � � (4.10)

These spectral series of hydrogen are plotted in terms of wavelength in Fig. 4.11; the
Brackett series evidently overlaps the Paschen and Pfund series. The value of R is the
same in Eqs. (4.6) to (4.10).

These observed regularities in the hydrogen spectrum, together with similar regu-
larities in the spectra of more complex elements, pose a definitive test for any theory
of atomic structure.

4.4 THE BOHR ATOM

Electron waves in the atom

The first theory of the atom to meet with any success was put forward in 1913 by Niels
Bohr. The concept of matter waves leads in a natural way to this theory, as de Broglie
found, and this is the route that will be followed here. Bohr himself used a different
approach, since de Broglie’s work came a decade later, which makes his achievement
all the more remarkable. The results are exactly the same, however.

We start by examining the wave behavior of an electron in orbit around a hydro-
gen nucleus. (In this chapter, since the electron velocities are much smaller than c, we
will assume that 	 � 1 and for simplicity omit 	 from the various equations.) The de
Broglie wavelength of this electron is

� �

where the electron velocity � is that given by Eq. (4.4):

� �

Hence

� � �	 (4.11)
4��0r
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Figure 4.11 The spectral series of
hydrogen. The wavelengths in
each series are related by simple
formulas.
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By substituting 5.3 � 10�11 m for the radius r of the electron orbit (see Example
4.1), we find the electron wavelength to be

� � �			
� 33 � 10�11 m

This wavelength is exactly the same as the circumference of the electron orbit,

2�r � 33 � 10�11 m

The orbit of the electron in a hydrogen atom corresponds to one complete electron
wave joined on itself (Fig. 4.12)!

The fact that the electron orbit in a hydrogen atom is one electron wavelength in
circumference provides the clue we need to construct a theory of the atom. If we con-
sider the vibrations of a wire loop (Fig. 4.13), we find that their wavelengths always
fit an integral number of times into the loop’s circumference so that each wave joins
smoothly with the next. If the wire were perfectly elastic, these vibrations would 
continue indefinitely. Why are these the only vibrations possible in a wire loop? If
a fractional number of wavelengths is placed around the loop, as in Fig. 4.14, destructive

(4�)(8.85 � 10�12 C2�N � m2)(5.3 � 10�11m)
�����

9.1 � 10�31 kg

6.63 � 10�34 J � s
��

1.6 � 10�19C

Figure 4.13 Some modes of vi-
bration of a wire loop. In each
case a whole number of wave-
lengths fit into the circumference
of the loop.

Circumference = 2 wavelengths

Circumference = 4 wavelengths

Circumference = 8 wavelengthsFigure 4.12 The orbit of the electron in a hydrogen atom corresponds to a complete electron de Broglie
wave joined on itself.

Electron path
De Broglie electron wave

Figure 4.14 A fractional number of wavelengths cannot persist because destructive interference will
occur.
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interference will occur as the waves travel around the loop, and the vibrations will die
out rapidly.

By considering the behavior of electron waves in the hydrogen atom as analogous
to the vibrations of a wire loop, then, we can say that

An electron can circle a nucleus only if its orbit contains an integral number of
de Broglie wavelengths.

This statement combines both the particle and wave characters of the electron since
the electron wavelength depends upon the orbital velocity needed to balance the pull
of the nucleus. To be sure, the analogy between an atomic electron and the standing
waves of Fig. 4.13 is hardly the last word on the subject, but it represents an illumi-
nating step along the path to the more profound and comprehensive, but also more
abstract, quantum-mechanical theory of the atom.

It is easy to express the condition that an electron orbit contain an integral number
of de Broglie wavelengths. The circumference of a circular orbit of radius r is 2�r, and
so the condition for orbit stability is

Niels Bohr (1884–1962) was
born and spent most of his life in
Copenhagen, Denmark. After re-
ceiving his doctorate at the uni-
versity there in 1911, Bohr went to
England to broaden his scientific
horizons. At Rutherford’s labora-
tory in Manchester, Bohr was in-
troduced to the just-discovered
nuclear model of the atom, which
was in conflict with the existing
principles of physics. Bohr realized

that it was “hopeless” to try to make sense of the atom in
the framework of classical physics alone, and he felt that the
quantum theory of light must somehow be the key to under-
standing atomic structure.

Back in Copenhagen in 1913, a friend suggested to Bohr
that Balmer’s formula for one set of the spectral lines of hydro-
gen might be relevant to his quest. “As soon as I saw Balmer’s
formula the whole thing was immediately clear to me,” Bohr
said later. To construct his theory, Bohr began with two revo-
lutionary ideas. The first was that an atomic electron can circle
its nucleus only in certain orbits, and the other was that an
atom emits or absorbs a photon of light when an electron jumps
from one permitted orbit to another.

What is the condition for a permitted orbit? To find out,
Bohr used as a guide what became known as the correspon-
dence principle: When quantum numbers are very large, quan-
tum effects should not be conspicuous, and the quantum the-
ory must then give the same results as classical physics.
Applying this principle showed that the electron in a permit-
ted orbit must have an angular momentum that is a multiple

of 
 � h�2�. A decade later Louis de Broglie explained this
quantization of angular momentum in terms of the wave na-
ture of a moving electron.

Bohr was able to account for all the spectral series of hy-
drogen, not just the Balmer series, but the publication of the
theory aroused great controversy. Einstein, an enthusiastic sup-
porter of the theory (which “appeared to me like a miracle—
and appears to me as a miracle even today,” he wrote many years
later), nevertheless commented on its bold mix of classical and
quantum concepts, “One ought to be ashamed of the successes
[of the theory] because they have been earned according to the
Jesuit maxim, ‘Let not thy left hand know what the other doeth.’” 
Other noted physicists were more deeply disturbed: Otto Stern
and Max von Laue said they would quit physics if Bohr were
right. (They later changed their minds.) Bohr and others tried
to extend his model to many-electron atoms with occasional
success—for instance, the correct prediction of the properties of
the then-unknown element hafnium—but real progress had to
wait for Wolfgang Pauli’s exclusion principle of 1925.

In 1916 Bohr returned to Rutherford’s laboratory, where he
stayed until 1919. Then an Institute of Theoretical Physics was
created for him in Copenhagen, and he directed it until his
death. The institute was a magnet for quantum theoreticians
from all over the world, who were stimulated by the exchange
of ideas at regular meetings there. Bohr received the Nobel Prize
in 1922. His last important work came in 1939, when he used
an analogy between a large nucleus and a liquid drop to ex-
plain why nuclear fission, which had just been discovered, oc-
curs in certain nuclei but not in others. During World War II
Bohr contributed to the development of the atomic bomb at
Los Alamos, New Mexico. After the war, Bohr returned to
Copenhagen, where he died in 1962.
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n� � 2�rn n � 1, 2, 3, . . . (4.12)

where rn designates the radius of the orbit that contain n wavelengths. The integer n
is called the quantum number of the orbit. Substituting for �, the electron wavelength
given by Eq. (4.11), yields

�	 � 2�rn

and so the possible electron orbits are those whose radii are given by

rn � n � 1, 2, 3, . . . (4.13)

The radius of the innermost orbit is customarily called the Bohr radius of the hydrogen
atom and is denoted by the symbol a0:

Bohr radius a0 � r1 � 5.292 � 10�11 m

The other radii are given in terms of a0 by the formula

rn � n2a0 (4.14)

4.5 ENERGY LEVELS AND SPECTRA

A photon is emitted when an electron jumps from one energy level to a
lower level

The various permitted orbits involve different electron energies. The electron energy
En is given in terms of the orbit radius rn by Eq. (4.5) as

En � �

Substituting for rn from Eq (4.13), we see that

Energy levels En � � � � � n � 1, 2, 3, � � � (4.15)

E1 � �2.18 � 10�18 J � �13.6 eV

The energies specified by Eq. (4.15) are called the energy levels of the hydrogen atom
and are plotted in Fig. 4.15. These levels are all negative, which signifies that the elec-
tron does not have enough energy to escape from the nucleus. An atomic electron can
have only these energies and no others. An analogy might be a person on a ladder,
who can stand only on its steps and not in between.

E1
�
n2

1
�
n2

me4

�
8�2

0h2

e2

�
8��0rn

n2h2�0
�
�me2

Orbital radii in
Bohr atom

4��0rn
�

m

nh
�
e

Condition for orbit
stability
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The lowest energy level E1 is called the ground state of the atom, and the higher
levels E2, E3, E4, . . . are called excited states. As the quantum number n increases,
the corresponding energy En approaches closer to 0. In the limit of n � �, E� � 0
and the electron is no longer bound to the nucleus to form an atom. A positive
energy for a nucleus-electron combination means that the electron is free and has
no quantum conditions to fulfill; such a combination does not constitute an atom,
of course.

The work needed to remove an electron from an atom in its ground state is called
its ionization energy. The ionization energy is accordingly equal to �E1, the energy
that must be provided to raise an electron from its ground state to an energy of E � 0,
when it is free. In the case of hydrogen, the ionization energy is 13.6 eV since the
ground-state energy of the hydrogen atom is �13.6 eV. Figure 7.10 shows the ioniza-
tion energies of the elements.

Figure 4.15 Energy levels of the hydrogen atom.
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Example 4.2

An electron collides with a hydrogen atom in its ground state and excites it to a state of n
� 3. How much energy was given to the hydrogen atom in this inelastic (KE not conserved)
collision?

Solution

From Eq. (4.15) the energy change of a hydrogen atom that goes from an initial state of quan-
tum number ni to a final state of quantum number nf is

�E � Ef � Ei � � � E1 � � �
Here ni � 1, nf � 3, and E1 � �13.6 eV, so

�E � �13.6 � � � eV � 12.1 eV

Example 4.3

Hydrogen atoms in states of high quantum number have been created in the laboratory and
observed in space. They are called Rydberg atoms. (a) Find the quantum number of the Bohr
orbit in a hydrogen atom whose radius is 0.0100 mm. (b) What is the energy of a hydrogen
atom in this state?

Solution

(a) From Eq. (4.14) with rn � 1.00 � 10�5 m,

n � �	 � �		 � 435

(b) From Eq. (4.15),

En � � � �7.19 � 10�5 eV

Rydberg atoms are obviously extremely fragile and are easily ionized, which is why they are
found in nature only in the near-vacuum of space. The spectra of Rydberg atoms range down
to radio frequencies and their existence was established from radio telescope data.

Origin of Line Spectra

We must now confront the equations developed above with experiment. An especially
striking observation is that atoms exhibit line spectra in both emission and absorption.
Do such spectra follow from our model?

The presence of discrete energy levels in the hydrogen atom suggests the connec-
tion. Let us suppose that when an electron in an excited state drops to a lower state,
the lost energy is emitted as a single photon of light. According to our model, elec-
trons cannot exist in an atom except in certain specific energy levels. The jump of an
electron from one level to another, with the difference in energy between the levels 
being given off all at once in a photon rather than in some more gradual manner, fits
in well with this model.

�13.6 eV
��

(435)2

E1
�
n2
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��
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If the quantum number of the initial (higher-energy) state is ni and the quantum
number of the final (lower-energy) state is nf, we are asserting that

Initial energy � final energy � photon energy

Ei �Ef � h� (4.16)

where � is the frequency of the emitted photon. From Eq. (4.15) we have

Ei � Ef � E1� � � � �E1� � �
We recall that E1 is a negative quantity (�13.6 eV, in fact), so �E1 is a positive quan-
tity. The frequency of the photon released in this transition is therefore

� � � � � � � (4.17)

Since � � c��, 1�� � ��c and

� � � � � (4.18)

Equation (4.18) states that the radiation emitted by excited hydrogen atoms
should contain certain wavelengths only. These wavelengths, furthermore, fall into
definite sequences that depend upon the quantum number nf of the final energy
level of the electron (Fig. 4.16). Since ni � nf in each case, in order that there be
an excess of energy to be given off as a photon, the calculated formulas for the first
five series are

Lyman nf � 1: � � � � � n � 2, 3, 4, � � �
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Quantization in the Atomic World

S equences of energy levels are characteristic of all atoms, not just those of hydrogen. As in
the case of a particle in a box, the confinement of an electron to a region of space leads to

restrictions on its possible wave functions that in turn limit the possible energies to well-defined
values only. The existence of atomic energy levels is a further example of the quantization, or
graininess, of physical quantities on a microscopic scale.

In the world of our daily lives, matter, electric charge, energy, and so forth appear to be con-
tinuous. In the world of the atom, in contrast, matter is composed of elementary particles that
have definite rest masses, charge always comes in multiples of �e or �e, electromagnetic waves
of frequency � appear as streams of photons each with the energy h�, and stable systems of par-
ticles, such as atoms, can possess only certain energies. As we shall find, other quantities in na-
ture are also quantized, and this quantization enters into every aspect of how electrons, protons,
and neutrons interact to endow the matter around us (and of which we consist) with its famil-
iar properties.
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Balmer nf � 2: � � � � � n � 3, 4, 5, � � �

Paschen nf � 3: � � � � � n � 4, 5, 6, � � �

Brackett nf � 4: � � � � � n � 5, 6, 7, � � �

Pfund nf � 5: � � � � � n � 6, 7, 8, � � �

These sequences are identical in form with the empirical spectral series discussed earlier.
The Lyman series corresponds to nf � 1; the Balmer series corresponds to nf � 2; the
Paschen series corresponds to nf � 3; the Brackett series corresponds to nf � 4; and the
Pfund series corresponds to nf � 5.

Our final step is to compare the value of the constant term in the above equations with
that of the Rydberg constant in Eqs. (4.6) to (4.10). The value of the constant term is

� �

�

� 1.097 � 107 m�1

(9.109 � 10�31 kg)(1.602 � 10�19 C)4

��������
(8)(8.854 � 10�12 C2/N � m2)(2.998 � 108 m/s)(6.626 � 10�34 J � s)3
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Figure 4.16 Spectral lines originate in transitions between energy levels. Shown are the spectral series
of hydrogen. When n � �, the electron is free.
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which is indeed the same as R. Bohr’s model of the hydrogen atom is therefore in accord
with the spectral data.

Example 4.4

Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H
 line.

Solution

In the Balmer series the quantum number of the final state is nf � 2. The longest wavelength in
this series corresponds to the smallest energy difference between energy levels. Hence the initial
state must be ni � 3 and

� R � � � � R � � � � 0.139R

� � � � 6.56 � 10�7m � 656 nm

This wavelength is near the red end of the visible spectrum.

4.6 CORRESPONDENCE PRINCIPLE

The greater the quantum number, the closer quantum physics approaches
classical physics

Quantum physics, so different from classical physics in the microworld beyond reach
of our senses, must nevertheless give the same results as classical physics in the
macroworld where experiments show that the latter is valid. We have already seen that
this basic requirement is true for the wave theory of moving bodies. We shall now find
that it is also true for Bohr’s model of the hydrogen atom.

According to electromagnetic theory, an electron moving in a circular orbit radi-
ates em waves whose frequencies are equal to its frequency of revolution and to har-
monics (that is, integral multiples) of that frequency. In a hydrogen atom the electron’s
speed is

� �

according to Eq. (4.4), where r is the radius of its orbit. Hence the frequency of
revolution f of the electron is

f � � �

The radius rn of a stable orbit is given in terms of its quantum number n by Eq. (4.13)
as

rn �
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and so the frequency of revolution is

f � � � � � � (4.19)

Example 4.5

(a) Find the frequencies of revolution of electrons in n � 1 and n � 2 Bohr orbits. (b) What is
the frequency of the photon emitted when an electron in an n � 2 orbit drops to an n � 1 or-
bit? (c) An electron typically spends about 10�8 s in an excited state before it drops to a lower
state by emitting a photon. How many revolutions does an electron in an n � 2 Bohr orbit make
in 1.00 � 10�8 s?

Solution

(a) From Eq. (4.19),

f1 � � � � � � (2) � 6.58 � 1015 rev/s

f2 � � � � � 0.823 � 1015 rev/s

(b) From Eq. (4.17),

� � � � � � � �� � � � 2.88 � 1015 Hz

This frequency is intermediate between f1 and f2.

(c) The number of revolutions the electron makes is

N � f2 �t � (8.23 � 1014 rev/s)(1.00�10�8 s) � 8.23 � 106 rev

The earth takes 8.23 million y to make this many revolutions around the sun.

Under what circumstances should the Bohr atom behave classically? If the electron
orbit is so large that we might be able to measure it directly, quantum effects ought
not to dominate. An orbit 0.01 mm across, for instance, meets this specification. As
we found in Example 4.3, its quantum number is n � 435.

What does the Bohr theory predict such an atom will radiate? According to Eq.
(4.17), a hydrogen atom dropping from the nith energy level to the nf th energy level
emits a photon whose frequency is

� � � � �
Let us write n for the initial quantum number ni and n � p (where p � 1, 2, 3, . . .)
for the final quantum number nf. With this substitution,

� � 
 � � � 
 �
When ni and nf are both very large, n is much greater than p, and

2np � p2 � 2np
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so that

� � � � (4.20)

When p � 1, the frequency � of the radiation is exactly the same as the frequency
of rotation f of the orbital electron given in Eq. (4.19). Multiples of this frequency are
radiated when p � 2, 3, 4, . . . . Hence both quantum and classical pictures of the
hydrogen atom make the same predictions in the limit of very large quantum num-
bers. When n � 2, Eq. (4.19) predicts a radiation frequency that differs from that given
by Eq. (4.20) by almost 300 percent. When n � 10,000, the discrepancy is only about
0.01 percent.

The requirement that quantum physics give the same results as classical physics in
the limit of large quantum numbers was called by Bohr the correspondence princi-
ple. It has played an important role in the development of the quantum theory of
matter.

Bohr himself used the correspondence principle in reverse, so to speak, to look for
the condition for orbit stability. Starting from Eq. (4.19) he was able to show that stable
orbits must have electron orbital angular momenta of

m�r � n � 1, 2, 3, . . . (4.21)

Since the de Broglie electron wavelength is � � h�m�, Eq. (4.21) is the same as
Eq. (4.12), n� � 2�r, which states that an electron orbit must contain an integral num-
ber of wavelengths.

4.7 NUCLEAR MOTION

The nuclear mass affects the wavelengths of spectral lines

Thus far we have been assuming that the hydrogen nucleus (a proton) remains
stationary while the orbital electron revolves around it. What must actually happen, of
course, is that both nucleus and electron revolve around their common center of mass,
which is very close to the nucleus because the nuclear mass is much greater than that
of the electron (Fig. 4.17). A system of this kind is equivalent to a single particle of
mass m� that revolves around the position of the heavier particle. (This equivalence is

nh
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Condition for 
orbital stability

2p
�
n3

�E1
�

h
Frequency of
photon

Figure 4.17 Both the electron and nucleus of a hydrogen atom revolve around a common center of
mass (not to scale !).
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demonstrated in Sec. 8.6.) If m is the electron mass and M the nuclear mass, then m�
is given by

Reduced mass m� � (4.22)

The quantity m� is called the reduced mass of the electron because its value is less
than m.

To take into account the motion of the nucleus in the hydrogen atom, then, all we
need do is replace the electron with a particle of mass m�. The energy levels of the
atom then become

E�n � � � � � � �� � (4.23)

Owing to motion of the nucleus, all the energy levels of hydrogen are changed by the
fraction

� � 0.99945

This represents an increase of 0.055 percent because the energies En, being smaller in
absolute value, are therefore less negative.

The use of Eq. (4.23) in place of (4.15) removes a small but definite discrepancy
between the predicted wavelengths of the spectral lines of hydrogen and the measured
ones. The value of the Rydberg constant R to eight significant figures without correct-
ing for nuclear motion is 1.0973731 � 107 m�1; the correction lowers it to 1.0967758
� 107 m�1.

The notion of reduced mass played an important part in the discovery of deuterium,
a variety of hydrogen whose atomic mass is almost exactly double that of ordinary
hydrogen because its nucleus contains a neutron as well as a proton. About one
hydrogen atom in 6000 is a deuterium atom. Because of the greater nuclear mass, the
spectral lines of deuterium are all shifted slightly to wavelengths shorter than the
corresponding ones of ordinary hydrogen. Thus the H� line of deuterium, which arises
from a transition from the n � 3 to the n � 2 energy level, occurs at a wavelength of
656.1 nm, whereas the H� line of hydrogen occurs at 656.3 nm. This difference in
wavelength was responsible for the identification of deuterium in 1932 by the 
American chemist Harold Urey.

Example 4.6

A positronium “atom” is a system that consists of a positron and an electron that orbit each
other. Compare the wavelengths of the spectral lines of positronium with those of ordinary
hydrogen.

Solution

Here the two particles have the same mass m, so the reduced mass is
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where m is the electron mass. From Eq. (4.23) the energy levels of a positronium “atom” are

E�n � � � �

This means that the Rydberg constant—the constant term in Eq. (4.18)—for positronium is half
as large as it is for ordinary hydrogen. As a result the wavelengths in the positronium spectral
lines are all twice those of the corresponding lines in the hydrogen spectrum.

Example 4.7

A muon is an unstable elementary particle whose mass is 207me and whose charge is either �e
or �e. A negative muon (��) can be captured by a nucleus to form a muonic atom. (a) A proton
captures a ��. Find the radius of the first Bohr orbit of this atom. (b) Find the ionization energy
of the atom.

Solution

(a) Here m � 207me and M � 1836me, so the reduced mass is

m� � � � 186me

According to Eq. (4.13) the orbit radius corresponding to n � 1 is

r1 � 

where r1 � a0 � 5.29 � 10�11 m. Hence the radius r� that corresponds to the reduced mass
m� is

r�1 � � � r1 � � � a0 � 2.85 � 10�13 m

The muon is 186 times closer to the proton than an electron would be, so a muonic hydrogen
atom is much smaller than an ordinary hydrogen atom.

(b) From Eq. (4.23) we have, with n � 1 and E1 � �13.6 eV,

E�1 � � � E1 � 186E1 � �2.53 � 103 eV � �2.53 keV

The ionization energy is therefore 2.53 keV, 186 times that for an ordinary hydrogen atom.

4.8 ATOMIC EXCITATION

How atoms absorb and emit energy

There are two main ways in which an atom can be excited to an energy above its
ground state and thereby become able to radiate. One of these ways is by a collision
with another particle in which part of their joint kinetic energy is absorbed by the
atom. Such an excited atom will return to its ground state in an average of 10�8 s by
emitting one or more photons (Fig. 4.18).

To produce a luminous discharge in a rarefied gas, an electric field is established
that accelerates electrons and atomic ions until their kinetic energies are sufficient to

m�
�
m

me
�
186me

m
�
m�

h2�0
�
�mee

2

(207me)(1836me)
��
207me � 1836me

mM
�
m � M

E1
�
2n2

E1
�
n2

m�
�
m

Figure 4.18 Excitation by colli-
sion. Some of the available energy
is absorbed by one of the atoms,
which goes into an excited energy
state. The atom then emits a pho-
ton in returning to its ground
(normal) state.

n = 1

n = 2

Photon
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excite atoms they collide with. Because energy transfer is a maximum when the colliding
particles have the same mass (see Fig. 12.22), the electrons in such a discharge are
more effective than the ions in providing energy to atomic electrons. Neon signs and
mercury-vapor lamps are familiar examples of how a strong electric field applied
between electrodes in a gas-filled tube leads to the emission of the characteristic spec-
tral radiation of that gas, which happens to be reddish light in the case of neon and
bluish light in the case of mercury vapor.

Another excitation mechanism is involved when an atom absorbs a photon of light
whose energy is just the right amount to raise the atom to a higher energy level. For
example, a photon of wavelength 121.7 nm is emitted when a hydrogen atom in the
n � 2 state drops to the n � 1 state. Absorbing a photon of wavelength 121.7 nm by
a hydrogen atom initially in the n � 1 state will therefore bring it up to the n � 2
state (Fig. 4.19). This process explains the origin of absorption spectra.

Auroras are caused by streams of fast protons and electrons from the sun that excite atoms in
the upper atmosphere. The green hues of an auroral display come from oxygen, and the reds
originate in both oxygen and nitrogen. This aurora occurred in Alaska.

Figure 4.19 How emission and absorption spectral lines originate.
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When white light, which contains all wavelengths, is passed through hydrogen gas,
photons of those wavelengths that correspond to transitions between energy levels are
absorbed. The resulting excited hydrogen atoms reradiate their excitation energy almost
at once, but these photons come off in random directions with only a few in the same
direction as the original beam of white light (Fig. 4.20). The dark lines in an absorp-
tion spectrum are therefore never completely black but only appear so by contrast with
the bright background. We expect the lines in the absorption spectrum of any element
to coincide with those in its emission spectrum that represent transitions to the ground
state, which agrees with observation (see Fig. 4.9).

Franck-Hertz Experiment

Atomic spectra are not the only way to investigate energy levels inside atoms. A series
of experiments based on excitation by collision was performed by James Franck and
Gustav Hertz (a nephew of Heinrich Hertz) starting in 1914. These experiments demon-
strated that atomic energy levels indeed exist and, furthermore, that the ones found in
this way are the same as those suggested by line spectra.

Franck and Hertz bombarded the vapors of various elements with electrons of known
energy, using an apparatus like that shown in Fig. 4.21. A small potential difference
V0 between the grid and collecting plate prevents electrons having energies less than
a certain minimum from contributing to the current I through the ammeter. As the
accelerating potential V is increased, more and more electrons arrive at the plate and
I rises (Fig. 4.22).

Figure 4.20 The dark lines in an absorption spectrum are never totally dark.

White light

Absorbed wavelength

Transmitted
wavelengths

The absorbed light
is reradiated in all
directions

Gas

Gas

Figure 4.21 Apparatus for the Franck-Hertz experiment.
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If KE is conserved when an electron collides with one of the atoms in the vapor,
the electron merely bounces off in a new direction. Because an atom is much heavier
than an electron, the electron loses almost no KE in the process. After a certain criti-
cal energy is reached, however, the plate current drops abruptly. This suggests that an
electron colliding with one of the atoms gives up some or all of its KE to excite the
atom to an energy level above its ground state. Such a collision is called inelastic, in
contrast to an elastic collision in which KE is conserved. The critical electron energy
equals the energy needed to raise the atom to its lowest excited state.

Then, as the accelerating potential V is raised further, the plate current again
increases, since the electrons now have enough energy left to reach the plate after under-
going an inelastic collision on the way. Eventually another sharp drop in plate current
occurs, which arises from the excitation of the same energy level in other atoms by the
electrons. As Fig. 4.22 shows, a series of critical potentials for a given atomic vapor is
obtained. Thus the higher potentials result from two or more inelastic collisions and
are multiples of the lowest one.

To check that the critical potentials were due to atomic energy levels, Franck and
Hertz observed the emission spectra of vapors during electron bombardment. In the
case of mercury vapor, for example, they found that a minimum electron energy of
4.9 eV was required to excite the 253.6-nm spectral line of mercury—and a photon
of 253.6-nm light has an energy of just 4.9 eV. The Franck-Hertz experiments were
performed shortly after Bohr announced his theory of the hydrogen atom, and they
independently confirmed his basic ideas.

4.9 THE LASER

How to produce light waves all in step

The laser is a device that produces a light beam with some remarkable properties:

1 The light is very nearly monochromatic.
2 The light is coherent, with the waves all exactly in phase with one another (Fig.4.23).

Figure 4.22 Results of the Franck-Hertz experiment, showing critical potentials in mercury vapor.
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Figure 4.23 A laser produces a
beam of light  whose waves all
have the same frequency  (mono-
chromatic) and are in phase with
one another  (coherent). The
beam is also well collimated and
so spreads out very little, even
over long distances.
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3 A laser beam diverges hardly at all. Such a beam sent from the earth to a mirror left
on the moon by the Apollo 11 expedition remained narrow enough to be detected on
its return to the earth, a total distance of over three-quarters of a million kilometers.
A light beam produced by any other means would have spread out too much for this
to be done.
4 The beam is extremly intense, more intense by far than the light from any other
source. To achieve an energy density equal to that in some laser beams, a hot object
would have to be at a temperature of 1030 K.

The last two of these properties follow from the second of them. 
The term laser stands for light amplification by stimulated emission of radiation.

The key to the laser is the presence in many atoms of one or more excited energy lev-
els whose lifetimes may be 10�3 s or more instead of the usual 10�8 s. Such relatively
long-lived states are called metastable (temporarily stable); see Fig. 4.24.

Three kinds of transition involving electromagnetic radiation are possible between
two energy levels, E0 and E1, in an atom (Fig. 4.25). If the atom is initially in the
lower state E0, it can be raised to E1 by absorbing a photon of energy E1 � E0 �
h�. This process is called stimulated absorption. If the atom is initially in the upper
state E1, it can drop to E0 by emitting a photon of energy h�. This is spontaneous
emission.

Einstein, in 1917, was the first to point out a third possibility, stimulated emis-
sion, in which an incident photon of energy h� causes a transition from E1 to E0.
In stimulated emission, the radiated light waves are exactly in phase with the
incident ones, so the result is an enhanced beam of coherent light. Einstein
showed that stimulated emission has the same probability as stimulated absorp-
tion (see Sec. 9.7). That is, a photon of energy h� incident on an atom in the upper

Figure 4.24 An atom can exist in a metastable energy level for a longer time before radiating than it
can in an ordinary energy level.
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Figure 4.25 Transitions between two energy levels in an atom can occur by stimulated absorption,
spontaneous emission, and stimulated emission.
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state E1 has the same likelihood of causing the emission of another photon of
energy h� as its likelihood of being absorbed if it is incident on an atom in the lower
state E0.

Stimulated emission involves no novel concepts. An analogy is a harmonic oscilla-
tor, for instance a pendulum, which has a sinusoidal force applied to it whose period
is the same as its natural period of vibration. If the applied force is exactly in phase
with the pendulum swings, the amplitude of the swings increases. This corresponds
to stimulated absorption. However, if the applied force is 180° out of phase with the
pendulum swings, the amplitude of the swings decreases. This corresponds to stimu-
lated emission.

A three-level laser, the simplest kind, uses an assembly of atoms (or molecules)
that have a metastable state h� in energy above the ground state and a still higher ex-
cited state that decays to the metastable state (Fig. 4.26). What we want is more atoms
in the metastable state than in the ground state. If we can arrange this and then shine
light of frequency � on the assembly, there will be more stimulated emissions from
atoms in the metastable state than stimulated absorptions by atoms in the ground state.
The result will be an amplification of the original light. This is the concept that un-
derlies the operation of the laser.

The term population inversion describes an assembly of atoms in which the ma-
jority are in energy levels above the ground state; normally the ground state is occu-
pied to the greatest extent.

A number of ways exist to produce a population inversion. One of them, called
optical pumping, is illustrated in Fig. 4.27. Here an external light source is used some
of whose photons have the right frequency to raise ground-state atoms to the excited
state that decays spontaneously to the desired metastable state.

Why are three levels needed? Suppose there are only two levels, a metastable state
h� above the ground state. The more photons of frequency � we pump into the assembly

Charles H. Townes (1915– ) was
born in Greenville, South Carolina,
and attended Furman University
there. After graduate study at Duke
University and the California Insti-
tute of Technology, he spent 1939
to 1947 at the Bell Telephone
Laboratories designing radar-
controlled bombing systems.
Townes then joined the physics de-
partment of Columbia University.
In 1951, while sitting on a park

bench, the idea for the maser (microwave amplification by
stimulated emission of radiation) occurred to him as a way to
produce high-intensity microwaves, and in 1953 the first maser
began operating. In this device ammonia (NH3) molecules were
raised to an excited vibrational state and then fed into a reso-
nant cavity where, as in a laser, stimulated emission produced
a cascade of photons of identical wavelength, here 1.25 cm in
the microwave part of the spectrum. “Atomic clocks” of great
accuracy are based on this concept, and solid-state maser am-
plifiers are used in such applications as radioastronomy.

In 1958 Townes and Arthur Schawlow attracted much at-
tention with a paper showing that a similar scheme ought to
be possible at optical wavelengths. Slightly earlier Gordon
Gould, then a graduate student at Columbia, had come to the
same conclusion, but did not publish his calculations at once
since that would prevent securing a patent. Gould tried to de-
velop the laser—his term—in private industry, but the De-
fense Department classified as secret the project (and his orig-
inal notebooks) and denied him clearance to work on it.
Finally, twenty years later, Gould succeeded in establishing his
priority and received two patents on the laser, and still later,
a third. The first working laser was built by Theodore Maiman
at Hughes Research Laboratories in 1960. In 1964 Townes,
along with two Russian laser pioneers, Aleksander Prokhorov
and Nikolai Basov, was awarded a Nobel Prize. In 1981
Schawlow shared a Nobel Prize for precision spectroscopy
using lasers.

Soon after its invention, the laser was spoken of as a “solu-
tion looking for a problem” because few applications were then
known for it. Today, of course, lasers are widely employed for
a variety of purposes.
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Figure 4.26 The principle of the laser.
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Figure 4.27 The ruby laser. In order for stimulated emission to exceed stimulated absorption, more than half the Cr3+ ions in the ruby
rod must be in the metastable state. This laser produces a pulse of red light after each flash of the lamp.

Radiationless transition

Laser transition
694.3 nm

Optical pumping
550 nm

Ground state

1.79 eV

2.25 eV

Metastable state

Cr3+ ion

Xenon flash lamp

Ruby rod

Partly transparent
mirror

Mirror

of atoms, the more upward transitions there will be from the ground state to the
metastable state. However, at the same time the pumping will stimulate downward
transitions from the metastable state to the ground state. When half the atoms are in
each state, the rate of stimulated emissions will equal the rate of stimulated absorp-
tions, so the assembly cannot ever have more than half its atoms in the metastable
state. In this situation laser amplification cannot occur. A population inversion is only
possible when the stimulated absorptions are to a higher energy level than the
metastable one from which the stimulated emission takes place, which prevents the
pumping from depopulating the metastable state.

In a three-level laser, more than half the atoms must be in the metastable state for
stimulated induced emission to predominate. This is not the case for a four-level laser.
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As in Fig. 4.28, the laser transition from the metastable state ends at an unstable in-
termediate state rather than at the ground state. Because the intermediate state decays
rapidly to the ground state, very few atoms are in the intermediate state. Hence even
a modest amount of pumping is enough to populate the metastable state to a greater
extent than the intermediate state, as required for laser amplification.

Practical Lasers

The first successful laser, the ruby laser, is based on the three energy levels in the
chromium ion Cr3� shown in Fig. 4.27. A ruby is a crystal of aluminum oxide, Al2O3,

Figure 4.28 A four-level laser.
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A robot arm carries a laser for cutting fabric in a clothing factory. 
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in which some of the Al3+ ions are replaced by Cr3+ ions, which are responsible for
the red color. A Cr3+ ion has a metastable level whose lifetime is about 0.003 s. In the
ruby laser, a xenon flash lamp excites the Cr3+ ions to a level of higher energy from
which they fall to the metastable level by losing energy to other ions in the crystal.
Photons from the spontaneous decay of some Cr3+ ions are reflected back and forth
between the mirrored ends of the ruby rod, stimulating other excited Cr3+ ions to ra-
diate. After a few microseconds the result is a large pulse of monochromatic, coherent
red light from the partly transparent end of the rod.

The rod’s length is made precisely an integral number of half-wavelengths long, so
the radiation trapped in it forms an optical standing wave. Since the stimulated emis-
sions are induced by the standing wave, their waves are all in step with it.

The common helium-neon gas laser achieves a population inversion in a differ-
ent way. A mixture of about 10 parts of helium and 1 part of neon at a low pressure
(
1 torr) is placed in a glass tube that has parallel mirrors, one of them partly trans-
parent, at both ends. The spacing of the mirrors is again (as in all lasers) equal to an
integral number of half-wavelengths of the laser light. An electric discharge is pro-
duced in the gas by means of electrodes outside the tube connected to a source of
high-frequency alternating current, and collisions with electrons from the discharge
excite He and Ne atoms to metastable states respectively 20.61 and 20.66 eV above
their ground states (Fig. 4.29). Some of the excited He atoms transfer their energy to
ground-state Ne atoms in collisions, with the 0.05 eV of additional energy being pro-
vided by the kinetic energy of the atoms. The purpose of the He atoms is thus to help
achieve a population inversion in the Ne atoms.

The laser transition in Ne is from the metastable state at 20.66 eV to an ex-
cited state at 18.70 eV, with the emission of a 632.8-nm photon. Then another
photon is spontaneously emitted in a transition to a lower metastable state; this
transition yields only incoherent light. The remaining excitation energy is lost in
collisions with the tube walls. Because the electron impacts that excite the He and
Ne atoms occur all the time, unlike the pulsed excitation from the xenon flash lamp
in a ruby laser, a He-Ne laser operates continuously. This is the laser whose narrow
red beam is used in supermarkets to read bar codes. In a He-Ne laser, only a tiny

Figure 4.29 The helium-neon laser. In a four-level  laser such as this, continuous operation is possi-
ble. Helium-neon lasers are commonly used to read bar codes.
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fraction (one in millions) of the atoms present participates in the laser process at
any moment.

Many other types of laser have been devised. A number of them employ molecules
rather than atoms. Chemical lasers are based on the production by chemical reactions
of molecules in metastable excited states. Such lasers are efficient and can be very pow-
erful: one chemical laser, in which hydrogen and fluorine combine to form hydrogen
fluoride, has generated an infrared beam of over 2 MW. Dye lasers use dye molecules
whose energy levels are so close together that they can “lase” over a virtually continu-
ous range of wavelengths (see Sec. 8.7). A dye laser can be tuned to any desired
wavelength in its range. Nd:YAG lasers, which use the glassy solid yttrium aluminum
garnet with neodymium as an impurity, are helpful in surgery because they seal small
blood vessels while cutting through tissue by vaporizing water in the path of their
beams. Powerful carbon dioxide gas lasers with outputs up to many kilowatts are
used industrially for the precise cutting of almost any material, including steel, and for
welding.

Tiny semiconductor lasers by the million process and transmit information today.
(How such lasers work is described in Chap. 10.) In a compact disk player, a semi-
conductor laser beam is focused to a spot a micrometer (10–6 m) across to read data
coded as pits that appear as dark spots on a reflective disk 12 cm in diameter. A com-
pact disk can store over 600 megabytes of digital data, about 1000 times as much as
the floppy disks used in personal computers. If the stored data is digitized music, the
playing time can be over an hour.

Semiconductor lasers are ideal for fiber-optic transmission lines in which the elec-
tric signals that would normally be sent along copper wires are first converted into a
series of pulses according to a standard code. Lasers then turn the pulses into flashes
of infrared light that travel along thin (5–50 �m diameter) glass fibers and at the other
end are changed back into electric signals. Over a million telephone conversations can
be carried by a single fiber; by contrast, no more than 32 conversations can be carried
at the same time by a pair of wires. Telephone fiber-optic systems today link many
cities and exchanges within cities everywhere, and fiber-optic cables span the world’s
seas and oceans.

Chirped Pulse Amplification

T he most powerful lasers are pulsed, which produces phenomenal outputs for very short
periods. The petawatt (1015 W) threshold was crossed in 1996 with pulses less than a

trillionth of a second long—not all that much energy per pulse, but at a rate of delivery over
1000 times that of the entire electrical grid of the United States. An ingenious method called
chirped pulse amplification made this possible without the laser apparatus itself being destroyed
in the process. What was done was to start with a low-power laser pulse that was quite short,
only 0.1 picosecond (10�13 s). Because the pulse was short, it consisted of a large span of wave-
lengths, as discussed in Sec. 3.7 (see Figs. 3.13 and 3.14). A diffraction grating then spread out
the light into different paths according to wavelength, which stretched the pulse to 3 nanosec-
onds (3 � 10–9 s), 30,000 times longer. The result was to decrease the peak power so that laser
amplifiers could boost the energy of each beam. Finally the amplified beams, each of slightly
different wavelength, were recombined by another grating to produce a pulse less than 0.5 pi-
coseconds long whose power was 1.3 petawatts.
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Appendix to  Chapter  4

Rutherford Scattering

R
utherford’s model of the atom was accepted because he was able to arrive at a
formula to describe the scattering of alpha particles by thin foils on the basis of
this model that agreed with the experimental results. He began by assuming that

the alpha particle and the nucleus it interacts with are both small enough to be consid-
ered as point masses and charges; that the repulsive electric force between alpha particle
and nucleus (which are both positively charged) is the only one acting; and that the nu-
cleus is so massive compared with the alpha particle that it does not move during their
interaction. Let us see how these assumptions lead to Eq. (4.1).

Scattering Angle

Owing to the variation of the electric force with 1�r2, where r is the instantaneous sep-
aration between alpha particle and nucleus, the alpha particle’s path is a hyperbola with
the nucleus at the outer focus (Fig. 4.30). The impact parameter b is the minimum
distance to which the alpha particle would approach the nucleus if there were no force
between them, and the scattering angle � is the angle between the asymptotic direc-
tion of approach of the alpha particle and the asymptotic direction in which it recedes.
Our first task is to find a relationship between b and �.

As a result of the impulse � F dt given it by the nucleus, the momentum of the
alpha particle changes by �p from the initial value p1 to the final value p2. That is,

�p � p2 � p1 � � F dt (4.24)

Because the nucleus remains stationary during the passage of the alpha particle, by hy-
pothesis, the alpha-particle kinetic energy is the same before and after the scattering.
Hence the magnitude of its momentum is also the same before and after, and

p1 � p2 � m�

Figure 4.30 Rutherford scattering.
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Here � is the alpha-particle velocity far from the nucleus.
From Fig. 4.31 we see that according to the law of sines,

�

Since sin (� � �) � cos

and sin � � 2 sin cos

we have for the magnitude of the momentum change

�p � 2m� sin (4.25)

Because the impulse � F dt is in the same direction as the momentum change �p,
its magnitude is

�� F dt� � � F cos 
 dt (4.26)

where 
 is the instantaneous angle between F and �p along the path of the alpha
particle. Inserting Eqs. (4.25) and (4.26) in Eq. (4.24),

2m� sin � ��

��
F cos 
 dt

To change the variable on the right-hand side from t to 
, we note that the limits of
integration will change to ��

1

2
� (� � �) and ��

1

2
� (� � �), corresponding to 
 at t � ��

and t � � respectively, and so

2m� sin � ��(���)�2
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Figure 4.31 Geometrical relationships in Rutherford scattering.
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The quantity d
�dt is just the angular velocity � of the alpha particle about the nucleus
(this is evident from Fig. 4.31).

The electric force exerted by the nucleus on the alpha particle acts along the radius
vector joining them, so there is no torque on the alpha particle and its angular
momentum m�r2 is constant. Hence

m�r2 � constant � mr2 � m�b

from which we obtain

�

Substituting this expression for dt�d
 in Eq. (4.27) gives

2m�2b sin � ��(���)�2

�(���)�2
Fr2 cos 
 d
 (4.28)

As we recall, F is the electric force exerted by the nucleus on the alpha particle. The
charge on the nucleus is Ze, corresponding to the atomic number Z, and that on the
alpha particle is 2e. Therefore

F �

and sin � ��(���)�2

�(���)�2
cos 
 d
 � 2 cos

The scattering angle � is related to the impact parameter b by the equation

cot � b

It is more convenient to specify the alpha-particle energy KE instead of its mass and
velocity separately; with this substitution,

Scattering angle cot � b (4.29)

Figure 4.32 is a schematic representation of Eq. (4.29); the rapid decrease in � as b
increases is evident. A very near miss is required for a substantial deflection.

Rutherford Scattering Formula

Equation (4.29) cannot be directly confronted with experiment because there is no way
of measuring the impact parameter corresponding to a particular observed scattering
angle. An indirect strategy is required.
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Our first step is to note that all alpha particles approaching a target nucleus with
an impact parameter from 0 to b will be scattered through an angle of � or more, where
� is given in terms of b by Eq. (4.29). This means that an alpha particle that is initially
directed anywhere within the area �b2 around a nucleus will be scattered through �
or more (Fig. 4.32). The area �b2 is accordingly called the cross section for the
interaction. The general symbol for cross section is �, and so here

Cross section � � �b2 (4.30)

Of course, the incident alpha particle is actually scattered before it reaches the imme-
diate vicinity of the nucleus and hence does not necessarily pass within a distance b
of it.

Now we consider a foil of thickness t that contains n atoms per unit volume. The
number of target nuclei per unit area is nt, and an alpha-particle beam incident upon
an area A therefore encounters ntA nuclei. The aggregate cross section for scatterings
of � or more is the number of target nuclei ntA multiplied by the cross section � for
such scattering per nucleus, or ntA�. Hence the fraction f of incident alpha particles
scattered by � or more is the ratio between the aggregate cross section ntA� for such
scattering and the total target area A. That is,

f �

� �

� nt�b2

Substituting for b from Eq. (4.30),

f � �nt � �
2

cot2 (4.31)

In this calculation it was assumed that the foil is sufficiently thin so that the cross sec-
tions of adjacent nuclei do not overlap and that a scattered alpha particle receives its
entire deflection from an encounter with a single nucleus.

�
�
2

Ze2

�
4��0KE

ntA�
�

A
aggregate cross section
���

target area

alpha particles scattered by � or more
����

incident alpha particles
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Figure 4.32 The scattering angle decreases with increasing impact parameter.

θ
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Example 4.8

Find the fraction of a beam of 7.7-MeV alpha particles that is scattered through angles of more
than 45° when incident upon a gold foil 3 � 10�7 m thick. These values are typical of the alpha-
particle energies and foil thicknesses used by Geiger and Marsden. For comparison, a human
hair is about 10�4 m in diameter.

Solution

We begin by finding n, the number of gold atoms per unit volume in the foil, from the relationship

n � �

Since the density of gold is 1.93 � 104 kg/m3, its atomic mass is 197 u, and 1 u � 1.66 �
10�27 kg, we have

n �

� 5.90 � 1028 atoms/m3

The atomic number Z of gold is 79, a kinetic energy of 7.7 MeV is equal to 1.23 � 10�12 J,
and � � 45°; from these figures we find that

f � 7 � 10�5

of the incident alpha particles are scattered through 45° or more—only 0.007 percent! A foil
this thin is quite transparent to alpha particles.

In an actual experiment, a detector measures alpha particles scattered between �
and � � d�, as in Fig. 4.33. The fraction of incident alpha particles so scattered is
found by differentiating Eq. (4.31) with respect to �, which gives

1.93 � 104 kg/m3

����
(197 u/atom)(1.66 � 10�27 kg/u)

mass�m3

��
mass�atom

atoms
�

m3
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Figure 4.33 In the Rutherford experiment, particles are detected that have been scattered between �
and � � d�.
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df � ��nt � �
2

cot csc2 d� (4.32)

The minus sign expresses the fact that f decreases with increasing �.
As we saw in Fig. 4.2, Geiger and Marsden placed a fluorescent screen a distance

r from the foil and the scattered alpha particles were detected by means of the scintil-
lations they caused. Those alpha particles scattered between � and � � d� reached a
zone of a sphere of radius r whose width is r d�. The zone radius itself is r sin �, and
so the area dS of the screen struck by these particles is

dS � (2�r sin �)(r d�) � 2�r2 sin � d�

� 4�r2 sin cos d�

If a total of Ni alpha particles strike the foil during the course of the experiment, the
number scattered into d� at � is Nidf. The number N(�) per unit area striking the screen
at �, which is the quantity actually measured, is

N(�) � �

N(�) � (4.1)

Equation (4.1) is the Rutherford scattering formula. Figure 4.4 shows how N(�) varies
with �.

NintZ2e4

���
(8��0)2r2 KE2 sin4 (��2)
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4.1 The Nuclear Atom

1. The great majority of alpha particles pass through gases and
thin metal foils with no deflections. To what conclusion about
atomic structure does this observation lead?

2. The electric field intensity at a distance r from the center of a
uniformly charged sphere of radius R and total charge Q is
Qr�4��0R3 when r 	 R. Such a sphere corresponds to the
Thomson model of the atom. Show that an electron in this
sphere executes simple harmonic motion about its center and
derive a formula for the frequency of this motion. Evaluate the

frequency of the electron oscillations for the case of the hydro-
gen atom and compare it with the frequencies of the spectral
lines of hydrogen.

3. Determine the distance of closest approach of 1.00-MeV pro-
tons incident on gold nuclei.

4.2 Electron Orbits

4. Find the frequency of revolution of the electron in the classical
model of the hydrogen atom. In what region of the spectrum
are electromagnetic waves of this frequency?

E X E R C I S E S

It isn’t that they can’t see the solution. It is that they can’t see the problem. —Gilbert Chesterton
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158 Appendix to Chapter 4

4.3 Atomic Spectra

5. What is the shortest wavelength present in the Brackett series of
spectral lines?

6. What is the shortest wavelength present in the Paschen series of
spectral lines?

4.4 The Bohr Atom

7. In the Bohr model, the electron is in constant motion. How can
such an electron have a negative amount of energy?

8. Lacking de Broglie’s hypothesis to guide his thinking, Bohr ar-
rived at his model by postulating that the angular momentum
of an orbital electron must be an integral multiple of � . Show
that this postulate leads to Eq. (4.13).

9. The fine structure constant is defined as � � e2�2�0hc. This
quantity got its name because it first appeared in a theory by
the German physicist Arnold Sommerfeld that tried to explain
the fine structure in spectral lines (multiple lines close together
instead of single lines) by assuming that elliptical as well as cir-
cular orbits are possible in the Bohr model. Sommerfeld’s ap-
proach was on the wrong track, but � has nevertheless turned
out to be a useful quantity in atomic physics. (a) Show that �
� �1�c, where �1 is the velocity of the electron in the ground
state of the Bohr atom. (b) Show that the value of � is very
close to 1�137 and is a pure number with no dimensions. Be-
cause the magnetic behavior of a moving charge depends on its
velocity, the small value of � is representative of the relative
magnitudes of the magnetic and electric aspects of electron be-
havior in an atom. (c) Show that �a0 � �C�2�, where a0 is the
radius of the ground-state Bohr orbit and �C is the Compton
wavelength of the electron.

10. An electron at rest is released far away from a proton, toward
which it moves. (a) Show that the de Broglie wavelength of the
electron is proportional to �r�, where r is the distance of the
electron from the proton. (b) Find the wavelength of the elec-
tron when it is a0 from the proton. How does this compare
with the wavelength of an electron in a ground-state Bohr or-
bit? (c) In order for the electron to be captured by the proton
to form a ground-state hydrogen atom, energy must be lost by
the system. How much energy?

11. Find the quantum number that characterizes the earth’s orbit
around the sun. The earth’s mass is 6.0 � 1024 kg, its orbital
radius is 1.5 � 1011 m, and its orbital speed is 3.0 � 104 m/s.

12. Suppose a proton and an electron were held together in a hy-
drogen atom by gravitational forces only. Find the formula for
the energy levels of such an atom, the radius of its ground-state
Bohr orbit, and its ionization energy in eV.

13. Compare the uncertainty in the momentum of an electron con-
fined to a region of linear dimension a0 with the momentum of
an electron in a ground-state Bohr orbit.

4.5 Energy Levels and Spectra

14. When radiation with a continuous spectrum is passed through
a volume of hydrogen gas whose atoms are all in the ground
state, which spectral series will be present in the resulting ab-
sorption spectrum?

15. What effect would you expect the rapid random motion of the
atoms of an excited gas to have on the spectral lines they 
produce?

16. A beam of 13.0-eV electrons is used to bombard gaseous hy-
drogen. What series of wavelengths will be emitted?

17. A proton and an electron, both at rest initially, combine to form
a hydrogen atom in the ground state. A single photon is emit-
ted in this process. What is its wavelength?

18. How many different wavelengths would appear in the spectrum
of hydrogen atoms initially in the n � 5 state?

19. Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n � 10 state to the ground
state. In what part of the spectrum is this?

20. Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n � 6 state to the n � 3 state.
In what part of the spectrum is this?

21. A beam of electrons bombards a sample of hydrogen.
Through what potential difference must the electrons have
been accelerated if the first line of the Balmer series is to be
emitted?

22. How much energy is required to remove an electron in the 
n � 2 state from a hydrogen atom?

23. The longest wavelength in the Lyman series is 121.5 nm and
the shortest wavelength in the Balmer series is 364.6 nm. Use
the figures to find the longest wavelength of light that could
ionize hydrogen.

24. The longest wavelength in the Lyman series is 121.5 nm. Use
this wavelength together with the values of c and h to find the
ionization energy of hydrogen.

25. An excited hydrogen atom emits a photon of wavelength � in
returning to the ground state. (a) Derive a formula that gives
the quantum number of the initial excited state in terms of �
and R. (b) Use this formula to find ni for a 102.55-nm
photon.

26. An excited atom of mass m and initial speed � emits a photon
in its direction of motion. If � 		 c, use the requirement that
linear momentum and energy must both be conserved to show
that the frequency of the photon is higher by ���� � ��c than it
would have been if the atom had been at rest. (See also Exer-
cise 16 of Chap. 1.)

27. When an excited atom emits a photon, the linear momentum of
the photon must be balanced by the recoil momentum of the
atom. As a result, some of the excitation energy of the atom
goes into the kinetic energy of its recoil. (a) Modify Eq. (4.16)
to include this effect. (b) Find the ratio between the recoil en-
ergy and the photon energy for the n � 3 S n � 2 transition
in hydrogen, for which Ef � Ei � 1.9 eV. Is the effect a major
one? A nonrelativistic calculation is sufficient here.

4.6 Correspondence Principle

28. Of the following quantities, which increase and which decrease
in the Bohr model as n increases? Frequency of revolution, elec-
tron speed, electron wavelength, angular momentum, potential
energy, kinetic energy, total energy.
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29. Show that the frequency of the photon emitted by a hydrogen
atom in going from the level n � 1 to the level n is always
intermediate between the frequencies of revolution of the
electron in the respective orbits.

4.7 Nuclear Motion

30. An antiproton has the mass of a proton but a charge of �e. If a
proton and an antiproton orbited each other, how far apart
would they be in the ground state of such a system? Why
might you think such a system could not occur?

31. A �� muon is in the n � 2 state of a muonic atom whose nu-
cleus is a proton. Find the wavelength of the photon emitted
when the muonic atom drops to its ground state. In what part
of the spectrum is this wavelength?

32. Compare the ionization energy in positronium with that in
hydrogen.

33. A mixture of ordinary hydrogen and tritium, a hydrogen iso-
tope whose nucleus is approximately 3 times more massive
than ordinary hydrogen, is excited and its spectrum observed.
How far apart in wavelength will the H� lines of the two kinds
of hydrogen be?

34. Find the radius and speed of an electron in the ground state of
doubly ionized lithium and compare them with the radius and
speed of the electron in the ground state of the hydrogen atom.
(Li�� has a nuclear charge of 3e.)

35. (a) Derive a formula for the energy levels of a hydrogenic
atom, which is an ion such as He� or Li2� whose nuclear
charge is �Ze and which contains a single electron.
(b) Sketch the energy levels of the He� ion and compare
them with the energy levels of the H atom. (c) An electron
joins a bare helium nucleus to form a He� ion. Find the
wavelength of the photon emitted in this process if the
electron is assumed to have had no kinetic energy when it
combined with the nucleus.

4.9 The Laser

36. For laser action to occur, the medium used must have at least
three energy levels. What must be the nature of each of these
levels? Why is three the minimum number?

37. A certain ruby laser emits 1.00-J pulses of light whose wave-
length is 694 nm. What is the minimum number of Cr3� ions
in the ruby?

38. Steam at 100°C can be thought of as an excited state of water
at 100°C. Suppose that a laser could be built based upon the
transition from steam to water, with the energy lost per mole-
cule of steam appearing as a photon. What would the fre-
quency of such a photon be? To what region of the spectrum
does this correspond? The heat of vaporization of water is
2260 kJ�kg and its molar mass is 18.02 kg�kmol.

Appendix: Rutherford Scattering

39. The Rutherford scattering formula fails to agree with the data at
very small scattering angles. Can you think of a reason?

40. Show that the probability for a 2.0-MeV proton to be scattered
by more than a given angle when it passes through a thin foil is
the same as that for a 4.0-MeV alpha particle.

41. A 5.0-MeV alpha particle approaches a gold nucleus with an
impact parameter of 2.6 � 10�13 m. Through what angle will it
be scattered?

42. What is the impact parameter of a 5.0-MeV alpha particle scat-
tered by 10° when it approaches a gold nucleus?

43. What fraction of a beam of 7.7-MeV alpha particles incident upon
a gold foil 3.0 � 10�7 m thick is scattered by less than 1°?

44. What fraction of a beam of 7.7-MeV alpha particles incident
upon a gold foil 3.0 � 10�7 m thick is scattered by 90° or
more?

45. Show that twice as many alpha particles are scattered by a foil
through angles between 60° and 90° as are scattered through
angles of 90° or more.

46. A beam of 8.3-MeV alpha particles is directed at an aluminum
foil.  It is found that the Rutherford scattering formula ceases to
be obeyed at scattering angles exceeding about 60°. If the
alpha-particle radius is assumed small enough to neglect here,
find the radius of the aluminum nucleus.

47. In special relativity, a photon can be thought of as having a
“mass” of m � E��c2. This suggests that we can treat a photon
that passes near the sun in the same way as Rutherford treated
an alpha particle that passes near a nucleus, with an attractive
gravitational force replacing the repulsive electrical force. Adapt
Eq. (4.29) to this situation and find the angle of deflection � for
a photon that passes b � Rsun from the center of the sun. The
mass and radius of the sun are respectively 2.0 � 1030 kg and
7.0 � 108 m. In fact, general relativity shows that this result is
exactly half the actual deflection, a conclusion supported by ob-
servations made during solar eclipses as mentioned in Sec. 1.10.
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CHAPTER 5

Quantum Mechanics

5.1 QUANTUM MECHANICS
Classical mechanics is an approximation of
quantum mechanics

5.2 THE WAVE EQUATION
It can have a variety of solutions, including
complex ones

5.3 SCHRÖDINGER’S EQUATION: 
TIME-DEPENDENT FORM

A basic physical principle that cannot be derived
from anything else

5.4 LINEARITY AND SUPERPOSITION
Wave functions add, not probabilities

5.5 EXPECTATION VALUES
How to extract information from a wave
function

5.6 OPERATORS
Another way to find expectation values

5.7 SCHRÖDINGER’S EQUATION: 
STEADY-STATE FORM

Eigenvalues and eigenfunctions

5.8 PARTICLE IN A BOX
How boundary conditions and normalization
determine wave functions

5.9 FINITE POTENTIAL WELL
The wave function penetrates the walls, which
lowers the energy levels

5.10 TUNNEL EFFECT
A particle without the energy to pass over a
potential barrier may still tunnel through it

5.11 HARMONIC OSCILLATOR
Its energy levels are evenly spaced

APPENDIX: THE TUNNEL EFFECT

Scanning tunneling micrograph of gold atoms on a carbon (graphite) substrate.
The cluster of gold atoms is about 1.5 nm across and three atoms high.
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A
lthough the Bohr theory of the atom, which can be extended further than was
done in Chap. 4, is able to account for many aspects of atomic phenomena, it
has a number of severe limitations as well. First of all, it applies only to hy-

drogen and one-electron ions such as He� and Li2�—it does not even work for ordinary
helium. The Bohr theory cannot explain why certain spectral lines are more intense
than others (that is, why certain transitions between energy levels have greater
probabilities of occurrence than others). It cannot account for the observation that
many spectral lines actually consist of several separate lines whose wavelengths differ
slightly. And perhaps most important, it does not permit us to obtain what a really suc-
cessful theory of the atom should make possible: an understanding of how individual
atoms interact with one another to endow macroscopic aggregates of matter with the 
physical and chemical properties we observe.

The preceding objections to the Bohr theory are not put forward in an unfriendly
way, for the theory was one of those seminal achievements that transform scientific
thought, but rather to emphasize that a more general approach to atomic phenomena
is required. Such an approach was developed in 1925 and 1926 by Erwin Schrödinger,
Werner Heisenberg, Max Born, Paul Dirac, and others under the apt name of quantum
mechanics. “The discovery of quantum mechanics was nearly a total surprise. It de-
scribed the physical world in a way that was fundamentally new. It seemed to many
of us a miracle,” noted Eugene Wigner, one of the early workers in the field. By the
early 1930s the application of quantum mechanics to problems involving nuclei, atoms,
molecules, and matter in the solid state made it possible to understand a vast body of
data (“a large part of physics and the whole of chemistry,” according to Dirac) and—
vital for any theory—led to predictions of remarkable accuracy. Quantum mechanics
has survived every experimental test thus far of even its most unexpected conclusions.

5.1   QUANTUM MECHANICS

Classical mechanics is an approximation of quantum mechanics

The fundamental difference between classical (or Newtonian) mechanics and quantum
mechanics lies in what they describe. In classical mechanics, the future history of a par-
ticle is completely determined by its initial position and momentum together with the
forces that act upon it. In the everyday world these quantities can all be determined
well enough for the predictions of Newtonian mechanics to agree with what we find.

Quantum mechanics also arrives at relationships between observable quantities, but
the uncertainty principle suggests that the nature of an observable quantity is differ-
ent in the atomic realm. Cause and effect are still related in quantum mechanics, but
what they concern needs careful interpretation. In quantum mechanics the kind of cer-
tainty about the future characteristic of classical mechanics is impossible because the
initial state of a particle cannot be established with sufficient accuracy. As we saw in
Sec. 3.7, the more we know about the position of a particle now, the less we know
about its momentum and hence about its position later.

The quantities whose relationships quantum mechanics explores are probabilities.
Instead of asserting, for example, that the radius of the electron’s orbit in a ground-
state hydrogen atom is always exactly 5.3 � 10�11 m, as the Bohr theory does, quantum
mechanics states that this is the most probable radius. In a suitable experiment most
trials will yield a different value, either larger or smaller, but the value most likely to
be found will be 5.3 � 10�11 m.

Quantum Mechanics 161
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Quantum mechanics might seem a poor substitute for classical mechanics. However,
classical mechanics turns out to be just an approximate version of quantum mechanics.
The certainties of classical mechanics are illusory, and their apparent agreement with
experiment occurs because ordinary objects consist of so many individual atoms that
departures from average behavior are unnoticeable. Instead of two sets of physical prin-
ciples, one for the macroworld and one for the microworld, there is only the single set
included in quantum mechanics.

Wave Function

As mentioned in Chap. 3, the quantity with which quantum mechanics is concerned
is the wave function � of a body. While � itself has no physical interpretation, the
square of its absolute magnitude ���2 evaluated at a particular place at a particular time
is proportional to the probability of finding the body there at that time. The linear mo-
mentum, angular momentum, and energy of the body are other quantities that can be
established from �. The problem of quantum mechanics is to determine � for a body
when its freedom of motion is limited by the action of external forces.

Wave functions are usually complex with both real and imaginary parts. A proba-
bility, however, must be a positive real quantity. The probability density ���2 for a com-
plex � is therefore taken as the product �*� of � and its complex conjugate �*. 
The complex conjugate of any function is obtained by replacing i (���1�) by �i
wherever it appears in the function. Every complex function � can be written in the
form

Wave function � � A � iB

where A and B are real functions. The complex conjugate �* of � is

Complex conjugate �* � A � iB

and so ���2 � �*� � A2 � i2B2 � A2 � B2

since i2 � �1. Hence ���2 � �*� is always a positive real quantity, as required.

Normalization

Even before we consider the actual calculation of �, we can establish certain require-
ments it must always fulfill. For one thing, since ���2 is proportional to the probabil-
ity density P of finding the body described by �, the integral of ���2 over all space
must be finite—the body is somewhere, after all. If

��

��
���2 dV � 0

the particle does not exist, and the integral obviously cannot be � and still mean any-
thing. Furthermore, ���2 cannot be negative or complex because of the way it is de-
fined. The only possibility left is that the integral be a finite quantity if � is to describe
properly a real body.

It is usually convenient to have ���2 be equal to the probability density P of find-
ing the particle described by �, rather than merely be proportional to P. If ���2 is to
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equal P, then it must be true that

Normalization ��

��
���2 dV � 1 (5.1)

since if the particle exists somewhere at all times,

��

��
P dV � 1

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable
wave function can be normalized by multiplying it by an appropriate constant; we shall
shortly see how this is done.

Well-Behaved Wave Functions

Besides being normalizable, � must be single-valued, since P can have only one value at
a particular place and time, and continuous. Momentum considerations (see Sec. 5.6)
require that the partial derivatives ����x, ����y, ����z be finite, continuous, and single-
valued. Only wave functions with all these properties can yield physically meaningful
results when used in calculations, so only such “well-behaved” wave functions are ad-
missible as mathematical representations of real bodies. To summarize:

1 � must be continuous and single-valued everywhere.
2 ����x, ����y, ����z must be continuous and single-valued everywhere.
3 � must be normalizable, which means that � must go to 0 as x → 	�, y → 	�,
z → 	� in order that ����2 dV over all space be a finite constant.

These rules are not always obeyed by the wave functions of particles in model
situations that only approximate actual ones. For instance, the wave functions of a par-
ticle in a box with infinitely hard walls do not have continuous derivatives at the walls,
since � � 0 outside the box (see Fig. 5.4). But in the real world, where walls are never
infinitely hard, there is no sharp change in � at the walls (see Fig. 5.7) and the de-
rivatives are continuous. Exercise 7 gives another example of a wave function that is
not well-behaved.

Given a normalized and otherwise acceptable wave function �, the probability that
the particle it describes will be found in a certain region is simply the integral of the
probability density ���2 over that region. Thus for a particle restricted to motion in the
x direction, the probability of finding it between x1 and x2 is given by

Probability Px1x2
� �x2

x1

���2 dx (5.2)

We will see examples of such calculations later in this chapter and in Chap. 6.

5.2   THE WAVE EQUATION

It can have a variety of solutions, including complex ones

Schrödinger’s equation, which is the fundamental equation of quantum mechanics in
the same sense that the second law of motion is the fundamental equation of New-
tonian mechanics, is a wave equation in the variable �.
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Before we tackle Schrödinger’s equation, let us review the wave equation

Wave equation � (5.3)

which governs a wave whose variable quantity is y that propagates in the x direction
with the speed �. In the case of a wave in a stretched string, y is the displacement of
the string from the x axis; in the case of a sound wave, y is the pressure difference; in
the case of a light wave, y is either the electric or the magnetic field magnitude.
Equation (5.3) can be derived from the second law of motion for mechanical waves
and from Maxwell’s equations for electromagnetic waves.

�2y


�t2

1


�2

�2y


�x2
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Partial Derivatives

S uppose we have a function f(x, y) of two variables, x and y, and we want to know how f
varies with only one of them, say x. To find out, we differentiate f with respect to x while

treating the other variable y as a constant. The result is the partial derivative of f with respect
to x, which is written �f��x

� � 	y�constant

The rules for ordinary differentiation hold for partial differentiation as well. For instance, if
f � cx2,

� 2cx

and so, if f � yx2,

� � 	y�constant
� 2yx

The partial derivative of f � yx2 with respect to the other variable, y, is

� � 	x�constant
� x2

Second order partial derivatives occur often in physics, as in the wave equation. To find
�2f��x2, we first calculate �f��x and then differentiate again, still keeping y constant:

� � 	
For f � yx2,

� (2yx) � 2y

Similarly � (x2) � 0
�
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Solutions of the wave equation may be of many kinds, reflecting the variety of
waves that can occur—a single traveling pulse, a train of waves of constant amplitude
and wavelength, a train of superposed waves of the same amplitudes and
wavelengths, a train of superposed waves of different amplitudes and wavelengths,
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x

y

v

A

y = A cos ω(t – x/v)

Figure 5.1 Waves in the xy plane traveling in the �x direction along a stretched string lying on the
x axis.

a standing wave in a string fastened at both ends, and so on. All solutions must be
of the form

y � F�t 	 	 (5.4)

where F is any function that can be differentiated. The solutions F(t � x��) represent
waves traveling in the �x direction, and the solutions F(t � x��) represent waves trav-
eling in the �x direction.

Let us consider the wave equivalent of a “free particle,” which is a particle that is
not under the influence of any forces and therefore pursues a straight path at constant
speed. This wave is described by the general solution of Eq. (5.3) for undamped (that
is, constant amplitude A), monochromatic (constant angular frequency �) harmonic
waves in the �x direction, namely

y � Ae�i�(t�x��) (5.5)

In this formula y is a complex quantity, with both real and imaginary parts.
Because

e�i� � cos � � i sin �

Eq. (5.5) can be written in the form

y � A cos � �t � 	 � iA sin � �t � 	 (5.6)

Only the real part of Eq. (5.6) [which is the same as Eq. (3.5)] has significance in the case
of waves in a stretched string. There y represents the displacement of the string from its
normal position (Fig. 5.1), and the imaginary part of Eq. (5.6) is discarded as irrelevant.

Example 5.1

Verify that Eq. (5.5) is a solution of the wave equation.

Solution

The derivative of an exponential function eu is

(eu) � eu

The partial derivative of y with respect to x (which means t is treated as a constant) from Eq. (5.5)
is therefore

� y
i�


�

�y


�x

du


dx

d


dx

x


�

x


�

x


�
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and the second partial derivative is

� y � � y

since i2 � �1. The partial derivative of y with respect to t (now holding x constant) is

� �i�y

and the second partial derivative is

� i2�2y � ��2y

Combining these results gives

�

which is Eq. (5.3). Hence Eq. (5.5) is a solution of the wave equation.

5.3   SCHRÖDINGER’S EQUATION: TIME-DEPENDENT FORM

A basic physical principle that cannot be derived from anything else

In quantum mechanics the wave function � corresponds to the wave variable y of
wave motion in general. However, �, unlike y, is not itself a measurable quantity and
may therefore be complex. For this reason we assume that � for a particle moving
freely in the �x direction is specified by

� � Ae�i�(t�x��) (5.7)

Replacing � in the above formula by 2�� and � by �� gives

� � Ae�2�i(�t�x��) (5.8)

This is convenient since we already know what � and � are in terms of the total energy
E and momentum p of the particle being described by �. Because

E � h� � 2��� and � � �

we have

Free particle � � Ae�(i��)(Et�px) (5.9)

Equation (5.9) describes the wave equivalent of an unrestricted particle of total
energy E and momentum p moving in the �x direction, just as Eq. (5.5) describes, for
example, a harmonic displacement wave moving freely along a stretched string.

The expression for the wave function � given by Eq. (5.9) is correct only for freely
moving particles. However, we are most interested in situations where the motion of
a particle is subject to various restrictions. An important concern, for example, is an
electron bound to an atom by the electric field of its nucleus. What we must now do
is obtain the fundamental differential equation for �, which we can then solve for �
in a specific situation. This equation, which is Schrödinger’s equation, can be arrived
at in various ways, but it cannot be rigorously derived from existing physical principles:

2��
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thereby opening wide the door to the modern view of the atom
which others had only pushed ajar. By June Schrödinger had
applied wave mechanics to the harmonic oscillator, the diatomic
molecule, the hydrogen atom in an electric field, the absorption
and emission of radiation, and the scattering of radiation by
atoms and molecules. He had also shown that his wave me-
chanics was mathematically equivalent to the more abstract
Heisenberg-Born-Jordan matrix mechanics.

The significance of Schrödinger’s work was at once realized.
In 1927 he succeeded Planck at the University of Berlin but left
Germany in 1933, the year he received the Nobel Prize, when
the Nazis came to power. He was at Dublin’s Institute for Ad-
vanced Study from 1939 until his return to Austria in 1956. In
Dublin, Schrödinger became interested in biology, in particular
the mechanism of heredity. He seems to have been the first to
make definite the idea of a genetic code and to identify genes
as long molecules that carry the code in the form of variations
in how their atoms are arranged. Schrödinger’s 1944 book What
Is Life? was enormously influential, not only by what it said but
also by introducing biologists to a new way of thinking—that
of the physicist—about their subject. What Is Life? started James
Watson on his search for “the secret of the gene,” which he and
Francis Crick (a physicist) discovered in 1953 to be the struc-
ture of the DNA molecule.

the equation represents something new. What will be done here is to show one route
to the wave equation for � and then to discuss the significance of the result.

We begin by differentiating Eq. (5.9) for � twice with respect to x, which gives

� � �

p2� � ��2 (5.10)

Differentiating Eq. (5.9) once with respect to t gives

� � �

E� � � (5.11)

At speeds small compared with that of light, the total energy E of a particle is the
sum of its kinetic energy p2�2m and its potential energy U, where U is in general a
function of position x and time t:

E � � U(x, t) (5.12)

The function U represents the influence of the rest of the universe on the particle. Of
course, only a small part of the universe interacts with the particle to any extent; for

p2
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Erwin Schrödinger (1887–1961) was
born in Vienna to an Austrian father and
a half-English mother and received his
doctorate at the university there. After
World War I, during which he served
as an artillery officer, Schrödinger had
appointments at several German
universities before becoming professor
of physics in Zurich, Switzerland. Late
in November, 1925, Schrödinger gave a

talk on de Broglie’s notion that a moving particle has a wave
character. A colleague remarked to him afterward that to deal
properly with a wave, one needs a wave equation. Schrödinger
took this to heart, and a few weeks later he was “struggling with
a new atomic theory. If only I knew more mathematics! I am very
optimistic about this thing and expect that if I can only . . . solve
it, it will be very beautiful.” (Schrödinger was not the only physicist
to find the mathematics he needed difficult; the eminent mathe-
matician David Hilbert said at about this time, “Physics is much
too hard for physicists.”)

The struggle was successful, and in January 1926 the first of
four papers on “Quantization as an Eigenvalue Problem” was
completed. In this epochal paper Schrödinger introduced the
equation that bears his name and solved it for the hydrogen atom,
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instance, in the case of the electron in a hydrogen atom, only the electric field of the
nucleus must be taken into account.

Multiplying both sides of Eq. (5.12) by the wave function � gives

E� � � U� (5.13)

Now we substitute for E� and p2� from Eqs. (5.10) and (5.11) to obtain the time-
dependent form of Schrödinger’s equation:

i� � � � U� (5.14)

In three dimensions the time-dependent form of Schrödinger’s equation is

i� � � � � � 	 � U� (5.15)

where the particle’s potential energy U is some function of x, y, z, and t.
Any restrictions that may be present on the particle’s motion will affect the potential-

energy function U. Once U is known, Schrödinger’s equation may be solved for the
wave function � of the particle, from which its probability density ���2 may be de-
termined for a specified x, y, z, t.

Validity of Schrödinger’s Equation

Schrödinger’s equation was obtained here using the wave function of a freely moving
particle (potential energy U � constant). How can we be sure it applies to the general
case of a particle subject to arbitrary forces that vary in space and time [U �
U(x, y, z, t)]? Substituting Eqs. (5.10) and (5.11) into Eq. (5.13) is really a wild leap
with no formal justification; this is true for all other ways in which Schrödinger’s equa-
tion can be arrived at, including Schrödinger’s own approach.

What we must do is postulate Schrödinger’s equation, solve it for a variety of phys-
ical situations, and compare the results of the calculations with the results of experi-
ments. If both sets of results agree, the postulate embodied in Schrödinger’s equation
is valid. If they disagree, the postulate must be discarded and some other approach
would then have to be explored. In other words,

Schrödinger’s equation cannot be derived from other basic principles of physics;
it is a basic principle in itself.

What has happened is that Schrödinger’s equation has turned out to be remarkably
accurate in predicting the results of experiments. To be sure, Eq. (5.15) can be used
only for nonrelativistic problems, and a more elaborate formulation is needed when
particle speeds near that of light are involved. But because it is in accord with experi-
ence within its range of applicability, we must consider Schrödinger’s equation as a
valid statement concerning certain aspects of the physical world.

It is worth noting that Schrödinger’s equation does not increase the number of
principles needed to describe the workings of the physical world. Newton’s second law
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Figure 5.2 (a) Arrangement of double-slit experiment. (b) The electron intensity at the screen with
only slit 1 open. (c) The electron intensity at the screen with only slit 2 open. (d) The sum of the
intensities of (b) and (c). (e) The actual intensity at the screen with slits 1 and 2 both open. The wave
functions �1 and �2 add to produce the intensity at the screen, not the probability densities ��1�2

and ��2�2.

Electrons

Slit 2

Screen

(b)(a) (c) (d) (e)

Slit 1

Ψ1
2 Ψ1 + Ψ2Ψ1

2  +Ψ2
2 2Ψ2

2

of motion F � ma, the basic principle of classical mechanics, can be derived from
Schrödinger’s equation provided the quantities it relates are understood to be averages
rather than precise values. (Newton’s laws of motion were also not derived from any
other principles. Like Schrödinger’s equation, these laws are considered valid in their
range of applicability because of their agreement with experiment.)

5.4   LINEARITY AND SUPERPOSITION

Wave functions add, not probabilities

An important property of Schrödinger’s equation is that it is linear in the wave function
�. By this is meant that the equation has terms that contain � and its derivatives but
no terms independent of � or that involve higher powers of � or its derivatives. As
a result, a linear combination of solutions of Schrödinger’s equation for a given system
is also itself a solution. If �1 and �2 are two solutions (that is, two wave functions
that satisfy the equation), then

� � a1�1 � a2�2

is also a solution, where a1 and a2 are constants (see Exercise 8). Thus the wave func-
tions �1 and �2 obey the superposition principle that other waves do (see Sec. 2.1)
and we conclude that interference effects can occur for wave functions just as they can
for light, sound, water, and electromagnetic waves. In fact, the discussions of Secs. 3.4
and 3.7 assumed that de Broglie waves are subject to the superposition principle.

Let us apply the superposition principle to the diffraction of an electron beam. Fig-
ure 5.2a shows a pair of slits through which a parallel beam of monoenergetic elec-
trons pass on their way to a viewing screen. If slit 1 only is open, the result is the
intensity variation shown in Fig. 5.2b that corresponds to the probability density

P1 � ��1�2 � �1
*�1

If slit 2 only is open, as in Fig. 5.2c, the corresponding probability density is

P2 � ��2�2 � �2
*�2

We might suppose that opening both slits would give an electron intensity variation
described by P1 � P2, as in Fig. 5.2d. However, this is not the case because in quantum
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mechanics wave functions add, not probabilities. Instead the result with both slits open
is as shown in Fig. 5.2e, the same pattern of alternating maxima and minima that oc-
curs when a beam of monochromatic light passes through the double slit of Fig. 2.4.

The diffraction pattern of Fig. 5.2e arises from the superposition � of the wave
functions �1 and �2 of the electrons that have passed through slits 1 and 2:

� � �1 � �2

The probability density at the screen is therefore

P � ���2 � ��1 � �2�2 � (�1
* � �2

*)(�1 � �2)

� �1
*�1 � �2

*�2 � �1
*�2 � �2

*�1

� P1 � P2 � �1
*�2 � �2

*�1

The two terms at the right of this equation represent the difference between Fig. 5.2d and
e and are responsible for the oscillations of the electron intensity at the screen. In Sec. 6.8
a similar calculation will be used to investigate why a hydrogen atom emits radiation when
it undergoes a transition from one quantum state to another of lower energy.

5.5 EXPECTATION VALUES

How to extract information from a wave function

Once Schrödinger’s equation has been solved for a particle in a given physical situa-
tion, the resulting wave function �(x, y, z, t) contains all the information about the
particle that is permitted by the uncertainty principle. Except for those variables that
are quantized this information is in the form of probabilities and not specific numbers.

As an example, let us calculate the expectation value 
x� of the position of a
particle confined to the x axis that is described by the wave function �(x, t). This
is the value of x we would obtain if we measured the positions of a great many
particles described by the same wave function at some instant t and then averaged
the results.

To make the procedure clear, we first answer a slightly different question: What is
the average position x� of a number of identical particles distributed along the x axis in
such a way that there are N1 particles at x1, N2 particles at x2, and so on? The average
position in this case is the same as the center of mass of the distribution, and so

x� � � (5.16)

When we are dealing with a single particle, we must replace the number Ni of
particles at xi by the probability Pi that the particle be found in an interval dx at xi.
This probability is

Pi � ��i�2 dx (5.17)

where �i is the particle wave function evaluated at x � xi. Making this substitution
and changing the summations to integrals, we see that the expectation value of the

�Nixi


�Ni

N1x1 � N2x2 � N3x3 � . . .





N1 � N2 � N3 � . . .
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position of the single particle is

(5.18)

If � is a normalized wave function, the denominator of Eq. (5.18) equals the prob-
ability that the particle exists somewhere between x � �� and x � � and therefore
has the value 1. In this case


x� � ��

��
x���2 dx (5.19)

Example 5.2

A particle limited to the x axis has the wave function � � ax between x � 0 and x � 1; � � 0
elsewhere. (a) Find the probability that the particle can be found between x � 0.45 and x �
0.55. (b) Find the expectation value 
x� of the particle’s position.

Solution

(a) The probability is

�x2

x1

���2 dx � a2 �0.55

0.45
x2dx � a2 
 �

0.55

0.45
� 0.0251a2

(b) The expectation value is


x� � �1

0
x���2 dx � a2 �1

0
x3dx � a2
 �

1

0
�

The same procedure as that followed above can be used to obtain the expectation
value 
G(x)� of any quantity—for instance, potential energy U(x)—that is a function of
the position x of a particle described by a wave function �. The result is

Expectation value 
G(x)� � ��

��
G(x)���2 dx (5.20)

The expectation value 
p� for momentum cannot be calculated this way because,
according to the uncertainty principles, no such function as p(x) can exist. If we specify
x, so that � x � 0, we cannot specify a corresponding p since � x �p 
 ��2. The same
problem occurs for the expectation value 
E� for energy because �E� t 
 ��2 means
that, if we specify t, the function E(t) is impossible. In Sec. 5.6 we will see how 
p�
and 
E� can be determined.

In classical physics no such limitation occurs, because the uncertainty principle can
be neglected in the macroworld. When we apply the second law of motion to the
motion of a body subject to various forces, we expect to get p(x, t) and E(x, t) from
the solution as well as x(t). Solving a problem in classical mechanics gives us the en-
tire future course of the body’s motion. In quantum physics, on the other hand, all we
get directly by applying Schrödinger’s equation to the motion of a particle is the wave
function �, and the future course of the particle’s motion—like its initial state—is a
matter of probabilities instead of certainties.

a2



4

x4



4

x3



3

Expectation value
for position

��

�� 
x���2 dx


x� � ___________

��

�� 
���2 dx
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5.6 OPERATORS

Another way to find expectation values

A hint as to the proper way to evaluate 
p� and 
E� comes from differentiating the free-
particle wave function � � Ae�(i��)(Et�px) with respect to x and to t. We find that

� p�

� � E�

which can be written in the suggestive forms

p� � � (5.21)

E� � i� � (5.22)

Evidently the dynamical quantity p in some sense corresponds to the differential
operator (��i) ���x and the dynamical quantity E similarly corresponds to the differ-
ential operator i� ���t.

An operator tells us what operation to carry out on the quantity that follows it.
Thus the operator i� ���t instructs us to take the partial derivative of what comes after
it with respect to t and multiply the result by i�. Equation (5.22) was on the postmark
used to cancel the Austrian postage stamp issued to commemorate the 100th
anniversary of Schrödinger’s birth.

It is customary to denote operators by using a caret, so that p̂ is the operator that
corresponds to momentum p and Ê is the operator that corresponds to total energy E.
From Eqs. (5.21) and (5.22) these operators are

p̂ � (5.23)

Ê � i� (5.24)

Though we have only shown that the correspondences expressed in Eqs. (5.23)
and (5.24) hold for free particles, they are entirely general results whose validity is
the same as that of Schrödinger’s equation. To support this statement, we can re-
place the equation E � KE � U for the total energy of a particle with the operator
equation

Ê � K Ê � Û (5.25)

The operator Û is just U (�). The kinetic energy KE is given in terms of momen-
tum p by

KE �
p2
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and so we have

K Ê � � � 	
2

� � (5.26)

Equation (5.25) therefore reads

i� � � � U (5.27)

Now we multiply the identity � � � by Eq. (5.27) and obtain

i� � � � U�

which is Schrödinger’s equation. Postulating Eqs. (5.23) and (5.24) is equivalent to
postulating Schrödinger’s equation.

Operators and Expectation Values

Because p and E can be replaced by their corresponding operators in an equation, we
can use these operators to obtain expectation values for p and E. Thus the expectation
value for p is


p� � ��

��
�*p̂� dx � ��

��
�*� 	� dx � ��

��
�* dx (5.28)

and the expectation value for E is


E� � ��

�*Ê� dx � ��

�*�i� 	� dx � i� ��

�* dx (5.29)

Both Eqs. (5.28) and (5.29) can be evaluated for any acceptable wave function � (x, t).
Let us see why expectation values involving operators have to be expressed in the

form


p� � ��

��
�*p̂� dx

The other alternatives are

��

��
p̂�*� dx � ��

��
(�*�) dx � 
�*��

�

��

� 0

since �* and � must be 0 at x � 	�, and

��

��
�*� p̂ dx � ��

��
�*� dx

which makes no sense. In the case of algebraic quantities such as x and V(x), the order
of factors in the integrand is unimportant, but when differential operators are involved,
the correct order of factors must be observed.
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Every observable quantity G characteristic of a physical system may be represented
by a suitable quantum-mechanical operator  Ĝ. To obtain this operator, we express G
in terms of x and p and then replace p by (��i) ���x. If the wave function � of the
system is known, the expectation value of G(x, p) is


G(x, p)� � ��

�� 
�*Ĝ� dx (5.30)

In this way all the information about a system that is permitted by the uncertainty
principle can be obtained from its wave function �.

5.7   SCHRÖDINGER’S EQUATION: STEADY-STATE FORM

Eigenvalues and eigenfunctions

In a great many situations the potential energy of a particle does not depend on time
explicitly; the forces that act on it, and hence U, vary with the position of the particle
only. When this is true, Schrödinger’s equation may be simplified by removing all
reference to t.

We begin by noting that the one-dimensional wave function � of an unrestricted
particle may be written

� � Ae�(i��)(Et�px) � Ae�(iE��)te�(ip��)x � 	e�(iE��)t (5.31)

Evidently � is the product of a time-dependent function e�(iE��)t and a position-
dependent function 	. As it happens, the time variations of all wave functions of
particles acted on by forces independent of time have the same form as that of an
unrestricted particle. Substituting the � of Eq. (5.31) into the time-dependent form of
Schrödinger’s equation, we find that

E	e�(iE��)t � � e�(iE��)t � U	e�(iE��)t

Dividing through by the common exponential factor gives

� (E � U)	 � 0 (5.32)

Equation (5.32) is the steady-state form of Schrödinger’s equation. In three dimen-
sions it is

� � � (E � U)	 � 0 (5.33)

An important property of Schrödinger’s steady-state equation is that, if it has one
or more solutions for a given system, each of these wave functions corresponds to a
specific value of the energy E. Thus energy quantization appears in wave mechanics as
a natural element of the theory, and energy quantization in the physical world is re-
vealed as a universal phenomenon characteristic of all stable systems.
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A familiar and quite close analogy to the manner in which energy quantization occurs
in solutions of Schrödinger’s equation is with standing waves in a stretched string of
length L that is fixed at both ends. Here, instead of a single wave propagating indefi-
nitely in one direction, waves are traveling in both the �x and �x directions simul-
taneously. These waves are subject to the condition (called a boundary condition) that
the displacement y always be zero at both ends of the string. An acceptable function
y(x, t) for the displacement must, with its derivatives (except at the ends), be as well-
behaved as 	 and its derivatives—that is, be continuous, finite, and single-valued. In
this case y must be real, not complex, as it represents a directly measurable quantity.
The only solutions of the wave equation, Eq. (5.3), that are in accord with these various
limitations are those in which the wavelengths are given by

�n � n � 0, 1, 2, 3, . . .

as shown in Fig. 5.3. It is the combination of the wave equation and the restrictions
placed on the nature of its solution that leads us to conclude that y(x, t) can exist only
for certain wavelengths �n.

Eigenvalues and Eigenfunctions

The values of energy En for which Schrödinger’s steady-state equation can be solved
are called eigenvalues and the corresponding wave functions 	n are called eigen-
functions. (These terms come from the German Eigenwert, meaning “proper or char-
acteristic value,” and Eigenfunktion, “proper or characteristic function.”) The discrete
energy levels of the hydrogen atom

En � � � 	 n � 1, 2, 3, . . . 

are an example of a set of eigenvalues. We shall see in Chap. 6 why these particular
values of E are the only ones that yield acceptable wave functions for the electron in
the hydrogen atom.

An important example of a dynamical variable other than total energy that is found
to be quantized in stable systems is angular momentum L. In the case of the hydro-
gen atom, we shall find that the eigenvalues of the magnitude of the total angular
momentum are specified by

L � �l(l � 1�)�  � l � 0, 1, 2, . . . , (n � 1)

Of course, a dynamical variable G may not be quantized. In this case measurements
of G made on a number of identical systems will not yield a unique result but instead
a spread of values whose average is the expectation value


G� � ��

��
G�	�2 dx

In the hydrogen atom, the electron’s position is not quantized, for instance, so that we
must think of the electron as being present in the vicinity of the nucleus with a cer-
tain probability �	�2 per unit volume but with no predictable position or even orbit in
the classical sense. This probabilistic statement does not conflict with the fact that

1
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Figure 5.3 Standing waves in a
stretched string fastened at both
ends.
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experiments performed on hydrogen atoms always show that each one contains a whole
electron, not 27 percent of an electron in a certain region and 73 percent elsewhere.
The probability is one of finding the electron, and although this probability is smeared
out in space, the electron itself is not.

Operators and Eigenvalues

The condition that a certain dynamical variable G be restricted to the discrete values
Gn—in other words, that G be quantized—is that the wave functions 	n of the system
be such that

Eigenvalue equation Ĝ	n � Gn	n (5.34)

where Ĝ is the operator that corresponds to G and each Gn is a real number. When
Eq. (5.34) holds for the wave functions of a system, it is a fundamental postulate of
quantum mechanics that any measurement of G can only yield one of the values Gn.
If measurements of G are made on a number of identical systems all in states described
by the particular eigenfunction �k, each measurement will yield the single value Gk.

Example 5.3

An eigenfunction of the operator d2�dx2 is 	 � e2x. Find the corresponding eigenvalue.

Solution

Here Ĝ � d2�dx2, so

Ĝ	 � (e2x) � 
 (e2x)� � (2e2x) � 4e2x

But e2x � 	, so

Ĝ	 � 4	

From Eq. (5.34) we see that the eigenvalue G here is just G � 4.

In view of Eqs. (5.25) and (5.26) the total-energy operator Ê of Eq. (5.24) can also
be written as

Ĥ � � � U (5.35)

and is called the Hamiltonian operator because it is reminiscent of the Hamiltonian
function in advanced classical mechanics, which is an expression for the total energy
of a system in terms of coordinates and momenta only. Evidently the steady-state
Schrödinger equation can be written simply as

Ĥ	n � En	n (5.36)
Schrödinger’s
equation

�2



�x2

�2



2m

Hamiltonian
operator

d


dx

d


dx2

d


dx
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dx2
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so we can say that the various En are the eigenvalues of the Hamiltonian operator Ĥ.
This kind of association between eigenvalues and quantum-mechanical operators is quite
general. Table 5.1 lists the operators that correspond to various observable quantities.

5.8   PARTICLE IN A BOX

How boundary conditions and normalization determine wave functions

To solve Schrödinger’s equation, even in its simpler steady-state form, usually requires
elaborate mathematical techniques. For this reason the study of quantum mechanics
has traditionally been reserved for advanced students who have the required profi-
ciency in mathematics. However, since quantum mechanics is the theoretical structure
whose results are closest to experimental reality, we must explore its methods and ap-
plications to understand modern physics. As we shall see, even a modest mathemati-
cal background is enough for us to follow the trains of thought that have led quantum
mechanics to its greatest achievements.

The simplest quantum-mechanical problem is that of a particle trapped in a box
with infinitely hard walls. In Sec. 3.6 we saw how a quite simple argument yields the
energy levels of the system. Let us now tackle the same problem in a more formal way,
which will give us the wave function 	n that corresponds to each energy level.

We may specify the particle’s motion by saying that it is restricted to traveling along
the x axis between x � 0 and x � L by infintely hard walls. A particle does not lose
energy when it collides with such walls, so that its total energy stays constant. From a
formal point of view the potential energy U of the particle is infinite on both sides of
the box, while U is a constant—say 0 for convenience—on the inside (Fig. 5.4). Because
the particle cannot have an infinite amount of energy, it cannot exist outside the box,
and so its wave function 	 is 0 for x � 0 and x 
 L. Our task is to find what 	 is
within the box, namely, between x � 0 and x � L.

Within the box Schrödinger’s equation becomes

� E	 � 0 (5.37)
2m


�2

d2	


dx2
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Table 5.1 Operators Associated with Various 
Observable Quantities

Quantity Operator

Position, x x

Linear momentum, p

Potential energy, U(x) U(x)

Kinetic energy, KE � �

Total energy, E i�

Total energy (Hamiltonian form), H � � U(x)
�2



�x2

�2



2m

�


�t

�2
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2m
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2m

�


�x

�


i

x
0 L

∞

U

Figure 5.4 A square potential well
with infinitely high barriers at
each end corresponds to a box
with infinitely hard walls.
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since U � 0 there. (The total derivative d2	�dx2 is the same as the partial derivative
�2	��x2 because 	 is a function only of x in this problem.) Equation (5.37) has the
solution

	 � A sin x � B cos x (5.38)

which we can verify by substitution back into Eq. (5.37). A and B are constants to be
evaluated.

This solution is subject to the boundary conditions that 	 � 0 for x � 0 and for
x � L. Since cos 0 � 1, the second term cannot describe the particle because it does
not vanish at x � 0. Hence we conclude that B � 0. Since sin 0 � 0, the sine term
always yields 	 � 0 at x � 0, as required, but 	 will be 0 at x � L only when

L � n� n � 1, 2, 3, . . . (5.39)

This result comes about because the sines of the angles �, 2�, 3�, . . . are all 0.
From Eq. (5.39) it is clear that the energy of the particle can have only certain val-

ues, which are the eigenvalues mentioned in the previous section. These eigenvalues,
constituting the energy levels of the system, are found by solving Eq. (5.39) for En,
which gives

Particle in a box En � n � 1, 2, 3, . . . (5.40)

Equation (5.40) is the same as Eq. (3.18) and has the same interpretation [see the
discussion that follows Eq. (3.18) in Sec. 3.6].

Wave Functions

The wave functions of a particle in a box whose energies are En are, from Eq. (5.38)
with B � 0,

	n � A sin x (5.41)

Substituting Eq. (5.40) for En gives

	n � A sin (5.42)

for the eigenfunctions corresponding to the energy eigenvalues En.
It is easy to verify that these eigenfunctions meet all the requirements discussed in

Sec. 5.1: for each quantum number n, 	n is a finite, single-valued function of x, and
	n and �	n��x are continuous (except at the ends of the box). Furthermore, the integral

n�x
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of �	n�2 over all space is finite, as we can see by integrating �	n�2 dx from x � 0 to 
x � L (since the particle is confined within these limits). With the help of the 
trigonometric identity sin2 � � 


1
2


 (1 � cos 2�) we find that

��

��
�	n�2 dx � �L

0
�	n�2 dx � A2 �L

0 
sin2 � 	 dx

� 
�L

0
dx � �L

0
cos � 	 dx�

� 
x � � 	 sin �
L

0

� A2� 	 (5.43)

To normalize 	 we must assign a value to A such that �	n�2 dx is equal to the prob-
ability P dx of finding the particle between x and x � dx, rather than merely propor-
tional to P dx. If �	n�2 dx is to equal P dx, then it must be true that

��

��
�	n�2 dx � 1 (5.44)

Comparing Eqs. (5.43) and (5.44), we see that the wave functions of a particle in a
box are normalized if

A � �� (5.45)

The normalized wave functions of the particle are therefore

Particle in a box 	n � �� sin n � 1, 2, 3, . . . (5.46)

The normalized wave functions 	1, 	2, and 	3 together with the probability densities
�	1�2, �	2�2, and �	3�2 are plotted in Fig. 5.5. Although 	n may be negative as well as
positive, �	n�2 is never negative and, since 	n is normalized, its value at a given x is
equal to the probability density of finding the particle there. In every case �	n�2 � 0 at
x � 0 and x � L, the boundaries of the box.

At a particular place in the box the probability of the particle being present may be
very different for different quantum numbers. For instance, �	1�2 has its maximum
value of 2�L in the middle of the box, while �	2�2 � 0 there. A particle in the lowest
energy level of n � 1 is most likely to be in the middle of the box, while a particle in
the next higher state of n � 2 is never there! Classical physics, of course, suggests the
same probability for the particle being anywhere in the box.

The wave functions shown in Fig. 5.5 resemble the possible vibrations of a string
fixed at both ends, such as those of the stretched string of Fig. 5.2. This follows from
the fact that waves in a stretched string and the wave representing a moving particle
are described by equations of the same form, so that when identical restrictions are
placed upon each kind of wave, the formal results are identical.
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Figure 5.5 Wave functions and
probability densities of a particle
confined to a box with rigid walls.
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Example 5.4

Find the probability that a particle trapped in a box L wide can be found between 0.45L and
0.55L for the ground and first excited states.

Solution

This part of the box is one-tenth of the box’s width and is centered on the middle of the box
(Fig. 5.6). Classically we would expect the particle to be in this region 10 percent of the time.
Quantum mechanics gives quite different predictions that depend on the quantum number of
the particle’s state. From Eqs. (5.2) and (5.46) the probability of finding the particle between x1

and x2 when it is in the nth state is

Px1,x2
� � x

2

x1

��n�2 dx � � x
2

x1

sin2 dx

� � � sin �
x2

x1

Here x1 � 0.45L and x2 � 0.55L. For the ground state, which corresponds to n � 1, we have

Px1,x2
� 0.198 � 19.8 percent

This is about twice the classical probability. For the first excited state, which corresponds to 
n � 2, we have

Px1,x2
� 0.0065 � 0.65 percent

This low figure is consistent with the probability density of ��n�2 � 0 at x � 0.5L.

2n�x
�

L

1
�
2n�

x
�
L

n�x
�

L

2
�
L
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x = 0 x = L

|�2|2

|�1|2

x2x1

Figure 5.6 The probability Px1,x2
of finding a particle in the box of Fig. 5.5 between x1 � 0.45L and

x2 � 0.55L is equal to the area under the ���2 curves between these limits.
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Example 5.5

Find the expectation value 
x� of the position of a particle trapped in a box L wide.

Solution

From Eqs. (5.19) and (5.46) we have


x� � ��

��

x�	�2 dx � �L

0
x sin2 dx

� 
 � � �
L

0

Since sin n� � 0, cos 2n� � 1, and cos 0 � 1, for all the values of n the expectation value of
x is


x� � � 	 �

This result means that the average position of the particle is the middle of the box in all quan-
tum states. There is no conflict with the fact that �	�2 � 0 at L�2 in the n � 2, 4, 6, . . . states
because 
x� is an average, not a probability, and it reflects the symmetry of �	�2 about the middle
of the box.

Momentum

Finding the momentum of a particle trapped in a one-dimensional box is not as straight-
forward as finding 
x�. Here

	* � 	n � �� sin

� �� cos

and so, from Eq. (5.30),


p� � ��

��
	*p̂	 dx � ��

��
	* � 	 	 dx

� �L

0
sin cos dx

We note that

� sin ax cos ax dx � sin2 ax
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With a � n��L we have


p� � 
sin2 �
L

0
� 0

since sin2 0 � sin2 n� � 0 n � 1, 2, 3, . . .

The expectation value 
p� of the particle’s momentum is 0.
At first glance this conclusion seems strange. After all, E � p2�2m, and so we would

anticipate that

pn � 	 �2mEn� � 	 (5.47)

The 	 sign provides the explanation: The particle is moving back and forth, and so
its average momentum for any value of n is

pav � � 0

which is the expectation value.
According to Eq. (5.47) there should be two momentum eigenfunctions for every

energy eigenfunction, corresponding to the two possible directions of motion. The gen-
eral procedure for finding the eigenvalues of a quantum-mechanical operator, here p̂,
is to start from the eigenvalue equation

p̂	n � pn	n (5.48)

where each pn is a real number. This equation holds only when the wave functions 	n

are eigenfunctions of the momentum operator p̂, which here is

p̂ �

We can see at once that the energy eigenfunctions

	n � �� sin

are not also momentum eigenfunctions, because

��� sin 	 � �� cos � pn	n

To find the correct momentum eigenfunctions, we note that

sin � � � ei� � e�i�1
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Hence each energy eigenfunction can be expressed as a linear combination of the two
wave functions

	n
� � ��ein�x�L (5.49)

	n
� � ��e�in�x�L (5.50)

Inserting the first of these wave functions in the eigenvalue equation, Eq. (5.48), we
have

p̂	n
� � pn

�	n
�

	n
� � �� ein�x�L � 	n

� � pn
�	n

�

so that pn
� � � (5.51)

Similarly the wave function 	�
n leads to the momentum eigenvalues

pn
� � � (5.52)

We conclude that 	n
� and 	n

� are indeed the momentum eigenfunctions for a parti-
cle in a box, and that Eq. (5.47) correctly states the corresponding momentum
eigenvalues.

5.9   FINITE POTENTIAL WELL

The wave function penetrates the walls, which lowers the energy levels

Potential energies are never infinite in the real world, and the box with infinitely hard
walls of the previous section has no physical counterpart. However, potential wells
with barriers of finite height certainly do exist. Let us see what the wave functions and
energy levels of a particle in such a well are.

Figure 5.7 shows a potential well with square corners that is U high and L wide
and contains a particle whose energy E is less than U. According to classical
mechanics, when the particle strikes the sides of the well, it bounces off without
entering regions I and III. In quantum mechanics, the particle also bounces back
and forth, but now it has a certain probability of penetrating into regions I and III
even though E � U.

In regions I and III Schrödinger’s steady-state equation is

� (E � U)	 � 0
2m


�2

d2	


dx2
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Figure 5.7 A square potential well
with finite barriers. The energy E
of the trapped particle is less than
the height U of the barriers.
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which we can rewrite in the more convenient form

� a2	 � 0 (5.53)

where

a � (5.54)

The solutions to Eq. (5.53) are real exponentials:

	I � Ceax � De�ax (5.55)

	III � Feax � Ge�ax (5.56)

Both 	I and 	III must be finite everywhere. Since e�ax → � as x → �� and eax → �
as x → �, the coefficients D and F must therefore be 0. Hence we have

	I � Ceax (5.57)

	III � Ge�ax (5.58)

These wave functions decrease exponentially inside the barriers at the sides of the well.
Within the well Schrödinger’s equation is the same as Eq. (5.37) and its solution is

again

	II � A sin x � B cos x (5.59)

In the case of a well with infinitely high barriers, we found that B � 0 in order that
	 � 0 at x � 0 and x � L. Here, however, 	II � C at x � 0 and 	II � G at x � L,
so both the sine and cosine solutions of Eq. (5.59) are possible.

For either solution, both 	 and d	�dx must be continuous at x � 0 and x � L: the
wave functions inside and outside each side of the well must not only have the same
value where they join but also the same slopes, so they match up perfectly. When these
boundary conditions are taken into account, the result is that exact matching only oc-
curs for certain specific values En of the particle energy. The complete wave functions
and their probability densities are shown in Fig. 5.8.

Because the wavelengths that fit into the well are longer than for an infinite well of
the same width (see Fig. 5.5), the corresponding particle momenta are lower (we re-
call that � � h�p). Hence the energy levels En are lower for each n than they are for a
particle in an infinite well.

5.10   TUNNEL EFFECT

A particle without the energy to pass over a potential barrier may still
tunnel through it

Although the walls of the potential well of Fig. 5.7 were of finite height, they were
assumed to be infinitely thick. As a result the particle was trapped forever even though
it could penetrate the walls. We next look at the situation of a particle that strikes a
potential barrier of height U, again with E � U, but here the barrier has a finite width
(Fig. 5.9). What we will find is that the particle has a certain probability—not

�2mE�
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Figure 5.8 Wave functions and
probability densities of a particle
in a finite potential well. The
particle has a certain probability
of being found outside the wall.
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necessarily great, but not zero either—of passing through the barrier and emerging
on the other side. The particle lacks the energy to go over the top of the barrier, but
it can nevertheless tunnel through it, so to speak. Not surprisingly, the higher the
barrier and the wider it is, the less the chance that the particle can get through.

The tunnel effect actually occurs, notably in the case of the alpha particles emit-
ted by certain radioactive nuclei. As we shall learn in Chap. 12, an alpha particle whose
kinetic energy is only a few MeV is able to escape from a nucleus whose potential wall
is perhaps 25 MeV high. The probability of escape is so small that the alpha particle
might have to strike the wall 1038 or more times before it emerges, but sooner or later
it does get out. Tunneling also occurs in the operation of certain semiconductor diodes
(Sec. 10.7) in which electrons pass through potential barriers even though their kinetic
energies are smaller than the barrier heights.

Let us consider a beam of identical particles all of which have the kinetic energy E.
The beam is incident from the left on a potential barrier of height U and width L, as
in Fig. 5.9. On both sides of the barrier U � 0, which means that no forces act on the
particles there. The wave function �I� represents the incoming particles moving to the
right and �I� represents the reflected particles moving to the left; �III represents the
transmitted particles moving to the right. The wave function �II represents the parti-
cles inside the barrier, some of which end up in region III while the others return to
region I. The transmission probability T for a particle to pass through the barrier is
equal to the fraction of the incident beam that gets through the barrier. This proba-
bility is calculated in the Appendix to this chapter. Its approximate value is given by

T � e�2k2L (5.60)

where

k2 � (5.61)

and L is the width of the barrier.

�2m(U�� E)�
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Approximate
transmission
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Figure 5.9 When a particle of energy E � U approaches a potential barrier, according to classical
mechanics the particle must be reflected. In quantum mechanics, the de Broglie waves that correspond
to the particle are partly reflected and partly transmitted, which means that the particle has a finite
chance of penetrating the barrier.
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Example 5.6

Electrons with energies of 1.0 eV and 2.0 eV are incident on a barrier 10.0 eV high and 0.50 nm
wide. (a) Find their respective transmission probabilities. (b) How are these affected if the barrier
is doubled in width?

Solution

(a) For the 1.0-eV electrons

k2 �

�

� 1.6 � 1010 m�1

Since L � 0.50 nm � 5.0 � 10�10 m, 2k2L � (2)(1.6 � 1010 m�1)(5.0 � 10�10 m) � 16,
and the approximate transmission probability is

T1 � e�2k2L � e�16 � 1.1 � 10�7

One 1.0-eV electron out of 8.9 million can tunnel through the 10-eV barrier on the average. For
the 2.0-eV electrons a similar calculation gives T2 � 2.4 � 10�7. These electrons are over twice
as likely to tunnel through the barrier.
(b) If the barrier is doubled in width to 1.0 nm, the transmission probabilities become

T�1 � 1.3 � 10�14 T�2 � 5.1 � 10�14

Evidently T is more sensitive to the width of the barrier than to the particle energy here.

�(2)(9.1� � 10��31 kg)[�(10.0 �� 1.0) e�V](1.6� � 10��19 J/eV�)�









1.054 � 10�34 J � s

�2m(U�� E)�




�
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Scanning Tunneling Microscope

T he ability of electrons to tunnel through a potential barner is used in an ingenious way in
the scanning tunneling microscope (STM) to study surfaces on an atomic scale of size.

The STM was invented in 1981 by Gert Binning and Heinrich Rohrer, who shared the 1986
Nobel Prize in physics with Ernst Ruska, the inventor of the electron microscope. In an STM, a
metal probe with a point so fine that its tip is a single atom is brought close to the surface of a
conducting or semiconducting material. Normally even the most loosely bound electrons in an
atom on a surface need several electron-volts of energy to escape—this is the work function
discussed in Chap. 2 in connection with the photoelectric effect. However, when a voltage of
only 10 mV or so is applied between the probe and the surface, electrons can tunnel across the
gap between them if the gap is small enough, a nanometer or two.

According to Eq. (5.60) the electron transmission probability is proportional to e�L, where
L is the gap width, so even a small change in L (as little as 0.01 nm, less than a twentieth the
diameter of most atoms) means a detectable change in the tunneling current. What is done is
to move the probe across the surface in a series of closely spaced back-and-forth scans in about
the same way an electron beam traces out an image on the screen of a television picture tube.
The height of the probe is continually adjusted to give a constant tunneling current, and the ad-
justments are recorded so that a map of surface height versus position is built up. Such a map
is able to resolve individual atoms on a surface.

How can the position of the probe be controlled precisely enough to reveal the outlines of
individual atoms? The thickness of certain ceramics changes when a voltage is applied across
them, a property called piezoelectricity. The changes might be several tenths of a nanometer
per volt. In an STM, piezoelectric controls move the probe in x and y directions across a surface
and in the z direction perpendicular to the surface.

The tungsten probe of a scanning
tunneling microscope.
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5.11   HARMONIC OSCILLATOR

Its energy levels are evenly spaced

Harmonic motion takes place when a system of some kind vibrates about an equilib-
rium configuration. The system may be an object supported by a spring or floating in
a liquid, a diatomic molecule, an atom in a crystal lattice—there are countless examples
on all scales of size. The condition for harmonic motion is the presence of a restoring
force that acts to return the system to its equilibrium configuration when it is disturbed.
The inertia of the masses involved causes them to overshoot equilibrium, and the system
oscillates indefinitely if no energy is lost.

In the special case of simple harmonic motion, the restoring force F on a particle
of mass m is linear; that is, F is proportional to the particle’s displacement x from its
equilibrium position and in the opposite direction. Thus

Hooke’s law F � �kx

This relationship is customarily called Hooke’s law. From the second law of motion,
F � ma, we have

�kx � m
d2x


dt2

Actually, the result of an STM scan is not a true topographical map of surface height but
a contour map of constant electron density on the surface. This means that atoms of different
elements appear differently, which greatly increases the value of the STM as a research tool.

Although many biological materials conduct electricity, they do so by the flow of ions rather
than of electrons and so cannot be studied with STMs. A more recent development, the atomic
force microscope (AFM) can be used on any surface, although with somewhat less resolution
than an STM. In an AFM, the sharp tip of a fractured diamond presses gently against the atoms
on a surface. A spring keeps the pressure of the tip constant, and a record is made of the
deflections of the tip as it moves across the surface. The result is a map showing contours of
constant repulsive force between the electrons of the probe and the electrons of the surface atoms.
Even relatively soft biological materials can be examined with an AFM and changes in them
monitored. For example, the linking together of molecules of the blood protein fibrin, which
occurs when blood clots, has been watched with an AFM.

Silicon atoms on the surface of a silicon crystal form a regular, repeated pattern in this image produced
by an STM.

bei48482_ch05.qxd  1/17/02  12:17 AM  Page 187



� x � 0 (5.62)

There are various ways to write the solution to Eq. (5.62). A common one is

x � A cos (2��t � �) (5.63)

where

� � �� (5.64)

is the frequency of the oscillations and A is their amplitude. The value of �, the phase
angle, depends upon what x is at the time t � 0 and on the direction of motion then.

The importance of the simple harmonic oscillator in both classical and modern
physics lies not in the strict adherence of actual restoring forces to Hooke’s law, which
is seldom true, but in the fact that these restoring forces reduce to Hooke’s law for
small displacements x. As a result, any system in which something executes small
vibrations about an equilibrium position behaves very much like a simple harmonic
oscillator.

To verify this important point, we note that any restoring force which is a func-
tion of x can be expressed in a Maclaurin’s series about the equilibrium position 
x � 0 as

F(x) � Fx�0 � � 	
x�0

x � � 	
x�0

x2 � � 	
x�0

x3 � . . . 

Since x � 0 is the equilibrium position, Fx�0 � 0. For small x the values of x2, x3, . . .
are very small compared with x, so the third and higher terms of the series can be
neglected. The only term of significance when x is small is therefore the second one.
Hence

F(x) � � 	
x�0

x

which is Hooke’s law when (dF�dx)x�0 is negative, as of course it is for any restoring
force. The conclusion, then, is that all oscillations are simple harmonic in character
when their amplitudes are sufficiently small.

The potential-energy function U(x) that corresponds to a Hooke’s law force may be
found by calculating the work needed to bring a particle from x � 0 to x � x against
such a force. The result is

U(x) � ��x

0
F(x) dx � k�x

0 
x dx � kx2 (5.65)

which is plotted in Fig. 5.10. The curve of U(x) versus x is a parabola. If the energy
of the oscillator is E, the particle vibrates back and forth between x � �A and x �
�A, where E and A are related by E � 


1
2


 kA2. Figure 8.18 shows how a nonparabolic
potential energy curve can be approximated by a parabola for small displacements.
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Energy

E

0 +A–A
x

U =    kx21
2

Figure 5.10 The potential energy
of a harmonic oscillator is pro-
portional to x2, where x is the
displacement from the equilib-
rium position. The amplitude A
of the motion is determined by
the total energy E of the oscillator,
which classically can have any
value.
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Even before we make a detailed calculation we can anticipate three quantum-
mechanical modifications to this classical picture:

1 The allowed energies will not form a continuous spectrum but instead a discrete
spectrum of certain specific values only.
2 The lowest allowed energy will not be E � 0 but will be some definite minimum
E � E0.
3 There will be a certain probability that the particle can penetrate the potential well
it is in and go beyond the limits of �A and �A.

Energy Levels

Schrödinger’s equation for the harmonic oscillator is, with U � 

1
2


 kx2,

� �E � kx2	 	 � 0 (5.66)

It is convenient to simplify Eq. (5.75) by introducing the dimensionless quantities

y � � �km�	1�2
x � ��x (5.67)

and 
 � �� � (5.68)

where � is the classical frequency of the oscillation given by Eq. (5.64). In making
these substitutions, what we have done is change the units in which x and E are
expressed from meters and joules, respectively, to dimensionless units.

In terms of y and 
 Schrödinger’s equation becomes

� (
 � y2)	 � 0 (5.69)

The solutions to this equation that are acceptable here are limited by the condition that
	 → 0 as y → � in order that

��

��
�	 �2 dy � 1

Otherwise the wave function cannot represent an actual particle. The mathematical
properties of Eq. (5.69) are such that this condition will be fulfilled only when


 � 2n � 1 n � 0, 1, 2, 3, . . .

Since 
 � 2E�h� according to Eq. (5.68), the energy levels of a harmonic oscillator
whose classical frequency of oscillation is � are given by the formula

En � (n � 

1
2


)h� n � 0, 1, 2, 3, . . . (5.70)Energy levels of 
harmonic oscillator

d2	


dy2

2E


h�

m


k

2E


�

2�m�



�

1


�

1


2

2m


�2

d2	


dx2
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The energy of a harmonic oscillator is thus quantized in steps of h�.
We note that when n � 0,

Zero-point energy E0 � 

1
2


 h� (5.71)

which is the lowest value the energy of the oscillator can have. This value is called the
zero-point energy because a harmonic oscillator in equilibrium with its surroundings
would approach an energy of E � E0 and not E � 0 as the temperature approaches 0 K.

Figure 5.11 is a comparison of the energy levels of a harmonic oscillator with those
of a hydrogen atom and of a particle in a box with infinitely hard walls. The shapes
of the respective potential-energy curves are also shown. The spacing of the energy
levels is constant only for the harmonic oscillator.

Wave Functions

For each choice of the parameter 
n there is a different wave function 	n. Each func-
tion consists of a polynomial Hn(y) (called a Hermite polynomial) in either odd or
even powers of y, the exponential factor e�y2�2, and a numerical coefficient which is
needed for 	n to meet the normalization condition

��

��
�	n�2 dy � 1 n � 0, 1, 2 . . .

The general formula for the nth wave function is

	n � � 	1�4
(2nn!)�1�2Hn(y)e�y2�2 (5.72)

The first six Hermite polynomials Hn(y) are listed in Table 5.2.
The wave functions that correspond to the first six energy levels of a harmonic

oscillator are shown in Fig. 5.12. In each case the range to which a particle oscillating
classically with the same total energy En would be confined is indicated. Evidently the
particle is able to penetrate into classically forbidden regions—in other words, to exceed
the amplitude A determined by the energy—with an exponentially decreasing proba-
bility, just as in the case of a particle in a finite square potential well.

It is interesting and instructive to compare the probability densities of a classical har-
monic oscillator and a quantum-mechanical harmonic oscillator of the same energy. The
upper curves in Fig. 5.13 show this density for the classical oscillator. The probability
P of finding the particle at a given position is greatest at the endpoints of its motion,

2m�



�

Harmonic 
oscillator
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Table 5.2 Some Hermite Polynomials

n Hn(y) 
n En

0 1 1 

1
2


h�

1 2y 3 

3
2


h�

2 4y2 � 2 5 

5
2


h�

3 8y3 � 12y 7 

7
2


h�

4 16y4 � 48y2 � 12 9 

9
2


h�

5 32y5 � 160y3 � 120y 11 

1
2
1

h�

Figure 5.11 Potential wells and en-
ergy levels of (a) a hydrogen atom,
(b) a particle in a box, and (c) a
harmonic oscillator. In each case
the energy levels depend in a dif-
ferent way on the quantum
number n. Only for the harmonic
oscillator are the levels equally
spaced. The symbol � means “is
proportional to.”
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where it moves slowly, and least near the equilibrium position (x � 0), where it moves
rapidly.

Exactly the opposite behavior occurs when a quantum-mechanical oscillator is
in its lowest energy state of n � 0. As shown, the probability density �	0�2 has its
maximum value at x � 0 and drops off on either side of this position. However,
this disagreement becomes less and less marked with increasing n. The lower graph
of Fig. 5.13 corresponds to n � 10, and it is clear that �	10�2 when averaged over
x has approximately the general character of the classical probability P. This is
another example of the correspondence principle mentioned in Chap. 4: In the limit
of large quantum numbers, quantum physics yields the same results as classical
physics.

It might be objected that although �	10�2 does indeed approach P when smoothed
out, nevertheless �	10�2 fluctuates rapidly with x whereas P does not. However, this
objection has meaning only if the fluctuations are observable, and the smaller the spac-
ing of the peaks and hollows, the more difficult it is to detect them experimentally.
The exponential “tails” of �	10�2 beyond x � 	 A also decrease in magnitude with
increasing n. Thus the classical and quantum pictures begin to resemble each other
more and more the larger the value of n, in agreement with the correspondence prin-
ciple, although they are very different for small n.
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x = –A x = +A

P

|	10|2

x = –A x = +A

P

|	0|2

Figure 5.13 Probability densities for the n � 0 and n � 10 states of a quantum-mechanical harmonic
oscillator. The probability densities for classical harmonic oscillators with the same energies are shown
in white. In the n � 10 state, the wavelength is shortest at x � 0 and longest at x � �A.

x = –A x = +A

	1

x = –A x = +A

	2

x = –A x = +A

	3

x = –A x = +A

	4

x = –A x = +A

	0

x = –A x = +A

	5

Figure 5.12 The first six harmonic-
oscillator wave functions. The ver-
tical lines show the limits �A and
�A between which a classical os-
cillator with the same energy
would vibrate.
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Example 5.7

Find the expectation value 
x� for the first two states of a harmonic oscillator.

Solution

The general formula for 
x� is


x� � ��

��
x �	�2 dx

In calculations such as this it is easier to begin with y in place of x and afterward use Eq. (5.67)
to change to x. From Eq. (5.72) and Table 5.2,

	0 � � 	1�4
e�y2�2

	1 � � 	1�4� 	1�2
(2y) e�y2�2

The values of 
x� for n � 0 and n � 1 will respectively be proportional to the integrals

n � 0: ��

��

y�	0�2 dy � ��

��

ye�y2

dy � �
 e�y2�
�

��

� 0

n � 1: ��

��

y�	1�2 dy � ��

��

y3e�y2

dy � �
� � 	 e�y2�
�

��

� 0

The expectation value 
x� is therefore 0 in both cases. In fact, 
x� � 0 for all states of a harmonic
oscillator, which could be predicted since x � 0 is the equilibrium position of the oscillator
where its potential energy is a minimum.
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Appendix to  Chapter  5

The Tunnel Effect

W
e consider the situation that was shown in Fig. 5.9 of a particle of energy
E � U that approaches a potential barrier U high and L wide. Outside
the barrier in regions I and III Schrödinger’s equation for the particle takes

the forms

� E	I � 0 (5.73)

� E	III � 0 (5.74)

The solutions to these equations that are appropriate here are

	I � Aeik1x � Be�ik1x (5.75)

	III � Feik1x � Ge�ik1x (5.76)

where

k1 � � � (5.77)

is the wave number of the de Broglie waves that represent the particles outside the
barrier.

Because

ei� � cos � � i sin �

e�i� � cos � � i sin �

these solutions are equivalent to Eq. (5.38)—the values of the coefficients are differ-
ent in each case, of course—but are in a more suitable form to describe particles that
are not trapped.

The various terms in Eqs. (5.75) and (5.76) are not hard to interpret. As was shown
schematically in Fig. 5.9, Aeik1x is a wave of amplitude A incident from the left on the
barrier. Hence we can write

Incoming wave 	I� � Aeik1x (5.78)

This wave corresponds to the incident beam of particles in the sense that �	I��2 is their
probability density. If �I� is the group velocity of the incoming wave, which equals the
velocity of the particles, then

S � �	I��2 �I�

2�


�

p


�

�2mE�



�

Wave number
outside barrier

2m


�2

d2	III



dx2

2m


�2

d2	I


dx2
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is the flux of particles that arrive at the barrier. That is, S is the number of particles
per second that arrive there.

At x � 0 the incident wave strikes the barrier and is partially reflected, with

Reflected wave 	I� � Be�ik1x (5.79)

representing the reflected wave. Hence

	I � 	I� � 	I� (5.80)

On the far side of the barrier (x � L) there can only be a wave

Transmitted wave 	III� � Feik1x (5.81)

traveling in the �x direction at the velocity �III� since region III contains nothing that
could reflect the wave. Hence G � 0 and

	III � 	III� � Feik1x (5.82)

The transmission probability T for a particle to pass through the barrier is the ratio

T � � (5.83)

between the flux of particles that emerges from the barrier and the flux that arrives at
it. In other words, T is the fraction of incident particles that succeed in tunneling
through the barrier. Classically T � 0 because a particle with E � U cannot exist inside
the barrier; let us see what the quantum-mechanical result is.

In region II Schrödinger’s equation for the particles is

� (E � U)	II � � (U � E)	II � 0 (5.84)

Since U � E the solution is

	II � Ce�k2x � Dek2x (5.85)

where the wave number inside the barrier is

k2 � (5.86)

Since the exponents are real quantities, 	II does not oscillate and therefore does not
represent a moving particle. However, the probability density �	II�2 is not zero, so there
is a finite probability of finding a particle within the barrier. Such a particle may emerge
into region III or it may return to region I.

�2m(U�� E)�




�
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inside barrier

Wave function 
inside barrier

2m
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dx2
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Applying the Boundary Conditions

In order to calculate the transmission probability T we have to apply the appropriate
boundary conditions to 	I, 	II, and 	III. Fig. 5.14 shows the wave functions in regions
I, II, and III. As discussed earlier, both 	 and its derivative �	��x must be continuous
everywhere. With reference to Fig. 5.14, these conditions mean that for a perfect fit at
each side of the barrier, the wave functions inside and outside must have the same
value and the same slope. Hence at the left-hand side of the barrier

	I � 	II (5.87)

� (5.88)

and at the right-hand side

	II � 	III (5.89)

� (5.90)

Now we substitute 	I, 	II, and 	III from Eqs. (5.75), (5.81), and (5.85) into the
above equations. This yields in the same order

A � B � C � D (5.91)

ik1A � ik1B � �k2C � k2D (5.92)

Ce�k2L � Dek2L � Feik1L (5.93)

�k2Ce�k2L � k2Dek2L � ik1Feik1L (5.94)

Equations (5.91) to (5.94) may be solved for (A�F) to give

� 	 � 
 � � � 	�e(ik1�k2)L � 
 � � � 	� e(ik1�k2)L (5.95)
k1
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x

Figure 5.14 At each wall of the barrier, the wave functions inside and outside it must match up
perfectly, which means that they must have the same values and slopes there.
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at x � 0 x � 0
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Let us assume that the potential barrier U is high relative to the energy E of the
incident particles. If this is the case, then k2�k1 � k1�k2 and

� � (5.96)

Let us also assume that the barrier is wide enough for 	II to be severely weakened
between x � 0 and x � L. This means that k2L �� 1 and

ek2L �� e�k2L

Hence Eq. (5.95) can be approximated by

� 	 � � � 	 e(ik1�k2)L (5.97)

The complex conjugate of (A�F), which we need to compute the transmission prob-
ability T, is found by replacing i by �i wherever it occurs in (A�F):

� 	* � � � 	 e(�ik1�k2)L (5.98)

Now we multiply (A�F) and (A�F)* to give

� � � 	 e2k2L

Here �III� � �I� so �III���1� � 1 in Eq. (5.83), which means that the transmission
probability is

T � � � 	
�1

� 
 � e�2k2L (5.99)

From the definitions of k1, Eq. (5.77), and of k2, Eq. (5.86), we see that

� 	
2

� � � 1 (5.100)

This formula means that the quantity in brackets in Eq. (5.99) varies much less with
E and U than does the exponential. The bracketed quantity, furthermore, always is of
the order of magnitude of 1 in value. A reasonable approximation of the transmission
probability is therefore

T � e�2k2L (5.101)

as stated in Sec. 5.10.
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Exercises 197

E X E R C I S E S

Press on, and faith will catch up with you. — Jean D’Alembert

5.1 Quantum Mechanics

1. Which of the wave functions in Fig. 5.15 cannot have physical
significance in the interval shown? Why not?

2. Which of the wave functions in Fig. 5.16 cannot have physical
significance in the interval shown? Why not?

3. Which of the following wave functions cannot be solutions of
Schrödinger’s equation for all values of x? Why not? (a) � �

A sec x; (b) � � A tan x; (c) � � Aex2

; (d) � � Ae�x2

.

4. Find the value of the normalization constant A for the wave
function � � Axe�x2�2.

5. The wave function of a certain particle is � � A cos2x for
���2 � x � ��2. (a) Find the value of A. (b) Find the proba-
bility that the particle be found between x � 0 and x � ��4.

5.2 The Wave Equation

6. The formula y � A cos � (t � x�ν), as we saw in Sec. 3.3, de-
scribes a wave that moves in the �x direction along a stretched
string. Show that this formula is a solution of the wave equa-
tion, Eq.(5.3).

7. As mentioned in Sec. 5.1, in order to give physically meaning-
ful results in calculations a wave function and its partial deriva-
tives must be finite, continuous, and single-valued, and in addi-
tion must be normalizable. Equation (5.9) gives the wave
function of a particle moving freely (that is, with no forces
acting on it) in the �x direction as

� � Ae�(i��)(Et�px)

where E is the particle’s total energy and p is its momentum.
Does this wave function meet all the above requirements? If
not, could a linear superposition of such wave functions meet
these requirements? What is the significance of such a superpo-
sition of wave functions?

5.4 Linearity and Superposition

8. Prove that Schrödinger’s equation is linear by showing that

� � a1�1(x, t) � a2�2(x, t)

is also a solution of Eq. (5.14) if �1 and �2 are themselves
solutions.

5.6 Operators

9. Show that the expectation values �px� and �xp� are related by

�px� � �xp� �

This result is described by saying that p and x do not commute
and it is intimately related to the uncertainty principle.

10. An eigenfunction of the operator d2�dx2 is sin nx, where n
� 1, 2, 3, . . . . Find the corresponding eigenvalues.

�
�
i
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5.7 Schrödinger’s Equation: Steady-State Form

11. Obtain Schrödinger’s steady-state equation from Eq. (3.5) with
the help of de Broglie’s relationship � � h�m� by letting y � �
and finding �2���x2.

5.8 Particle in a Box

12. According to the correspondence principle, quantum theory
should give the same results as classical physics in the limit of
large quantum numbers. Show that as n → �, the probability of
finding the trapped particle of Sec. 5.8 between x and x � �x
is � x�L and so is independent of x, which is the classical 
expectation.

13. One of the possible wave functions of a particle in the potential
well of Fig. 5.17 is sketched there. Explain why the wavelength
and amplitude of � vary as they do.

198 Appendix to Chapter 5

of the wave functions for the n � 1 and n � 2 states of a parti-
cle in a box L wide.

19. Find the probability that a particle in a box L wide can be
found between x � 0 and x � L�n when it is in the nth state.

20. In Sec. 3.7 the standard deviation � of a set of N measurements
of some quantity x was defined as

� � ���N
1

� �
N

i�1

(xi�� x0)2�
(a) Show that, in terms of expectation values, this formula can be

written as

� � ��(x � ��x	)2	� � ��x2	 �� �x	2�

(b) If the uncertainty in position of a particle in a box is taken as
the standard deviation, find the uncertainty in the expectation
value �x	 � L�2 for n � 1. (c) What is the limit of �x as n
increases?

21. A particle is in a cubic box with infinitely hard walls whose
edges are L long (Fig. 5.18). The wave functions of the particle
are given by

� � A sin sin sin

Find the value of the normalization constant A.

nx � 1, 2, 3, . . .
ny � 1, 2, 3, . . .
nz � 1, 2, 3, . . .

nz�z
�

L

ny�y
�

L

nx�x
�

L

y

z

L

L
L

Figure 5.18 A cubic box.
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L

L

Figure 5.17

14. In Sec. 5.8 a box was considered that extends from x � 0 to 
x � L. Suppose the box instead extends from x � x0 to x �

x0 � L, where x0 ≠ 0. Would the expression for the wave func-
tions of a particle in this box be any different from those in the
box that extends from x � 0 to x � L? Would the energy levels
be different?

15. An important property of the eigenfunctions of a system is that
they are orthogonal to one another, which means that


�

��
�n�m dV � 0 n � m

Verify this relationship for the eigenfunctions of a particle in a
one-dimensional box given by Eq. (5.46).

16. A rigid-walled box that extends from �L to L is divided into
three sections by rigid interior walls at �x and x, where x 	 L.
Each section contains one particle in its ground state. (a) What
is the total energy of the system as a function of x? (b) Sketch
E(x) versus x. (c) At what value of x is E(x) a minimum?

17. As shown in the text, the expectation value �x	 of a particle
trapped in a box L wide is L�2, which means that its average
position is the middle of the box. Find the expectation value �x2	.

18. As noted in Exercise 8, a linear combination of two wave func-
tions for the same system is also a valid wave function. Find
the normalization constant B for the combination

� � B �sin � sin �2�x
�

L

�x
�
L

22. The particle in the box of Exercise 21 is in its ground state of
nx � ny � nz � 1. (a) Find the probability that the particle will
be found in the volume defined by 0 
 x 
 L�4, 0 
 y 


L�4, 0 
 z 
 L�4. (b) Do the same for L�2 instead of L�4.

23. (a) Find the possible energies of the particle in the box of
Exercise 21 by substituting its wave function � in Schrödinger’s
equation and solving for E. (Hint: Inside the box U � 0.) 
(b) Compare the ground-state energy of a particle in a one-
dimensional box of length L with that of a particle in the three-
dimensional box.

5.10 Tunnel Effect

24. Electrons with energies of 0.400 eV are incident on a barrier
3.00 eV high and 0.100 nm wide. Find the approximate proba-
bility for these electrons to penetrate the barrier.
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amplitude such that its bob rises a maximum of 1.00 mm
above its equilibrium position. What is the corresponding
quantum number?

34. Show that the harmonic-oscillator wave function �1 is a solu-
tion of Schrödinger’s equation.

35. Repeat Exercise 34 for �2.

36. Repeat Exercise 34 for �3.

Appendix: The Tunnel Effect

37. Consider a beam of particles of kinetic energy E incident on a
potential step at x � 0 that is U high, where E � U (Fig. 5.19).
(a) Explain why the solution De�ik�x (in the notation of 
appendix) has no physical meaning in this situation, so that D
� 0. (b) Show that the transmission probability here is T �

CC*���AA*�1 � 4k2
1�(k1 � k�)2. (c) A 1.00-mA beam of elec-

trons moving at 2.00 � 106 m/s enters a region with a sharply
defined boundary in which the electron speeds are reduced to
1.00 � 106 m/s by a difference in potential. Find the transmit-
ted and reflected currents.

38. An electron and a proton with the same energy E approach a
potential barrier whose height U is greater than E. Do they have
the same probability of getting through? If not, which has the
greater probability?

Exercises 199

25. A beam of electrons is incident on a barrier 6.00 eV high and
0.200 nm wide. Use Eq. (5.60) to find the energy they should
have if 1.00 percent of them are to get through the barrier.

5.11 Harmonic Oscillator

26. Show that the energy-level spacing of a harmonic oscillator is in
accord with the correspondence principle by finding the ratio
�En �En between adjacent energy levels and seeing what hap-
pens to this ratio as n → 	.

27. What bearing would you think the uncertainty principle has on
the existence of the zero-point energy of a harmonic oscillator?

28. In a harmonic oscillator, the particle varies in position from �A to
�A and in momentum from �p0 to �p0. In such an oscillator,
the standard deviations of x and p are �x � A��2� and �p �

p0��2�. Use this observation to show that the minimum energy of
a harmonic oscillator is 


1
2


h�.

29. Show that for the n � 0 state of a harmonic oscillator whose
classical amplitude of motion is A, y � 1 at x � A, where y is
the quantity defined by Eq. (5.67).

30. Find the probability density ��0�2 dx at x � 0 and at x � �A of
a harmonic oscillator in its n � 0 state (see Fig. 5.13).

31. Find the expectation values �x� and �x2� for the first two states
of a harmonic oscillator.

32. The potential energy of a harmonic oscillator is U � 

1
2


kx2.
Show that the expectation value �U� of U is E0�2 when the
oscillator is in the n � 0 state. (This is true of all states of the
harmonic oscillator, in fact.) What is the expectation value of
the oscillator’s kinetic energy? How do these results compare
with the classical values of U� and K�E�?

33. A pendulum with a 1.00-g bob has a massless string 250 mm
long. The period of the pendulum is 1.00 s. (a) What is its
zero-point energy? Would you expect the zero-point oscillations
to be detectable? (b) The pendulum swings with a very small

I II

E

E – U

Energy

U

Figure 5.19
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CHAPTER 6

Quantum Theory of 
the Hydrogen Atom

6.1 SCHRÖDINGER’S EQUATION FOR THE
HYDROGEN ATOM

Symmetry suggests spherical polar coordinates

6.2 SEPARATION OF VARIABLES
A differential equation for each variable

6.3 QUANTUM NUMBERS
Three dimensions, three quantum numbers

6.4 PRINCIPAL QUANTUM NUMBER
Quantization of energy

6.5 ORBITAL QUANTUM NUMBER
Quantization of angular-momentum magnitude

6.6 MAGNETIC QUANTUM NUMBER
Quantization of angular-momentum direction

6.7 ELECTRON PROBABILITY DENSITY
No definite orbits

6.8 RADIATIVE TRANSITIONS
What happens when an electron goes from one
state to another

6.9 SELECTION RULES
Some transitions are more likely to occur than
others

6.10 ZEEMAN EFFECT
How atoms interact with a magnetic field

The strong magnetic fields associated with sunspots were detected
by means of the Zeeman effect. Sunspots appear dark because
they are cooler than the rest of the solar surface, although quite
hot themselves. The number of spots varies in an 11-year cycle,
and a number of terrestrial phenomena follow this cycle. 
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T
he first problem that Schrödinger tackled with his new wave equation was that
of the hydrogen atom. He found the mathematics heavy going, but was rewarded
by the discovery of how naturally quantization occurs in wave mechanics: “It

has its basis in the requirement that a certain spatial function be finite and single-
valued.” In this chapter we shall see how Schrödinger’s quantum theory of the hydro-
gen atom achieves its results, and how these results can be interpreted in terms of
familiar concepts.

6.1 SCHRÖDINGER’S EQUATION FOR 
THE HYDROGEN ATOM

Symmetry suggests spherical polar coordinates

A hydrogen atom consists of a proton, a particle of electric charge �e, and an elec-
tron, a particle of charge �e which is 1836 times lighter than the proton. For the sake
of convenience we shall consider the proton to be stationary, with the electron mov-
ing about in its vicinity but prevented from escaping by the proton’s electric field. As
in the Bohr theory, the correction for proton motion is simply a matter of replacing the
electron mass m by the reduced mass m� given by Eq. (4.22).

Schrödinger’s equation for the electron in three dimensions, which is what we must
use for the hydrogen atom, is

� � � (E � U)� � 0 (6.1)

The potential energy U here is the electric potential energy

U � � (6.2)

of a charge �e when it is the distance r from another charge �e.
Since U is a function of r rather than of x, y, z, we cannot substitute Eq. (6.2)

directly into Eq. (6.1). There are two alternatives. One is to express U in terms of the
cartesian coordinates x, y, z by replacing r by �x2 � y�2 � z2�. The other is to express
Schrödinger’s equation in terms of the spherical polar coordinates r, �, � defined in
Fig. 6.1. Owing to the symmetry of the physical situation, doing the latter is appro-
priate here, as we shall see in Sec. 6.2.

The spherical polar coordinates r, �, � of the point P shown in Fig. 6.1 have the
following interpretations:

r � length of radius vector from origin O to point P

� �x2 � y�2 � z2�

� � angle between radius vector and �z axis

� zenith angle

� cos�1

� cos�1 z
�
r

z
��
�x2 � y�2 � z2�

Spherical 
polar 
coordinates

e2

�
4��0r

Electric potential 
energy 

2m
�
�2

�2�
�
�z2

�2�
�
�y2

�2�
�
�x2
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(a)

x = r sin θ cos φ
y = r sin θ sin φ
z = r cos θ

x
y

φ
y

x

z
r

0

θ
P

(b)

z

O
θ

(c)

x

z

O

φ

Figure 6.1 (a) Spherical polar co-
ordinates. (b) A line of constant
zenith angle � on a sphere is a
circle whose plane is perpendicu-
lar to the z axis. (c) A line of con-
stant azimuth angle � is a circle
whose plane includes the z axis.
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� � angle between the projection of the radius vector in the xy
plane and the �x axis, measured in the direction shown

� azimuth angle

� tan�1

On the surface of a sphere whose center is at O, lines of constant zenith angle � are
like parallels of latitude on a globe (but we note that the value of � of a point is not
the same as its latitude; � � 90	 at the equator, for instance, but the latitude of the
equator is 0	). Lines of constant azimuth angle � are like meridians of longitude (here
the definitions coincide if the axis of the globe is taken as the �z axis and the �x axis
is at � � 0	).

In spherical polar coordinates Schrödinger’s equation is written

�r2 � � �sin� �
� � (E � U)� � 0 (6.3)

Substituting Eq. (6.2) for the potential energy U and multiplying the entire equation
by r2 sin2�, we obtain

sin2� �r2 � � sin� �sin� �

Equation (6.4) is the partial differential equation for the wave function � of the elec-
tron in a hydrogen atom. Together with the various conditions � must obey, namely
that � be normalizable and that � and its derivatives be continuous and single-valued
at each point r, �, �, this equation completely specifies the behavior of the electron.
In order to see exactly what this behavior is, we must solve Eq. (6.4) for �.

When Eq. (6.4) is solved, it turns out that three quantum numbers are required to
describe the electron in a hydrogen atom, in place of the single quantum number of
the Bohr theory. (In Chap. 7 we shall find that a fourth quantum number is needed to
describe the spin of the electron.) In the Bohr model, the electron’s motion is basically
one-dimensional, since the only quantity that varies as it moves is its position in a def-
inite orbit. One quantum number is enough to specify the state of such an electron,
just as one quantum number is enough to specify the state of a particle in a one-
dimensional box.

A particle in a three-dimensional box needs three quantum numbers for its de-
scription, since there are now three sets of boundary conditions that the particle’s wave
function � must obey: � must be 0 at the walls of the box in the x, y, and z directions
independently. In a hydrogen atom the electron’s motion is restricted by the inverse-
square electric field of the nucleus instead of by the walls of a box, but the electron is

��
�
��

�
�
��

��
�
�r

�
�
�r

Hydrogen atom

2m
�
�2

�2�
�
��2

1
�
r2 sin2�

��
�
��

�
�
��

1
�
r2 sin�

��
�
�r

�
�
�r

1
�
r2

y
�
x
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� � � � E�� � 0 (6.4)
e2

�
4��0r

2mr2 sin2� 
��

�2

�2�
�
��2
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� � � E� � 0 (6.6)
e2

�
4��0r

2mr2 sin2�
��

�2

nevertheless free to move in three dimensions, and it is accordingly not surprising that
three quantum numbers govern its wave function also.

6.2 SEPARATION OF VARIABLES

A differential equation for each variable

The advantage of writing Schrödinger’s equation in spherical polar coordinates for the
problem of the hydrogen atom is that in this form it may be separated into three in-
dependent equations, each involving only a single coordinate. Such a separation is
possible here because the wave function �(r, �, �) has the form of a product of three
different functions: R(r), which depends on r alone; 
(�) which depends on � alone;
and �(�), which depends on � alone. Of course, we do not really know that this sep-
aration is possible yet, but we can proceed by assuming that

�(r, �, �) � R(r)
(�)�(�) (6.5)

and then seeing if it leads to the desired separation. The function R(r) describes how
the wave function � of the electron varies along a radius vector from the nucleus, with
� and � constant. The function 
(�) describes how � varies with zenith angle � along
a meridian on a sphere centered at the nucleus, with r and � constant (Fig. 6.1c). The
function �(�) describes how � varies with azimuth angle � along a parallel on a sphere
centered at the nucleus, with r and � constant (Fig. 6.1b).

From Eq. (6.5), which we may write more simply as

� � R
�

we see that

� 
� � 
�

� R� � R�

� R
 � R


The change from partial derivatives to ordinary derivatives can be made because we
are assuming that each of the functions R, 
, and � depends only on the respective
variables r, �, and �.

When we substitute R
� for � in Schrödinger’s equation for the hydrogen atom
and divide the entire equation by R
�, we find that

�r2 � � �sin� � �
d2�
�
d�2

1
�
�

d

�
d�

d
�
d�

sin�
�




dR
�
dr

d
�
dr

sin2�
�

R

d2�
�
d�2

�2�
�
��2

�2�
�
��2

d

�
d�

�

�
��

��
�
��

dR
�
dr

�R
�
�r

��
�
�r

Hydrogen-atom
wave function
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The third term of Eq. (6.6) is a function of azimuth angle � only, whereas the other
terms are functions of r and � only.

Let us rearrange Eq. (6.6) to read

�r2 � � �sin� �
� � � E� � � (6.7)

This equation can be correct only if both sides of it are equal to the same constant, since they
are functions of different variables. As we shall see, it is convenient to call this constant
ml

2. The differential equation for the function � is therefore

� � m2
l (6.8)

Next we substitute ml
2 for the right-hand side of Eq. (6.7), divide the entire equa-

tion by sin2�, and rearrange the various terms, which yields

�r2 � � � � E� � � �sin� � (6.9)

Again we have an equation in which different variables appear on each side, requiring
that both sides be equal to the same constant. This constant is called l(l � 1), once
more for reasons that will be apparent later. The equations for the functions 
 and R
are therefore

� �sin� � � l(l � 1) (6.10)

�r2 � � � � E� � l(l � 1) (6.11)

Equations (6.8), (6.10), and (6.11) are usually written

Equation for � � ml
2� � 0 (6.12)

�sin� � � �l(l � 1) � �
 � 0 (6.13)

�r2 � � � � � E� � �R � 0 (6.14)

Each of these is an ordinary differential equation for a single function of a single vari-
able. Only the equation for R depends on the potential energy U(r).

l(l � 1)
�

r2

e2

�
4��0r

2m
�
�2

dR
�
dr

d
�
dr

1
�
r2

Equation 
for R

ml
2

�
sin2�

d

�
d�

d
�
d�

1
�
sin�

Equation
for �

d2�
�
d�2

e2

�
4��0r

2mr2

�
�2

dR
�
dr

d
�
dr

1
�
R

d

�
d�

d
�
d�

1
�

 sin�

m2
l

�
sin2�

d

�
d�

d
�
d�

1
�

 sin�

m2
l�

sin2�

e2

�
4��0r

2mr2

�
�2

dR
�
dr

d
�
dr

1
�
R

d2�
�
d�2

1
�
�

d2�
�
d�2

1
�
�

e2

�
4��0r

2mr2 sin2�
��

�2

d

�
d�

d
�
d�

sin�
�




dR
�
dr

d
�
dr

sin2�
�

R
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We have therefore accomplished our task of simplifying Schrödinger’s equation for
the hydrogen atom, which began as a partial differential equation for a function � of
three variables. The assumption embodied in Eq. (6.5) is evidently valid.

6.3 QUANTUM NUMBERS

Three dimensions, three quantum numbers

The first of these equations, Eq. (6.12), is readily solved. The result is

�(�) � Aeiml� (6.15)

As we know, one of the conditions that a wave function—and hence �, which is
a component of the complete wave function �—must obey is that it have a 
single value at a given point in space. From Fig. 6.2 it is clear that � and � � 2�
both identify the same meridian plane. Hence it must be true that �(�) �
�(� � 2�), or

Aeiml� � Aeiml(��2�)

which can happen only when ml is 0 or a positive or negative integer (�1, 
�2, �3, . . .). The constant ml is known as the magnetic quantum number of the
hydrogen atom.

The differential equation for 
(�), Eq. (6.13), has a solution provided that the con-
stant l is an integer equal to or greater than �ml�, the absolute value of ml. This
requirement can be expressed as a condition on ml in the form

ml � 0, �1, �2, 
 
 
 , �l

The constant l is known as the orbital quantum number.
The solution of the final equation, Eq. (6.14), for the radial part R(r) of the hydrogen-

atom wave function � also requires that a certain condition be fulfilled. This condition
is that E be positive or have one of the negative values En (signifying that the electron
is bound to the atom) specified by

En � � � � � n � 1, 2, 3, . . . (6.16)

We recognize that this is precisely the same formula for the energy levels of the hydrogen
atom that Bohr obtained.

Another condition that must be obeyed in order to solve Eq. (6.14) is that n, known
as the principal quantum number, must be equal to or greater than l � 1. This
requirement may be expressed as a condition on l in the form

l � 0, 1, 2, 
 
 
 , (n � 1)

E1
�
n2

1
�
n2

me4

��
32�2�2

0�2
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0
φ

φ + 2π

y

x

z

Figure 6.2 The angles � and � �
2� both indentify the same
meridian plane.
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Hence we may tabulate the three quantum numbers n, l, and m together with their
permissible values as follows:

Principal quantum number n � 1, 2, 3, 
 
 


Orbital quantum number l � 0, 1, 2, 
 
 
 , (n � 1) (6.17)

Magnetic quantum number ml � 0, �1, �2, 
 
 
 , �l

It is worth noting again the natural way in which quantum numbers appear in quantum-
mechanical theories of particles trapped in a particular region of space.

To exhibit the dependence of R, 
, and � upon the quantum numbers n, l, m, we
may write for the electron wave functions of the hydrogen atom

� � Rnl
lml
�ml

(6.18)

The wave functions R, 
, and � together with � are given in Table 6.1 for n � 1, 2,
and 3.

206 Chapter Six

Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n � 1, 2, and 3*

n l ml �(�) 
(�) R(r) �(r, �, �)

1 0 0 e�r	a0 e�r	a0

2 0 0 �2 � �e�r	2a0 �2 � �e�r	2a0

2 1 0 cos � e�r	2a0 e�r	2a0 cos �

2 1 �1 e�i� sin � e�r	2a0 e�r	2a0 sin � e�i�

3 0 0 �27 � 18 � 2 �e�r	3a0 �27 � 18 � 2 �e�r	3a0

3 1 0 cos � �6 � � e�r	3a0 �6 � � e�r	3a0 cos �

3 1 �1 e�i� sin � �6 � � e�r	3a0 �6 � � e�r	3a0 sin � e�i�

3 2 0 (3 cos2� � 1) e�r	3a0 e�r	3a0 (3 cos2� � 1)

3 2 �1 e�i�
sin � cos � e�r	3a0 e�r	3a0 sin � cos � e�i�

3 2 �2 e�2i�
sin2� e�r	3a0 e�r	3a0 sin2� e�2i�

*The quantity a0 � 4��0�2/me2 � 5.292 � 10�11 m is equal to the radius of the innermost Bohr orbit.
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Example 6.1

Find the ground-state electron energy E1 by substituting the radial wave function R that corre-
sponds to n � 1, l � 0 into Eq. (6.14).

Solution

From Table 6.1 we see that R � (2	a3
0

	2)e�r	a0. Hence

� � �e�r	a0

and �r2 � � � � �e�r	a0

Substituting in Eq. (6.14) with E � E1 and l � 0 gives

�� � � � � � � �e�r	a0 � 0

Each parenthesis must equal 0 for the entire equation to equal 0. For the second parenthesis
this gives

� � 0

a0 �

which is the Bohr radius a0 � r1 given by Eq. (4.13)—we recall that � � h	2�. For the first
parenthesis,

� � 0

E1 � � � �

which agrees with Eq. (6.16).

6.4 PRINCIPAL QUANTUM NUMBER

Quantization of energy

It is interesting to consider what the hydrogen-atom quantum numbers signify in terms
of the classical model of the atom. This model, as we saw in Chap. 4, corresponds 
exactly to planetary motion in the solar system except that the inverse-square force
holding the electron to the nucleus is electrical rather than gravitational. Two quanti-
ties are conserved—that is, maintain a constant value at all times—in planetary mo-
tion: the scalar total energy and the vector angular momentum of each planet.

Classically the total energy can have any value whatever, but it must, of course, be
negative if the planet is to be trapped permanently in the solar system. In the quan-
tum theory of the hydrogen atom the electron energy is also a constant, but while it
may have any positive value (corresponding to an ionized atom), the only negative
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values the electron can have are specified by the formula En � E1	n2. The quantiza-
tion of electron energy in the hydrogen atom is therefore described by the principal
quantum number n.

The theory of planetary motion can also be worked out from Schrödinger’s equa-
tion, and it yields a similar energy restriction. However, the total quantum number n
for any of the planets turns out to be so immense (see Exercise 11 of Chap. 4) that
the separation of permitted levels is far too small to be observable. For this reason clas-
sical physics provides an adequate description of planetary motion but fails within the
atom.

6.5 ORBITAL QUANTUM NUMBER

Quantization of angular-momentum magnitude

The interpretation of the orbital quantum number l is less obvious. Let us look at the
differential equation for the radial part R(r) of the wave function �:

�r2 � � � � � E� � � R � 0 (6.14)

This equation is solely concerned with the radial aspect of the electron’s motion, that
is, its motion toward or away from the nucleus. However, we notice the presence of
E, the total electron energy, in the equation. The total energy E includes the electron’s
kinetic energy of orbital motion, which should have nothing to do with its radial motion.

This contradiction may be removed by the following argument. The kinetic energy
KE of the electron has two parts, KEradial due to its motion toward or away from the
nucleus, and KEorbital due to its motion around the nucleus. The potential energy U of
the electron is the electric energy

U � � (6.2)

Hence the total energy of the electron is

E � KEradial � KEorbital � U � KEradial � KEorbital �

Inserting this expression for E in Eq. (6.14) we obtain, after a slight rearrangement,

�r2 � � �KEradial � KEorbital � � R � 0 (6.19)

If the last two terms in the square brackets of this equation cancel each other out, we
shall have what we want: a differential equation for R(r) that involves functions of the
radius vector r exclusively.

We therefore require that

KEorbital � (6.20)
�2l(l � 1)
��

2mr2

�2l(l � 1)
��

2mr2

2m
�
�2

dR
�
dr

d
�
dr

1
�
r2

e2

�
4��0r

e2

�
4��0r

l(l � 1)
�

r2

e2
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4��0r
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Since the orbital kinetic energy of the electron and the magnitude of its angular
momentum are respectively

KEorbital � m�2
orbital L � m�orbitalr

we may write for the orbital kinetic energy

KEorbital �

Hence, from Eq. (6.20),

�

L � �l(l � 1�)�� (6.21)

With the orbital quantum number l restricted to the values

l � 0, 1, 2, 
 
 
 , (n � 1)

The electron can have only the angular momenta L specified by Eq. (6.21), Like to-
tal energy E, angular momentum is both conserved and quantized. The quantity

� � � 1.054 � 10�34 J 
 s

is thus the natural unit of angular momentum.
In macroscopic planetary motion, as in the case of energy, the quantum number

describing angular momentum is so large that the separation into discrete angular
momentum states cannot be experimentally observed. For example, an electron (or,
for that matter, any other body) whose orbital quantum number is 2 has the angular
momentum

L � �2(2 ��1)� � � �6� �

� 2.6 � 10�34 J 
 s

By contrast the orbital angular momentum of the earth is 2.7 � 1040 J 
 s!

Designation of Angular-Momentum States 

It is customary to specify electron angular-momentum states by a letter, with s corre-
sponding to l � 0, p to l � 1, and so on, according to the following scheme:

l � 0 1 2 3 4 5 6 
 
 


s p d f g h i 
 
 


Angular-
momentum states

h
�
2�

Electron angular 
momentum

�2l(l � 1)
��

2mr2

L2

�
2mr2

L2

�
2mr2

1
�
2
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This peculiar code originated in the empirical classification of spectra into series called
sharp, principal, diffuse, and fundamental which occurred before the theory of the
atom was developed. Thus an s state is one with no angular momentum, a p state has
the angular moment �2� �, and so forth.

The combination of the total quantum number with the letter that represents orbital
angular momentum provides a convenient and widely used notation for atomic elec-
tron states. In this notation a state in which n � 2, l � 0 is a 2s state, for example,
and one in which n � 4, l � 2 is a 4d state. Table 6.2 gives the designations of electron
states in an atom through n � 6, l � 5.

6.6   MAGNETIC QUANTUM NUMBER

Quantization of angular-momentum direction

The orbital quantum number l determines the magnitude L of the electron’s angular
momentum L. However, angular momentum, like linear momentum, is a vector quan-
tity, and to describe it completely means that its direction be specified as well as its
magnitude. (The vector L, we recall, is perpendicular to the plane in which the rota-
tional motion takes place, and its sense is given by the right-hand rule: When the
fingers of the right hand point in the direction of the motion, the thumb is in the
direction of L. This rule is illustrated in Fig. 6.3.)

What possible significance can a direction in space have for a hydrogen atom? The
answer becomes clear when we reflect that an electron revolving about a nucleus is a
minute current loop and has a magnetic field like that of a magnetic dipole. Hence an
atomic electron that possesses angular momentum interacts with an external magnetic
field B. The magnetic quantum number ml specifies the direction of L by determining
the component of L in the field direction. This phenomenon is often referred to as
space quantization.

If we let the magnetic-field direction be parallel to the z axis, the component of L
in this direction is

Space quantization Lz � ml� ml � 0, �1, �2, . . . , �l (6.22)

The possible values of ml for a given value of l range from �l through 0 to �l, so
that the number of possible orientations of the angular-momentum vector L in a
magnetic field is 2l � 1. When l � 0, Lz can have only the single value of 0; when
l � 1, Lz may be �, 0, or ��; when l � 2, Lz may be 2�, �, 0, ��, or �2�; and
so on.
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Fingers of right hand in
direction of rotational motion

Thumb in
direction
of angular-
momentum
vector

L

Figure 6.3 The right-hand rule
for angular momentum.

Table 6.2 Atomic Electron States

l � 0 l � 1 l � 2 l � 3 l � 4 l � 5

n � 1 1s
n � 2 2s 2p
n � 3 3s 3p 3d
n � 4 4s 4p 4d 4f
n � 5 5s 5p 5d 5f 5g
n � 6 6s 6p 6d 6f 6g 6h
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h

h

h

–2

–

0

2

Lz

l = 2ml = 2

ml = 1

ml = 0

ml = –1

ml = –2

h h
h

L =   l(l + 1)
      6  =

Figure 6.4 Space quantization of orbital angular momentum. Here the orbital quantum number is
l � 2 and there are accordingly 2l � 1 � 5 possible values of the magnetic quantum number ml, with
each value corresponding to a different orientation relative to the z axis.

hL =   l(l + 1)

(b)

z

L

∆z

θ

ml

(a)

z

L

∆z = 0

h

Figure 6.5 The uncertainty prin-
ciple prohibits the angular mo-
mentum vector L from having a
definite direction in space.

The space quantization of the orbital angular momentum of the hydrogen atom is
show in Fig. 6.4. An atom with a certain value of ml will assume the corresponding
orientation of its angular momentum L relative to an external magnetic field if it finds
itself in such a field. We note that L can never be aligned exactly parallel or antiparallel
to B because Lz is always smaller than the magnitude �l(l � 1�)�� of the total angular
momentum.

In the absence of an external magnetic field, the direction of the z axis is arbitrary.
What must be true is that the component of L in any direction we choose is ml�. What
an external magnetic field does is to provide an experimentally meaningful reference
direction. A magnetic field is not the only such reference direction possible. For
example, the line between the two H atoms in the hydrogen molecule H2 is just as
experimentally meaningful as the direction of a magnetic field, and along this line the
components of the angular momenta of the H atoms are determined by their ml values.

The Uncertainty Principle and Space Quantization

Why is only one component of L quantized? The answer is related to the fact that L
can never point in any specific direction but instead is somewhere on a cone in space
such that its projection Lz is ml�. Were this not so, the uncertainty principle would be
violated. If L were fixed in space, so that Lx and Ly as well as Lz had definite values,
the electron would be confined to a definite plane. For instance, if L were in the 
z direction, the electron would have to be in the xy plane at all times (Fig. 6.5a). This
can occur only if the electron’s momentum component pz in the z direction is infinitely
uncertain, which of course is impossible if it is to be part of a hydrogen atom.

However, since in reality only one component Lz of L together with its magnitude
L have definite values and �L� � �Lz�, the electron is not limited to a single plane
(Fig.6.5b). Thus there is a built-in uncertainty in the electron’s z coordinate. The
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direction of L is not fixed, as in Fig. 6.6, and so the average values of Lx and Ly are 0,
although Lz always has the specific value ml�.

6.7   ELECTRON PROBABILITY DENSITY

No definite orbits

In Bohr’s model of the hydrogen atom the electron is visualized as revolving around
the nucleus in a circular path. This model is pictured in a spherical polar coordinate
system in Fig. 6.7. It implies that if a suitable experiment were performed, the electron
would always be found a distance of r � n2a0 (where n is the quantum number of the
orbit and a0 is the radius of the innermost orbit) from the nucleus and in the equato-
rial plane � � 90	, while its azimuth angle � changes with time.

The quantum theory of the hydrogen atom modifies the Bohr model in two ways:

1 No definite values for r, �, or � can be given, but only the relative probabilities for
finding the electron at various locations. This imprecision is, of course, a consequence
of the wave nature of the electron.
2 We cannot even think of the electron as moving around the nucleus in any
conventional sense since the probability density ���2 is independent of time and varies
from place to place.

The probability density ���2 that corresponds to the electron wave function � � R
�
in the hydrogen atom is

���2 � �R�2�
�2���2 (6.23)

As usual the square of any function that is complex is to be replaced by the product
of the function and its complex conjugate. (We recall that the complex conjugate of a
function is formed by changing i to �i whenever it appears.)

From Eq. (6.15) we see that the azimuthal wave function is given by

�(�) � Aeiml�

The azimuthal probability density ���2 is therefore

���2 � �*� � A2e�iml�eiml� � A2e0 � A2

The likelihood of finding the electron at a particular azimuth angle � is a constant that
does not depend upon � at all. The electron’s probability density is symmetrical about
the z axis regardless of the quantum state it is in, and the electron has the same chance
of being found at one angle � as at another.

The radial part R of the wave function, in contrast to �, not only varies with r but
does so in a different way for each combination of quantum numbers n and l. Figure 6.8
contains graphs of R versus r for 1s, 2s, 2p, 3s, 3p, and 3d states of the hydrogen atom.
Evidently R is a maximum at r � 0—that is, at the nucleus itself—for all s states, which
correspond to L � 0 since l � 0 for such states. The value of R is zero at r � 0 for
states that possess angular momentum.
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Bohr
electron
orbit
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θ = π/2
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Figure 6.7 The Bohr model of the
hydrogen atom in a spherical po-
lar coordinate system.

l = 2
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L

0
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–2h
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Figure 6.6 The angular momen-
tum vector L precesses constantly
about the z axis.
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Probability of Finding the Electron

The probability density of the electron at the point r, �, � is proportional to ���2, but
the actual probability of finding it in the infinitesimal volume element dV there is ���2 dV.
In spherical polar coordinates (Fig. 6.9),

dV � (dr) (r d�) (r sin � d�)

Volume element � r2 sin � dr d� d� (6.24)

5a0 10a0 15a0

R
nl

(r
)

R
nl

(r
)

R
nl

(r
)

3s

3p
3d

2s
2p

1s

r

Figure 6.8 The variation with distance from the nucleus of the radial part of the electron wave function
in hydrogen for various quantum states. The quantity a0 � 4��0�2	me2 � 0.053 nm is the radius of
the first Bohr orbit.

Figure 6.9 Volume element dV in spherical polar coordinates.

dV = r2 sin θ dr dθ dφ

r sin θ

r sin θ dφx

y

z

dr r dθ

dθ

dφ
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As 
 and � are normalized functions, the actual probability P(r) dr of finding the elec-
tron in a hydrogen atom somewhere in the spherical shell between r and r � dr from
the nucleus (Fig. 6.10) is

P(r) dr � r2�R�2 dr 
�

0
�
�2 sin � d� 
2�

0
���2 d�

� r2�R�2 dr (6.25)

Equation (6.25) is plotted in Fig. 6.11 for the same states whose radial functions R
were shown in Fig. 6.8. The curves are quite different as a rule. We note immediately
that P is not a maximum at the nucleus for s states, as R itself is, but has its maximum
a definite distance from it.

The most probable value of r for a 1s electron turns out to be exactly a0, the or-
bital radius of a ground-state electron in the Bohr model. However, the average value
of r for a 1s electron is 1.5a0, which is puzzling at first sight because the energy lev-
els are the same in both the quantum-mechanical and Bohr atomic models. This
apparent discrepancy is removed when we recall that the electron energy depends
upon 1	r rather than upon r directly, and the average value of 1	r for a 1s electron
is exactly 1	a0.

Example 6.2

Verify that the average value of 1	r for a 1s electron in the hydrogen atom is 1	a0.

Solution

The wave function of a 1s electron is, from Table 6.1,

� �
e�r	a0

�
���a0

3	2

0

P(
r)

dr
 =

 r
2 |

R
nl

|2
dr

5a0 10a0 15a0 20a0 25a0

r

1s

2p
2s

3d 3p
3s

Figure 6.11 The probability of finding the electron in a hydrogen atom at a distance between r and
r � dr from the nucleus for the quantum states of Fig. 6.8.

Nucleus

r

dr

Figure 6.10 The probability of
finding the electron in a hydrogen
atom in the spherical shell be-
tween r and r � dr from the nu-
cleus is P(r) dr.
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Since dV � r2 sin� dr d� d� we have for the expectation value of 1	r

� � � 
�

0
� � ���2 dV

The integrals have the respective values


�

0
re�2r	a0 dr � � e�2r	a0 � e�2r	a0�

0

�

�


�

0
sin � d� � [�cos �]0

� � 2


2�

0
d� � [�]0

2� � 2�

Hence � � � � �� �(2)(2�) �

Example 6.3

How much more likely is a 1s electron in a hydrogen atom to be at the distance a0 from the
nucleus than at the distance a0	2?

Solution

According to Table 6.1 the radial wave function for a 1s electron is

R � e�r	a0

From Eq. (6.25) we have for the ratio of the probabilities that an electron in a hydrogen atom
be at the distances r1 and r2 from the nucleus

� �

Here r1 � a0 and r2 � a0	2, so

� � 4e�1 � 1.47

The electron is 47 percent more likely to be a0 from the nucleus than half that distance (see
Fig. 6.11).

Angular Variation of Probability Density

The function 
 varies with zenith angle � for all quantum numbers l and ml except
l � ml � 0, which are s states. The value of �
�2 for an s state is a constant; �

1
2

�, in fact.
This means that since ���2 is also a constant, the electron probability density ���2 is

(a0)2e�2

��
(a0	2)2e�1

Pa0�
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r2
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0
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� 
�

0
re�2r	a0 dr 
�

0
sin� d� 
2�

0
d�

1
�
�a3

0
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spherically symmetric: it has the same value at a given r in all directions. Electrons in
other states, however, do have angular preferences, sometimes quite complicated ones.
This can be seen in Fig. 6.12, in which electron probability densities as functions of r

Figure 6.12 Photographic representation of the electron probability-density distribution ���2 for several energy states. These
may be regarded as sectional views of the distribution in a plane containing the polar axis, which is vertical and in the plane
of the paper. The scale varies from figure to figure.
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and � are shown for several atomic states. (The quantity plotted is ���2, not ���2 dV.)
Since ���2 is independent of �, we can obtain a three-dimensional picture of ���2 by
rotating a particular representation about a vertical axis. When this is done, we see that
the probability densities for s states are spherically symmetric whereas those for other
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states are not. The pronounced lobe patterns characteristic of many of the states turn
out to be significant in chemistry since these patterns help determine the manner in
which adjacent atoms in a molecule interact.

A look at Figure 6.12 also reveals quantum-mechanical states that resemble these
of the Bohr model. The electron probability-density distribution for a 2p state with
ml � �1, for instance, is like a doughnut in the equatorial plane centered at the nu-
cleus. Calculation shows the most probable distance of such an electron from the nu-
cleus to be 4a0—precisely the radius of the Bohr orbit for the same principal quantum
number n � 2. Similar correspondences exist for 3d states with ml � �2, 4f states
with ml � �3, and so on. In each of these cases the angular momentum is the high-
est possible for that energy level, and the angular-momentum vector is as near the z axis
as possible so that the probability density is close to the equatorial plane. Thus the
Bohr model predicts the most probable location of the electron in one of the several
possible states in each energy level.

6.8 RADIATIVE TRANSITIONS

What happens when an electron goes from one state to another

In formulating his theory of the hydrogen atom, Bohr was obliged to postulate that the
frequency � of the radiation emitted by an atom dropping from an energy level Em to
a lower level En is

� �

It is not hard to show that this relationship arises naturally in quantum mechanics.
For simplicity we shall consider a system in which an electron moves only in the 
x direction.

From Sec. 5.7 we know that the time-dependent wave function �n of an electron
in a state of quantum number n and energy En is the product of a time-independent
wave function �n and a time-varying function whose frequency is

�n �

Hence �n � �ne�(iEn	h)t �*n � �*ne�(iEn	�)t (6.26)

The expectation value �x� of the position of such an electron is

�x� � 
�

��
x�*n�n dx � 
�

��
x�*n�ne[(iEn	�)�(iEn	�)]t dx

� 
�

��
x�*n�n dx (6.27)

The expectation value �x� is constant in time since �n and �*n are, by definition, functions
of position only. The electron does not oscillate, and no radiation occurs. Thus quan-
tum mechanics predicts that a system in a specific quantum state does not radiate, as
observed.

En
�
h

Em � En
�

h
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We next consider an electron that shifts from one energy state to another. A system
might be in its ground state n when an excitation process of some kind (a beam of
radiation, say, or collisions with other particles) begins to act upon it. Subsequently
we find that the system emits radiation corresponding to a transition from an excited
state of energy Em to the ground state. We conclude that at some time during the
intervening period the system existed in the state m. What is the frequency of the
radiation?

The wave function � of an electron that can exist in both states n and m is

� � a�n � b�m (6.28)

where a*a is the probability that the electron is in state n and b*b the probability that
it is in state m. Of course, it must always be true that a*a � b*b � 1. Initially a � 1
and b � 0; when the electron is in the excited state, a � 0 and b � 1; and ultimately
a � 1 and b � 0 once more. While the electron is in either state, there is no radiation,
but when it is in the midst of the transition from m to n (that is, when both a and b
have nonvanishing values), electromagnetic waves are produced.

The expectation value �x� that corresponds to the composite wave function of
Eq. (6.28) is

�x� � 
�

��
x(a*�*n � b*�*m)(a�n � b�m) dx

� 
�

��
x(a2�*n�n � b*a�*m�n � a*b�*n�m � b2�*m�m) dx (6.29)

Here, as before, we let a*a � a2 and b*b � b2. The first and last integrals do not vary
with time, so the second and third integrals are the only ones able to contribute to a
time variation in �x�.

With the help of Eqs. (6.26) we expand Eq. (6.29) to give

�x� � a2 
�

��
x�*n�n dx � b*a 
�

��
x�*me�(iEm	�)t �ne�(iEn	�)t dx

� a*b 
�

��
x�*ne�(iE

n
	�)t �me�(iE

m
	�)t dx � b2 
�

��
x�*m�m dx (6.30)

Because

ei� � cos � � i sin � and e�i� � cos � � i sin �

the two middle terms of Eq. (6.30), which are functions of time, become

cos� �t 
�

��
x[b*a�*m�n � a*b�*n�m] dx

� i sin � �t 
�

��
x[b*a�*m�n � a*b�*n�m) dx (6.31)

The real part of this result varies with time as

cos � �t � cos 2�� �t � cos 2��t (6.32)
Em � En
�

h

Em � En
�

�

Em � En
�

�

Em � En
�

�
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The electron’s position therefore oscillates sinusoidally at the frequency

� � (6.33)

When the electron is in state n or state m the expectation value of the electron’s
position is constant. When the electron is undergoing a transition between these states,
its position oscillates with the frequency �. Such an electron, of course, is like an elec-
tric dipole and radiates electromagnetic waves of the same frequency �. This result is
the same as that postulated by Bohr and verified by experiment. As we have seen, quan-
tum mechanics gives Eq. (6.33) without the need for any special assumptions.

6.9   SELECTION RULES

Some transitions are more likely to occur than others

We did not have to know the values of the probabilities a and b as functions of time,
nor the electron wave functions �n and �m, in order to find the frequency �. We need
these quantities, however, to calculate the chance a given transition will occur. The
general condition necessary for an atom in an excited state to radiate is that the integral


�

��
x�n�*m dx (6.34)

not be zero, since the intensity of the radiation is proportional to it. Transitions for
which this integral is finite are called allowed transitions, while those for which it is
zero are called forbidden transitions.

In the case of the hydrogen atom, three quantum numbers are needed to specify
the initial and final states involved in a radiative transition. If the principal, orbital,
and magnetic quantum numbers of the initial state are n�, l�, m�l, respectively, and those
of the final state are n, l, ml, and u represents either the x, y, or z coordinate, the con-
dition for an allowed transition is

Allowed transitions 
�

��
u�n,l,ml

�*n�,l�,ml
dV � 0 (6.35)

where the integral is now over all space. When u is taken as x, for example, the radiation
would be that produced by a dipole antenna lying on the x axis.

Since the wave functions �n,l,ml
for the hydrogen atom are known, Eq. (6.35) can

be evaluated for u � x, u � y, and u � z for all pairs of states differing in one or
more quantum numbers. When this is done, it is found that the only transitions be-
tween states of different n that can occur are those in which the orbital quantum num-
ber l changes by �1 or �1 and the magnetic quantum number ml does not change
or changes by �1 or �1. That is, the condition for an allowed transition is that

�l � �1 (6.36)
Selection rules

�ml � 0, �1 (6.37)

The change in total quantum number n is not restricted. Equations (6.36) and (6.37)
are known as the selection rules for allowed transitions (Fig. 6.13).

Em � En
�

h
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The selection rule requiring that l change by �1 if an atom is to radiate means that
an emitted photon carries off the angular momentum �� equal to the difference
between the angular momenta of the atom’s initial and final states. The classical ana-
log of a photon with angular momentum �� is a left or right circularly polarized elec-
tromagnetic wave, so this notion is not unique with quantum theory.

Quantum Theory of the Hydrogen Atom 221

Quantum Electrodynamics

T he preceding analysis of radiative transitions in an atom is based on a mixture of classical
and quantum concepts. As we have seen, the expectation value of the position of an atomic

electron oscillates at the frequency � of Eq. (6.33) while passing from an initial eigenstate to
another one of lower energy. Classically such an oscillating charge gives rise to electromagnetic
waves of the same frequency �, and indeed the observed radiation has this frequency. However,
classical concepts are not always reliable guides to atomic processes, and a deeper treatment is
required. Such a treatment, called quantum electrodynamics, shows that the radiation emitted
during a transition from state m to state n is in the form of a single photon.

In addition, quantum electrodynamics provides an explanation for the mechanism that causes
the “spontaneous” transition of an atom from one energy state to a lower one. All electric and

Excitation
energy, eV

13.6

10

5

0 n = 1

n = 2

n = 3

n = 4

n = ∞

l = 0 l = 1 l = 2 l = 3

Figure 6.13 Energy-level diagram for hydrogen showing transitions allowed by the selection rule 
�l � �1. In this diagram the vertical axis represents excitation energy above the ground state.
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Richard P. Feynman (1918–
1988) was born in Far Rockaway,
a suburb of New York City, and
studied at the Massachusetts
Institute of Technology and Prince-
ton. After receiving his Ph.D. in
1942, he helped develop the
atomic bomb at Los Alamos, New
Mexico, along with many other
young physicists. When the war
was over, he went first to Cornell

and, in 1951, to the California Institute of Technology.
In the late 1940s Feynman made important contributions

to quantum electrodynamics, the relativistic quantum theory
that describes the electromagnetic interaction between charged
particles. A serious problem in this theory is the presence of in-
finite quantities in its results, which in the procedure called
renormalization are removed by subtracting other infinite quan-
tities. Although this step is mathematically dubious and still
leaves some physicists uneasy, the final theory has proven

extraordinarily accurate in all its predictions. An unrepentant
Feynman remarked, “It is not philosophy we are after, but the
behavior of real things,” and compared the agreement between
quantum electrodynamics and experiment to finding the dis-
tance from New York to Los Angeles to within the thickness of
a single hair.

Feynman articulated the feelings of many physicists when
he wrote: “We have always had a great deal of difficulty
understanding the world view that quantum mechanics
represents . . . I cannot define the real problem, therefore I
suspect there’s no real problem, but I’m not sure there’s no
real problem.”

In 1965 Feynman received the Nobel Prize together with two
other pioneers in quantum electrodynamics, Julian Schwinger,
also an American, and Sin-Itiro Tomonaga, a Japanese. Feynman
made other major contributions to physics, notably in explain-
ing the behavior of liquid helium near absolute zero and in
elementary particle theory. His three-volume Lectures on Physics
has stimulated and enlightened both students and teachers since
its publication in 1963.

magnetic fields turn out to fluctuate constantly about the E and B that would be expected on
purely classical grounds. Such fluctuations occur even when electromagnetic waves are absent
and when, classically, E � B � 0. It is these fluctuations (often called “vacuum fluctuations” and
analogous to the zero-point vibrations of a harmonic oscillator) that induce the apparently
spontaneous emission of photons by atoms in excited states.

The vacuum fluctuations can be regarded as a sea of “virtual” photons so short-lived 
that they do not violate energy conservation because of the uncertainty principle in the form 
�E �t � �	2. These photons, among other things, give rise to the Casimir effect (Fig. 6.14),
which was proposed by the Dutch physicist Hendrik Casimir in 1948. Only virtual photons with
certain specific wavelengths can be reflected back-and-forth between two parallel metal plates,
whereas outside the plates virtual photons of all wavelengths can be reflected by them. The re-
sult is a very small but detectable force that tends to push the plates together.

Can the Casimir effect be used as a source of energy? If the parallel plates are released, they
would fly together and thereby pick up kinetic energy from the vacuum fluctuations that would
become heat if the plates were allowed to collide. Unfortunately not much energy is available in
this way: about half a nanojoule (0.5 � 10�9 J) per square meter of plate area.

Metal
plates

Figure 6.14 Two parallel metal plates exhibit the Casimir effect even in empty space. Virtual photons
of any wavelength can strike the plates from the outside, but photons trapped between the plates can
have only certain wavelengths. The resulting imbalance produces inward forces on the plates.
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6.10   ZEEMAN EFFECT

How atoms interact with a magnetic field

In an external magnetic field B, a magnetic dipole has an amount of potential energy
Um that depends upon both the magnitude � of its magnetic moment and the orien-
tation of this moment with respect to the field (Fig. 6.15).

The torque � on a magnetic dipole in a magnetic field of flux density B is

� � �B sin �

where � is the angle between � and B. The torque is a maximum when the dipole is
perpendicular to the field, and zero when it is parallel or antiparallel to it. To calcu-
late the potential energy Um we must first establish a reference configuration in which
Um is zero by definition. (Since only changes in potential energy are ever experimen-
tally observed, the choice of a reference configuration is arbitrary.) It is convenient to
set Um � 0 when � � ��2 � 90�, that is, when � is perpendicular to B. The poten-
tial energy at any other orientation of � is equal to the external work that must be
done to rotate the dipole from �0 � ��2 to the angle � that corresponds to that
orientation. Hence

Um � ��

��2 
� d� � �B��

��2 
sin � d�

� ��B cos � (6.38)

When � points in the same direction as B, then Um � ��B, its minimum value. This
follows from the fact that a magnetic dipole tends to align itself with an external mag-
netic field.

The magnetic moment of the orbital electron in a hydrogen atom depends on its
angular momentum L. Hence both the magnitude of L and its orientation with respect
to the field determine the extent of the magnetic contribution to the total energy of
the atom when it is in a magnetic field. The magnetic moment of a current loop has
the magnitude

� � IA

where I is the current and A the area it encloses. An electron that makes f rev/s in a
circular orbit of radius r is equivalent to a current of �ef (since the electronic charge
is �e), and its magnetic moment is therefore

� � �ef�r2

Because the linear speed � of the electron is 2�fr its angular momentum is

L � m�r � 2�mfr2

Comparing the formulas for magnetic moment � and angular momentum L shows
that

� � �� �L (6.39)
e

�
2m

Electron magnetic
moment
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Bθ

Figure 6.15 A magnetic dipole of
moment � at the angle � relative
to a magnetic field B.
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(a)

µ = IA

(b)

µ = –( e
2m)L

µ

B
L

–e
v

µ

I

Area = AB

Figure 6.16 (a) Magnetic moment of a current loop enclosing area A. (b) Magnetic moment of an
orbiting electron of angular momentum L.

for an orbital electron (Fig. 6.16). The quantity (�e	2m), which involves only the
charge and mass of the electron, is called its gyromagnetic ratio. The minus sign means
that � is in the opposite direction to L and is a consequence of the negative charge of
the electron. While the above expression for the magnetic moment of an orbital electron
has been obtained by a classical calculation, quantum mechanics yields the same result.
The magnetic potential energy of an atom in a magnetic field is therefore

Um � � �LB cos � (6.40)

which depends on both B and �.

Magnetic Energy

From Fig. 6.4 we see that the angle � between L and the z direction can have only the
values specified by

cos � �

with the permitted values of L specified by

L � �l(l � 1�)��

To find the magnetic energy that an atom of magnetic quantum number ml has when it is
in a magnetic field B, we put the above expressions for cos � and L in Eq. (6.40) to give

Magnetic energy Um � ml � �B (6.41)

The quantity e�	2m is called the Bohr magneton:

	B � � 9.274 � 10�24 J/T � 5.788 � 10�5 eV/T (6.42)

In a magnetic field, then, the energy of a particular atomic state depends on the value
of ml as well as on that of n. A state of total quantum number n breaks up into several
substates when the atom is in a magnetic field, and their energies are slightly more or
slightly less than the energy of the state in the absence of the field. This phenomenon

e�
�
2m

Bohr 
magneton

e�
�
2m

ml
��
�l(l � 1�)�

e
�
2m
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Quantum Theory of the Hydrogen Atom 225

Figure 6.17 In the normal Zeeman effect a spectral line of frequency �0 is split into three components
when the radiating atoms are in a magnetic field of magnitude B. One component is �0 and the others
are less than and greater than �0 by eB	4�m. There are only three components because of the selec-
tion rule �ml � 0, �1.

Magnetic field present

Spectrum with magnetic
field present

Spectrum without
magnetic field

l = 1

ml = 1

ml = 0

ml = –1

No magnetic field

l = 2

�0

( (hh�0 –
e B
2m

ml = 2

ml = 1

ml = 0

ml = –1

ml = –2

( (

h�0

∆ml = +1 ∆ml = –1

∆ml = 0

hh�0 +
e B
2m

( (�0 –
eB

4πm ( (�0 +
eB

4πm�0

h�0

leads to a “splitting” of individual spectral lines into separate lines when atoms radiate
in a magnetic field. The spacing of the lines depends on the magnitude of the field.

The splitting of spectral lines by a magnetic field is called the Zeeman effect after
the Dutch physicist Pieter Zeeman, who first observed it in 1896. The Zeeman effect
is a vivid confirmation of space quantization.

Because ml can have the 2l � 1 values of �l through 0 to �l, a state of given orbital
quantum number l is split into 2l � 1 substates that differ in energy by 	BB when
the atom is in a magnetic field. However, because changes in ml are restricted to 
�ml � 0, �1, we expect a spectral line from a transition between two states of differ-
ent l to be split into only three components, as shown in Fig. 6.17. The normal Zeeman
effect consists of the splitting of a spectral line of frequency �0 into three components
whose frequencies are

�1 � �0 � 	B � �0 � B

�2 � �0 (6.43)

�3 � �0 � 	B � �0 � B

In Chap. 7 we will see that this is not the whole story of the Zeeman effect.

e
�
4�m

B
�
h

Normal Zeeman 
effect

e
�
4�m

B
�
h
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E X E R C I S E S

To strive, to seek, to find, and not to yield. —Alfred, Lord Tennyson

6.3 Quantum Numbers

1. Why is it natural that three quantum numbers are needed to
describe an atomic electron (apart from electron spin)?

2. Show that


20(�) � (3 cos2 � � 1)

is a solution of Eq. (6.13) and that it is normalized.

3. Show that

R10(r) � e�r	a0

is a solution of Eq. (6.14) and that it is normalized.

4. Show that

R21(r) � e�r	2a0

is a solution of Eq. (6.14) and that it is normalized.

5. In Exercise 12 of Chap. 5 it was stated that an important
property of the eigenfunctions of a system is that they are
orthogonal to one another, which means that


�

��
�*n�m dV � 0 n � m

r
�
a0

1
�
2�6�a0

3	2

2
�
a0

3	2

�10�
�

4

Verify that this is true for the azimuthal wave functions �ml
of

the hydrogen atom by calculating


2�

0
�*ml

�m�l d�

for ml � m�l.

6. The azimuthal wave function for the hydrogen atom is

�(�) � Aeiml�

Show that the value of the normalization constant A is 1	�2��
by integrating |�|2 over all angles from 0 to 2�.

6.4 Principal Quantum Number

6.5 Orbital Quantum Number

7. Compare the angular momentum of a ground-state electron in
the Bohr model of the hydrogen atom with its value in the
quantum theory.

8. (a) What is Schrödinger’s equation for a particle of mass m
that is constrained to move in a circle of radius R, so that �
depends only on �? (b) Solve this equation for � and evaluate
the normalization constant. (Hint: Review the solution of
Schrödinger’s equation for the hydrogen atom.) (c) Find the
possible energies of the particle. (d) Find the possible angular
momenta of the particle.

Example 6.4

A sample of a certain element is placed in a 0.300-T magnetic field and suitably excited. How
far apart are the Zeeman components of the 450-nm spectral line of this element?

Solution

The separation of the Zeeman components is

�� �

Since � � c	�, d� � �c d�	�2, and so, disregarding the minus sign,

�� � �

�

� 2.83 � 10�12 m � 0.00283 nm

(1.60 � 10�19 C)(0.300 T)(4.50 � 10�7 m)2

�����
(4�)(9.11 � 10�31 kg)(3.00 � 108 m/s)

eB�2

�
4�mc

�2 ��
�

c

eB
�
4�m

bei48482_ch06  1/23/02  8:16 AM  Page 226



r � a0 (that is, to be between r � 0 and r � a0). Verify this by
calculating the relevant probabilities.

23. Unsöld’s theorem states that for any value of the orbital
quantum number l, the probability densities summed over all
possible states from ml � �l to ml � �l yield a constant
independent of angles � or �; that is,



�l

ml��l

�
�2���2 � constant

This theorem means that every closed subshell atom or ion
(Sec. 7.6) has a spherically symmetric distribution of electric
charge. Verify Unsöld’s theorem for l � 0, l � 1, and l � 2
with the help of Table 6.1.

6.9 Selection Rules

24. A hydrogen atom is in the 4p state. To what state or states can
it go by radiating a photon in an allowed transition?

25. With the help of the wave functions listed in Table 6.1 verify
that �l � �1 for n � 2 S n � 1 transitions in the hydrogen
atom.

26. The selection rule for transitions between states in a harmonic
oscillator is �n � �1. (a) Justify this rule on classical grounds.
(b) Verify from the relevant wave functions that the n � 1 S
n � 3 transition in a harmonic oscillator is forbidden whereas
the n � 1 S n � 0 and n � 1 S n � 2 transitions are allowed.

27. Verify that the n � 3 S n � 1 transition for the particle in a
box of Sec. 5.8 is forbidden whereas the n � 3 S n � 2 and
n � 2 S n � 1 transitions are allowed.

6.10 Zeeman Effect

28. In the Bohr model of the hydrogen atom, what is the magni-
tude of the orbital magnetic moment of an electron in the 
nth energy level?

29. Show that the magnetic moment of an electron in a Bohr orbit
of radius rn is proportional to �rn�.

30. Example 4.7 considered a muonic atom in which a negative
muon (m � 207me) replaces the electron in a hydrogen atom.
What difference, if any, would you expect between the Zeeman
effect in such atoms and in ordinary hydrogen atoms?

31. Find the minimum magnetic field needed for the Zeeman effect
to be observed in a spectral line of 400-nm wavelength when a
spectrometer whose resolution is 0.010 nm is used.

32. The Zeeman components of a 500-nm spectral line are
0.0116 nm apart when the magnetic field is 1.00 T. Find the
ratio e	m for the electron from these data.

6.6 Magnetic Quantum Number

9. Under what circumstances, if any, is Lz equal to L?

10. What are the angles between L and the z axis for l � 1? 
For l � 2?

11. What are the possible values of the magnetic quantum number
ml of an atomic electron whose orbital quantum number is 
l � 4?

12. List the sets of quantum numbers possible for an n � 4 hydro-
gen atom.

13. Find the percentage difference between L and the maximum
value of Lz for an atomic electron in p, d, and f states.

6.7 Electron Probability Density

14. Under what circumstances is an atomic electron’s probability-
density distribution spherically symmetric? Why?

15. In Sec. 6.7 it is stated that the most probable value of r for a 1s
electron in a hydrogen atom is the Bohr radius a0. Verify this.

16. At the end of Sec. 6.7 it is stated that the most probable value
of r for a 2p electron in a hydrogen atom is 4a0, which is the
same as the radius of the n � 2 Bohr orbit. Verify this.

17. Find the most probable value of r for a 3d electron in a hydro-
gen atom.

18. According to Fig. 6.11, P dr has two maxima for a 2s electron.
Find the values of r at which these maxima occur.

19. How much more likely is the electron in a ground-state hydro-
gen atom to be at the distance a0 from the nucleus than at the
distance 2a0?

20. In Section 6.7 it is stated that the average value of r for a 1s
electron in a hydrogen atom is 1.5a0. Verify this statement by
calculating the expectation value �r� � 
 r|�|2 dV.

21. The probability of finding an atomic electron whose radial wave
function is R(r) outside a sphere of radius r0 centered on the
nucleus is


�

r0

�R(r)�2r2 dr

(a) Calculate the probability of finding a 1s electron in a hydro-
gen atom at a distance greater than a0 from the nucleus. 
(b) When a 1s electron in a hydrogen atom is 2a0 from the nu-
cleus, all its energy is potential energy. According to classical
physics, the electron therefore cannot ever exceed the distance
2a0 from the nucleus. Find the probability r > 2a0 for a 1s
electron in a hydrogen atom.

22. According to Fig. 6.11, a 2s electron in a hydrogen atom is
more likely than a 2p electron to be closer to the nucleus than

Exercises 227
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CHAPTER 7

Many-Electron Atoms

Helium, whose atoms have only closed electron shells, is inert chemically and cannot burn or explode.
Because it is also less dense than air, it is used in airships.

7.1 ELECTRON SPIN
Round and round it goes forever

7.2 EXCLUSION PRINCIPLE
A different set of quantum numbers for each
electron in an atom

7.3 SYMMETRIC AND ANTISYMMETRIC WAVE
FUNCTIONS

Fermions and bosons

7.4 PERIODIC TABLE
Organizing the elements

7.5 ATOMIC STRUCTURES
Shells and subshells of electrons

7.6 EXPLAINING THE PERIODIC TABLE
How an atom’s electron structure determines its
chemical behavior

7.7 SPIN-ORBIT COUPLING
Angular momenta linked magnetically

7.8 TOTAL ANGULAR MOMENTUM
Both magnitude and direction are quantized

7.9 X-RAY SPECTRA
They arise from transitions to inner shells

APPENDIX: ATOMIC SPECTRA
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Q uantum mechanics explains certain properties of the hydrogen atom in an
accurate, straightforward, and beautiful way. However, it cannot approach a
complete description of this atom or of any other without taking into account

electron spin and the exclusion principle. In this chapter we will look into the role of
electron spin in atomic phenomena and into why the exclusion principle is the key to
understanding the structures of atoms with more than one electron.

7.1   ELECTRON SPIN

Round and round it goes forever

The theory of the atom developed in the previous chapter cannot account for a num-
ber of well-known experimental observations. One is the fact that many spectral
lines actually consist of two separate lines that are very close together. An example
of this fine structure is the first line of the Balmer series of hydrogen, which arises
from transitions between the n � 3 and n � 2 levels in hydrogen atoms. Here the
theoretical prediction is for a single line of wavelength 656.3 nm while in reality
there are two lines 0.14 nm apart—a small effect, but a conspicuous failure for the
theory.

Another failure of the simple quantum-mechanical theory of the atom occurs in the
Zeeman effect, which was discussed in Sec. 6.10. There we saw that the spectral lines
of an atom in a magnetic field should each be split into the three components speci-
fied by Eq. (6.43). While the normal Zeeman effect is indeed observed in the spectra
of a few elements under certain circumstances, more often it is not. Four, six, or even
more components may appear, and even when three components are present their spac-
ing may not agree with Eq. (6.43). Several anomalous Zeeman patterns are shown in
Fig. 7.1 together with the predictions of Eq. (6.43). (When reproached in 1923 for
looking sad, the physicist Wolfgang Pauli replied, “How can one look happy when he
is thinking about the anomalous Zeeman effect?”)

In order to account for both fine structure in spectral lines and the anomalous
Zeeman effect, two Dutch graduate students, Samuel Goudsmit and George Uhlenbeck,
proposed in 1925 that

Every electron has an intrinsic angular momentum, called spin, whose magni-
tude is the same for all electrons. Associated with this angular momentum is a
magnetic moment.

Many-Electron Atoms 229

No magnetic
field

Magnetic field
present

No magnetic field

Magnetic field present

Expected splitting

Expected splitting

Figure 7.1 The normal and anomalous Zeeman effects in various spectral lines.
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What Goudsmit and Uhlenbeck had in mind was a classical picture of an electron
as a charged sphere spinning on its axis. The rotation involves angular momentum,
and because the electron is negatively charged, it has a magnetic moment �s opposite
in direction to its angular momentum vector S. The notion of electron spin proved to
be successful in explaining not only fine structure and the anomalous Zeeman effect
but a wide variety of other atomic effects as well.

To be sure, the picture of an electron as a spinning charged sphere is open to seri-
ous objections. For one thing, observations of the scattering of electrons by other elec-
trons at high energy indicate that the electron must be less than 10�16 m across, and
quite possibly is a point particle. In order to have the observed angular momentum
associated with electron spin, so small an object would have to rotate with an equa-
torial velocity many times greater than the velocity of light.

But the failure of a model taken from everyday life does not invalidate the idea of
electron spin. We have already found plenty of ideas in relativity and quantum physics
that are mandated by experiment although at odds with classical concepts. In 1929
the fundamental nature of electron spin was confirmed by Paul Dirac’s development of
relativistic quantum mechanics. He found that a particle with the mass and charge of
the electron must have the intrinsic angular momentum and magnetic moment pro-
posed for the electron by Goudsmit and Uhlenbeck.

The quantum number s describes the spin angular momentum of the electron. The
only value s can have is s � �

1
2

�, which follows both from Dirac’s theory and from spec-
tral data. The magnitude S of the angular momentum due to electron spin is given in
terms of the spin quantum number s by

S � �s(s � 1�)�� � � (7.1)

This is the same formula as that giving the magnitude L of the orbital angular
momentum in terms of the orbital quantum number l, L � �l(l � 1�)� �.

Example 7.1

Find the equatorial velocity � of an electron under the assumption that it is a uniform sphere of
radius r � 5.00 � 10�17 m that is rotating about an axis through its center.

Solution

The angular momentum of a spinning sphere is I�, where I � �
2
5

� mr2 is its moment of inertia 
and � � ��r is its angular velocity. From Eq. (7.1) the spin angular momentum of an electron
is S � (�3��2)�, so

S � � � I� � � mr2�� � � m�r

� � � � � � 5.01 � 1012 m/s � 1.67 � 104 c

The equatorial velocity of an electron on the basis of this model must be over 10,000 times the
velocity of light, which is impossible. No classical model of the electron can overcome this
difficulty.

(5�3�)(1.055 � 10�34 J � s)
�����
(4)(9.11 � 10�31 kg)(5.00 � 10�17 m)

�
�
mr

5�3�
�

4

2
�
5

�
�
r

2
�
5

�3�
�

2

�3�
�

2

Spin angular
momentum
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Figure 7.2 The two possible ori-
entations of the spin angular-
momentum vector are “spin up”
(ms � ��

1

2
�) and “spin down” 

(ms � ��
1

2
�).

Sz

h

h

1
2+

3 hS = 2

ms = – 1
2

ms = + 1
2

The space quantization of electron spin is described by the spin magnetic quantum
number ms. We recall that the orbital angular-momentum vector can have the 2l � 1
orientations in a magnetic field from �l to �l. Similarly the spin angular-momentum
vector can have the 2s � 1 � 2 orientations specified by ms � � �

1
2

� (“spin up”) and
ms � � �

1
2

� (“spin down”), as in Fig. 7.2. The component Sz of the spin angular momentum
of an electron along a magnetic field in the z direction is determined by the spin mag-
netic quantum number, so that

Sz � ms� � 	 � (7.2)

We recall from Sec. 6.10 that gyromagnetic ratio is the ratio between magnetic
moment and angular momentum. The gyromagnetic ratio for electron orbital motion
is �e�2m. The gyromagnetic ratio characteristic of electron spin is almost exactly twice
that characteristic of electron orbital motion. Taking this ratio as equal to 2, the spin
magnetic moment �s of an electron is related to its spin angular momentum S by

�s � � S (7.3)

The possible components of �s along any axis, say the z axis, are therefore limited to

�sz � 	 � 	�B (7.4)

where �B is the Bohr magneton (� 9.274 � 10�24 J�T � 5.788 � 10�5 eV/T).
The introduction of electron spin into the theory of the atom means that a total of

four quantum numbers, n, l, ml, and ms, is needed to describe each possible state of
an atomic electron. These are listed in Table 7.1.

7.2   EXCLUSION PRINCIPLE

A different set of quantum numbers for each electron in an atom

In a normal hydrogen atom, the electron is in its quantum state of lowest energy. What
about more complex atoms? Are all 92 electrons of a uranium atom in the same quantum
state, jammed into a single probability cloud? Many lines of evidence make this idea
unlikely.

e�
�
2m

z component of
spin magnetic
moment

e
�
m

Spin magnetic
moment

1
�
2

z component of 
spin angular 
momentum
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Table 7.1 Quantum Numbers of an Atomic Electron

Name Symbol Possible Values Quantity Determined

Principal n 1, 2, 3, . . . Electron energy
Orbital l 0, 1, 2, . . . , n � 1 Orbital angular-momentum magnitude
Magnetic ml �l, . . . , 0, . . . , �l Orbital angular-momentum direction
Spin magnetic ms ��

1

2
�, ��

1

2
� Electron spin direction
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An example is the great difference in chemical behavior shown by certain elements
whose atomic structures differ by only one electron. Thus the elements that have the
atomic numbers 9, 10, and 11 are respectively the chemically active halogen gas flu-
orine, the inert gas neon, and the alkali metal sodium. Since the electron structure of
an atom controls how it interacts with other atoms, it makes no sense that the chem-
ical properties of the elements should change so sharply with a small change in atomic
number if all the electrons in an atom were in the same quantum state.
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Actual
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Figure 7.3 The Stern-Gerlach experiment.

The Stern-Gerlach Experiment

S pace quantization was first explictly demonstrated in 1921 by Otto Stern and Walter Gerlach.
They directed a beam of neutral silver atoms from an oven through a set of collimating slits

into an inhomogeneous magnetic field as in Fig. 7.3. A photographic plate recorded the shape
of the beam after it had passed through the field.

In its normal state the entire magnetic moment of a silver atom is due to the spin of only
one of its electrons. In a uniform magnetic field, such a dipole would merely experience a torque
tending to align it with the field. In an inhomogeneous field, however, each “pole” of the dipole
is subject to a force of different magnitude and therefore there is a resultant force on the dipole
that varies with its orientation relative to the field.

Classically, all orientations should be present in a beam of atoms. The result would merely
be a broad trace on the photographic plate instead of the thin line formed without any magnetic
field. Stern and Gerlach found, however, that the initial beam split into two distinct parts that
correspond to the two opposite spin orientations in the magnetic field permitted by space
quantization.
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In 1925 Wolfgang Pauli discovered the fundamental principle that governs the elec-
tronic configurations of atoms having more than one electron. His exclusion principle
states that

No two electrons in an atom can exist in the same quantum state. Each electron
must have a different set of quantum numbers n, l, ml, ms.

Pauli was led to the exclusion principle by a study of atomic spectra. The vari-
ous states of an atom can be determined from its spectrum, and the quantum num-
bers of these states can be inferred. In the spectra of every element but hydrogen a
number of lines are missing that correspond to transitions to and from states hav-
ing certain combinations of quantum numbers. For instance, no transitions are
observed in helium to or from the ground-state configuration in which the spins of
both electrons are in the same direction. However, transitions are observed to and
from the other ground-state configuration, in which the spins are in opposite
directions.

In the absent state in helium the quantum numbers of both electrons would be
n � 1, l � 0, ml � 0, ms � �

1
2

�. On the other hand, in the state known to exist one of
the electrons has ms � �

1
2

� and the other ms � ��
1
2

�. Pauli showed that every unobserved
atomic state involves two or more electrons with identical quantum numbers, and the
exclusion principle is a statement of this finding.

7.3   SYMMETRIC AND ANTISYMMETRIC 
WAVE FUNCTIONS

Fermions and bosons

Before we explore the role of the exclusion principle in determining atomic structures,
it is interesting to look into its quantum-mechanical implications.
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Wolfgang Pauli (1900–1958) 
was born in Vienna and at nineteen
had prepared a detailed account of
special and general relativity that
impressed Einstein and remained
the standard work on the subject
for many years. Pauli received his
doctorate from the University of
Munich in 1922 and then spent
short periods in Göttingen,
Copenhagen, and Hamburg before

becoming professor of physics at the Institute of Technology in
Zurich, Switzerland, in 1928. In 1925 he proposed that four
quantum numbers (what one of them governed was then
unknown) are needed to characterize each atomic electron and
that no two electrons in an atom have the same set of quantum
numbers. This exclusion principle turned out to be the missing

link in understanding the arrangement of electrons in an atom.
Late in 1925 Goudsmit and Uhlenbeck, two young Dutch

physicists, showed that the electron possesses intrinsic angular
momentum, so it must be thought of as spinning, and that
Pauli’s fourth quantum number described the direction of the
spin. The American physicist Ralph Kronig had conceived of
electron spin a few months earlier and had told Pauli about it.
However, because Pauli had “ridiculed the idea” Kronig did not
publish his work.

In 1931 Pauli resolved the problem of the apparently miss-
ing energy in the beta decay of a nucleus by proposing that a
neutral, massless particle leaves the nucleus together with the
electron emitted. Two years later Fermi developed the theory
of beta decay with the help of this particle (today believed to
have a small mass), which he called the neutrino (“small neu-
tral one” in Italian). Pauli spent the war years in the United
States, and received the Nobel Prize in 1945.
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The complete wave function � (1, 2, 3, . . . , n) of a system of n noninteracting par-
ticles can be expressed as the product of the wave functions � (1), � (2), � (3), . . . ,
� (n) of the individual particles. That is,

� (1, 2, 3, . . . , n) � � (1) � (2) � (3) . . . � (n) (7.5)

Let us use Eq. (7.5) to look into the kinds of wave functions that can be used to describe
a system of two identical particles.

Suppose one of the particles is in quantum state a and the other in state b. Because
the particles are identical, it should make no difference in the probability density �� �2

of the system if the particles are exchanged, with the one in state a replacing the one
in state b, and vice versa. Symbolically, we require that

�� �2(1, 2) � �� �2(2, 1) (7.6)

The wave function � (2, 1) that represents the exchanged particles can be either

Symmetric � (2, 1) � � (1, 2) (7.7)

or

Antisymmetric � (2, 1) � �� (1, 2) (7.8)

and still fulfill Eq. (7.6). The wave function of the system is not itself a measurable
quantity, and so it can be altered in sign by the exchange of the particles. Wave func-
tions that are unaffected by an exchange of particles are said to be symmetric, while
those that reverse sign upon such an exchange are said to be antisymmetric.

If particle 1 is in state a and particle 2 is in state b, the wave function of the system
is, according to Eq. (7.5),

� I � �a(1)�b(2) (7.9)

If particle 2 is in state a and particle 1 is in state b, the wave function is

� II � �a(2)�b(1) (7.10)

Because the two particles are indistinguishable, we have no way to know at any moment
whether �I or �II describes the system. The likelihood that �I is correct at any moment
is the same as the likelihood that �II is correct.

Equivalently, we can say that the system spends half the time in the configuration
whose wave function is �I and the other half in the configuration whose wave func-
tion is �II. Therefore a linear combination of �I and �II is the proper description of
the system. Two such combinations, symmetric and antisymmetric, are possible:

Symmetric �S � [�a(1)�b(2) � �a(2)�b(1)] (7.11)

Antisymmetric �A � [�a(1)�b(2) � �a(2)�b(1)] (7.12)

The factor 1��2� is needed to normalize �S and �A. Exchanging particles 1 and 2
leaves �S unaffected, while it reverses the sign of �A. Both �S and �A obey Eq. (7.6).

1
�
�2�

1
�
�2�
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There are a number of important distinctions between the behavior of particles in
systems whose wave functions are symmetric and that of particles in systems whose
wave functions are antisymmetric. The most obvious is that in the symmetric case,
both particles 1 and 2 can simultaneously exist in the same state, with a � b. In the
antisymmetric case, if we set a � b, we find that

�A � [�a(1)�a(2) � �a(2)�a(1)] � 0

Hence the two particles cannot be in the same quantum state. Pauli found that no two
electrons in an atom can be in the same quantum state, so we conclude that systems
of electrons are described by wave functions that reverse sign upon the exchange of
any pair of them.

Fermions and Bosons

The results of various experiments show that all particles which have odd half-integral
spins (�

1
2

�, �
3
2

�, . . .) have wave functions that are antisymmetric to an exchange of any
pair of them. Such particles, which include protons and neutrons as well as electrons,
obey the exclusion principle when they are in the same system. That is, when they
move in a common force field, each member of the system must be in a different
quantum state. Particles of odd half-integral spin are often referred to as fermions
because, as we shall learn in Chap. 9, the behavior of systems of them (such as free
electrons in a metal) is governed by a statistical distribution law discovered by Fermi
and Dirac.

Particles whose spins are 0 or an integer have wave functions that are symmetric to
an exchange of any pair of them. These particles, which include photons, alpha parti-
cles, and helium atoms, do not obey the exclusion principle. Particles of 0 or integral
spin are often referred to as bosons because the behavior of systems of them (such as
photons in a cavity) is governed by a statistical distribution law discovered by Bose
and Einstein.

There are other consequences of the symmetry or antisymmetry of particle wave
functions besides that expressed in the exclusion principle. It is these consequences
that make it useful to classify particles according to the natures of their wave
functions rather than merely according to whether or not they obey the exclusion
principle.

7.4 PERIODIC TABLE

Organizing the elements

In 1869 the Russian chemist Dmitri Mendeleev formulated the periodic law whose
modern statement is

When the elements are listed in order of atomic number, elements with similar
chemical and physical properties recur at regular intervals.

Although the modern quantum theory of the atom was many years in the future,
Mendeleev was fully aware of the significance his work would turn out to have. As he

1
�
�2�

Many-Electron Atoms 235

bei48482_Ch07.qxd  1/23/02  9:02 AM  Page 235



remarked, “The periodic law, together with the revelations of spectrum analysis, have
contributed to again revive an old but remarkably long-lived hope—that of discover-
ing, if not by experiment, at least by mental effort, the primary matter.”

A periodic table is an arrangement of the elements according to atomic number
in a series of rows such that elements with similar properties form vertical columns.
Table 7.2 is a simple form of periodic table.

Elements with similar properties form the groups shown as vertical columns in
Table 7.2 (Fig. 7.4). Thus group 1 consists of hydrogen plus the alkali metals, which
are all soft, have low melting points, and are very active chemically. Lithium, sodium,
and potassium are examples. Hydrogen, although physically a nonmetal, behaves
chemically much like an active metal. Group 7 consists of the halogens, volatile non-
metals that form diatomic molecules in the gaseous state. Like the alkali metals, the
halogens are chemically active, but as oxidizing agents rather than as reducing agents.
Fluorine, chlorine, bromine, and iodine are examples; fluorine is so active it can cor-
rode platinum. Group 8 consists of the inert gases, of which helium, neon, and argon
are examples. As their name suggests, they are inactive chemically: they form virtu-
ally no compounds with other elements, and their atoms do not join together into
molecules.

The horizontal rows in Table 7.2 are called periods. The first three periods are
broken in order to keep their members aligned with the most closely related elements
of the long periods below. Most of the elements are metals (Fig. 7.5). Across each period
is a more or less steady transition from an active metal through less active metals and
weakly active nonmetals to highly active nonmetals and finally to an inert gas (Fig. 7.6).
Within each column there are also regular changes in properties, but they are far less
conspicuous than those in each period. For example, increasing atomic number in the
alkali metals is accompanied by greater chemical activity, while the reverse is true in
the halogens.

A series of transition elements appears in each period after the third between the
group 2 and group 3 elements (Fig. 7.7). The transition elements are metals, in general
hard and brittle with high melting points, that have similar chemical behavior. Fifteen
of the transition elements in period 6 are virtually indistinguishable in their properties
and are known as the lanthanide elements (or rare earths). Another group of closely
related metals, the actinide elements, is found in period 7.

For over a century the periodic law has been indispensable to chemists because it
provides a framework for organizing their knowledge of the elements. It is one of the
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Dmitri Mendeleev (1834–1907)
was born in Siberia and grew up
there, going on to Moscow and later
France and Germany to study
chemistry. In 1866 he became pro-
fessor of chemistry at the University
of St. Petersburg and three years
later published the first version of
the periodic table. The notion of
atomic number was then unknown
and Mendeleev had to deviate from

the strict sequence of atomic masses for some elements and leave

gaps in the table in order that the known elements (only 63 at
that time) occupy places appropriate to their properties. Other
chemists of the time were thinking along the same lines, but
Mendeleev went further in 1871 by proposing that the gaps
correspond to then-unknown elements. When his detailed pre-
dictions of the properties of these elements were fulfilled upon
their discovery, Mendeleev became world famous. A further
triumph for the periodic table came at the end of the nineteenth
century, when the inert gases were discovered. Here were six
elements of whose existence Mendeleev had been unaware, but
they fit perfectly as a new group in the table. The element of
atomic number 101 is called mendelevium in his honor.

NonmetalsMetals

Inert gases

Figure 7.5 The majority of the
elements are metals.

Period

Group

Figure 7.4 The elements in a
group of the periodic table have
similar properties, while those in
a period have different properties.
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Table 7.2
The Periodic Table of the Elements
Group 1 2 3 4 5 6 7 8

The number above the symbol of each element is its atomic number, and
the number below its name is its average atomic mass. The elements
whose atomic masses are given in parentheses do not occur in nature but
have been created in nuclear reactions. The atomic mass in such a case is
the mass number of the most long-lived radioisotope of the element.

Elements with atomic numbers 110, 111, 112, 114, and 116 have also been
created but not yet named.

Transition metals

Alkali metals Lanthanides (rare earths)

Actinides

Period 1 2

1 H He
Hydrogen Helium

1.008 4.003

2 3 4 5 6 7 8 9 10

Li Be B C N O F Ne
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon

6.941 9.012 10.81 12.01 14.01 16.00 19.00 20.18

3 11 12 13 14 15 16 17 18

Na Mg Al Si P S Cl Ar
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon

22.99 24.31 26.98 28.09 30.97 32.07 35.45 39.95

4 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton

39.10 40.08 44.96 47.88 50.94 52.00 54.94 55.8 58.93 58.69 63.55 65.39 69.72 72.59 74.92 78.96 79.90 83.80

5 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon

85.47 87.62 88.91 91.22 92.91 95.94 (98) 101.1 102.9 106.4 107.9 112.4 114.8 118.7 121.9 127.6 126.9 131.8

6 55 56 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86

Cs Ba Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Cesium Barium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury Thallium Lead Bismuth Polonium Astatine Radon

132.9 137.3 178.5 180.9 183.9 186.2 190.2 192.2 195.1 197.0 200.6 204.4 207.2 209.0 (209) (210) (222)

7 87 88 104 105 106 107 108 109

Fr Ra Rf Db Sg Ns Hs Mt
Francium Radium Rutherfordium Dubnium Seaborgium Nielsbohrium Hassium Meitnerium

(223) 226.0 (261) (262) (263) (262) (264) (266)

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
Lanthanum Cerium Praseodymium Neodymium Promethium Sarnarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium

138.9 140.1 140.9 144.2 (145) 150.4 152.0 157.3 158.9 162.5 184.9 167.3 168.9 173.0 175.0

89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw
Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium

(227) 232.0 231.0 238.0 (237) (244) (243) (247) (247) (251) (252) (257) (260) (259) (262)

Halogens Inert gases
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triumphs of the quantum theory of the atom that it enables us to account in a natural
way for the periodic law without invoking any new assumptions.

7.5   ATOMIC STRUCTURES

Shells and subshells of electrons

Two basic principles determine the structures of atoms with more than one electron:

1 A system of particles is stable when its total energy is a minimum.
2 Only one electron can exist in any particular quantum state in an atom.

Before we apply these rules to actual atoms, let us examine the variation of electron
energy with quantum state.

While the various electrons in a complex atom certainly interact directly with
one another, much about atomic structure can be understood by simply consider-
ing each electron as though it exists in a constant mean electric field. For a given
electron this effective field is approximately that of the nuclear charge Ze decreased
by the partial shielding of those other electrons that are closer to the nucleus (see
Fig. 7.9 in Sec. 7.6).

Electrons that have the same principal quantum number n usually (though not
always) average roughly the same distance from the nucleus. These electrons therefore
interact with roughly the same electric field and have similar energies. It is conven-
tional to speak of such electrons as occupying the same atomic shell. Shells are denoted
by capital letters according to the following scheme:

Atomic shells
n � 1 2 3 4 5 . . .

(7.13)
K L M N O . . .

The energy of an electron in a particular shell also depends to a certain extent on
its orbital quantum number l, though not as much as on n. In a complex atom the
degree to which the full nuclear charge is shielded from a given electron by interven-
ing shells of other electrons varies with its probability-density distribution. An electron
of small l is more likely to be found near the nucleus where it is poorly shielded by
the other electrons than is one of higher l (see Fig. 6.11). The result is a lower total
energy (that is, higher binding energy) for the electron. The electrons in each shell

Most active
nonmetal

Increasing
nonmetallic
activity

 Increasing
nonmetallic

activity

 Increasing
metallic
activity

 Increasing
metallic
activity

Most active
metal

Figure 7.6 How chemical activity varies in the periodic table.
Lanthanides

Actinides

Figure 7.7 The transition elements
are metals.
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Many-Electron Atoms 239

accordingly increase in energy with increasing l. This effect is illustrated in Fig. 7.8,
which is a plot of the binding energies of various atomic electrons as a function of
atomic number for the lighter elements.

Electrons that share a certain value of l in a shell are said to occupy the same
subshell. All the electrons in a subshell have almost identical energies, since the
dependence of electron energy upon ml and ms is comparatively minor.

The occupancy of the various subshells in an atom is usually expressed with the
help of the notation introduced in the previous chapter for the various quantum states
of the hydrogen atom. As indicated in Table 6.2, each subshell is identified by its prin-
cipal quantum number n followed by the letter corresponding to its orbital quantum
number l. A superscript after the letter indicates the number of electrons in that subshell.
For example, the electron configuration of sodium is written

1s22s22p63s1

which means that the 1s (n � 1, l � 0) and 2s (n � 2, l � 0) subshells contain two
electrons each, the 2p (n � 2, l � 1) subshell contains six electrons, and the 3s (n � 3,
l � 0) subshell contains one electron.

H B N FNe P Ca Mn Zn Br
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Figure 7.8 The binding energies of atomic electrons in rydbergs. (1 Ry � 13.6 eV � ground-state
energy of H atom.)

bei48482_Ch07.qxd  1/23/02  9:02 AM  Page 239



240 Chapter Seven

Shell and Subshell Capacities

The exclusion principle limits the number of electrons that can occupy a given subshell.
A subshell is characterized by a certain principal quantum number n and orbital quan-
tum number l, where l can have the values 0, 1, 2, . . . , (n � 1). There are 2l � 1
different values of the magnetic quantum number ml for any l, since ml � 0, 	1,
	2, . . . , 	l. Finally, the spin magnetic quantum number ms has the two possible
values of ��

1
2

� and ��
1
2

� for any ml. The result is that each subshell can contain a maximum
of 2(2l � 1) electrons (Table 7.3).

The maximum number of electrons a shell can hold is the sum of the electrons in
its filled subshells. This number is

Nmax � 	
l�n�1

l�0

2(2l � 1) � 2[1 � 3 � 5 � . . . � 20(n � 1) � 1]

� 2[1 � 3 � 5 � . . . � 2n � 1]

The quantity in brackets has n terms whose average value is �
1
2

�[1 � (2n � 1)]. The num-
ber of electrons in a filled shell is therefore

Nmax � (n)(2)(�
1
2

�)[1 � (2n � 1)] � 2n2 (7.14)

Thus a closed K shell holds 2 electrons, a closed L shell holds 8 electrons, a closed M
shell holds 18 electrons, and so on.

7.6   EXPLAINING THE PERIODIC TABLE

How an atom’s electron structure determines its chemical behavior

The notion of electron shells and subshells fits perfectly into the pattern of the periodic
table, which mirrors the atomic structures of the elements. Let us see how this pattern
arises.

An atomic shell or subshell that contains its full quota of electrons is said to be
closed. A closed s subshell (l � 0) holds two electrons, a closed p subshell (l � 1)
six electrons, a closed d subshell (l � 2) ten electrons, and so on.

The total orbital and spin angular momenta of the electrons in a closed subshell
are zero, and their effective charge distributions are perfectly symmetrical (see Ex-
ercise 23 of Chap. 6). The electrons in a closed shell are all very tightly bound,
since the positive nuclear charge is large relative to the negative charge of the inner
shielding electrons (Fig. 7.9). Because an atom with only closed shells has no di-
pole moment, it does not attract other electrons, and its electrons cannot be easily

Table 7.3 Subshell Capacities in the M (n � 3) Shell of an Atom

ml � 0 ml � �1 ml � �1 ml � �2 ml � �2

l � 0: ↓↑ ↑ms � ��
1
2

�

l � 1: ↓↑ ↓↑ ↓↑ ↓ms � ��
1
2

�

l � 2: ↓↑ ↓↑ ↓↑ ↓↑ ↓↑
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detached. We expect such atoms to be passive chemically, like the inert gases—and
the inert gases all turn out to have closed-shell electron configurations or their equiv-
alents. This is evident from Table 7.4, which shows the electron configurations of
the elements.

An atom of any of the alkali metals of group 1 has a single s electron in its outer
shell. Such an electron is relatively far from the nucleus. It is also shielded by the in-
ner electrons from all but an effective nuclear charge of approximately �e rather than
�Ze. Relatively little work is needed to detach an electron from such an atom, and the
alkali metals accordingly form positive ions of charge �e readily.

Example 7.2

The ionization energy of lithium is 5.39 eV. Use this figure to find the effective charge that acts
on the outer (2s) electron of the lithium atom.

Solution

If the effective nuclear charge is Ze instead of e, Eq. (4.15) becomes

En �
Z2E1
�

n2

+11e

+1e

+8e

+18e

≈

≈

Na

Ar

Figure 7.9 Schematic representation of electron shielding in the sodium and argon atoms. In this
crude model, each outer electron in an Ar atom is acted upon by an effective nuclear charge 8 times
greater than that acting upon the outer electron in a Na atom. The Ar atom is accordingly smaller in
size and has a higher ionization energy. In the actual atoms, the probability-density distributions of
the various electrons overlap in complex ways and thus alter the amount of shielding, but the basic
effect remains the same.
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Table 7.4 Electron Configurations of the Elements

K L M N O P Q

1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s

1 H 1
2 He 2 ← Inert gas
3 Li 2 1 ← Alkali metal
4 Be 2 2
5 B 2 2 1
6 C 2 2 2
7 N 2 2 3
8 O 2 2 4
9 F 2 2 5 ← Halogen

10 Ne 2 2 6 ← Inert gas
11 Na 2 2 6 1 ← Alkali metal
12 Mg 2 2 6 2
13 Al 2 2 6 2 1
14 Si 2 2 6 2 2
15 P 2 2 6 2 3
16 S 2 2 6 2 4
17 Cl 2 2 6 2 5 ← Halogen
18 Ar 2 2 6 2 6 ← Inert gas
19 K 2 2 6 2 6 1 ← Alkali metal
20 Ca 2 2 6 2 6 2
21 Sc 2 2 6 2 6 1 2
22 Ti 2 2 6 2 6 2 2
23 V 2 2 6 2 6 3 2
24 Cr 2 2 6 2 6 5 1
25 Mn 2 2 6 2 6 5 2
26 Fe 2 2 6 2 6 6 2
27 Co 2 2 6 2 6 7 2
28 Ni 2 2 6 2 6 8 2
29 Cu 2 2 6 2 6 10 1
30 Zn 2 2 6 2 6 10 2
31 Ga 2 2 6 2 6 10 2 1
32 Ge 2 2 6 2 6 10 2 2
33 As 2 2 6 2 6 10 2 3
34 Se 2 2 6 2 6 10 2 4
35 Br 2 2 6 2 6 10 2 5 ← Halogen
36 Kr 2 2 6 2 6 10 2 6 ← Inert gas
37 Rb 2 2 6 2 6 10 2 6 1 ← Alkali metal
38 Sr 2 2 6 2 6 10 2 6 2
39 Y 2 2 6 2 6 10 2 6 1 2
40 Zr 2 2 6 2 6 10 2 6 2 2
41 Nb 2 2 6 2 6 10 2 6 4 1
42 Mo 2 2 6 2 6 10 2 6 5 1
43 Tc 2 2 6 2 6 10 2 6 5 2
44 Ru 2 2 6 2 6 10 2 6 7 1
45 Rh 2 2 6 2 6 10 2 6 8 1
46 Pd 2 2 6 2 6 10 2 6 10
47 Ag 2 2 6 2 6 10 2 6 10 1
48 Cd 2 2 6 2 6 10 2 6 10 2
49 In 2 2 6 2 6 10 2 6 10 2 1
50 Sn 2 2 6 2 6 10 2 6 10 2 2
51 Sb 2 2 6 2 6 10 2 6 10 2 3
52 Te 2 2 6 2 6 10 2 6 10 2 4

Transition elements

Transition
elements

e e e e e

e

e
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1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s

53 I 2 2 6 2 6 10 2 6 10 2 5 ← Halogen
54 Xe 2 2 6 2 6 10 2 6 10 2 6 ← Inert gas
55 Cs 2 2 6 2 6 10 2 6 10 2 6 1 ← Alkali metal
56 Ba 2 2 6 2 6 10 2 6 10 2 6 2
57 La 2 2 6 2 6 10 2 6 10 2 6 1 2
58 Ce 2 2 6 2 6 10 2 6 10 2 2 6 2
59 Pr 2 2 6 2 6 10 2 6 10 3 2 6 2
60 Nd 2 2 6 2 6 10 2 6 10 4 2 6 2
61 Pm 2 2 6 2 6 10 2 6 10 5 2 6 2
62 Sm 2 2 6 2 6 10 2 6 10 6 2 6 2
63 Eu 2 2 6 2 6 10 2 6 10 7 2 6 2
64 Gd 2 2 6 2 6 10 2 6 10 7 2 6 1 2
65 Tb 2 2 6 2 6 10 2 6 10 9 2 6 2
66 Dy 2 2 6 2 6 10 2 6 10 10 2 6 2
67 Ho 2 2 6 2 6 10 2 6 10 11 2 6 2
68 Er 2 2 6 2 6 10 2 6 10 12 2 6 2
69 Tm 2 2 6 2 6 10 2 6 10 13 2 6 2
70 Yb 2 2 6 2 6 10 2 6 10 14 2 6 2
71 Lu 2 2 6 2 6 10 2 6 10 14 2 6 1 2
72 Hf 2 2 6 2 6 10 2 6 10 14 2 6 2 2
73 Ta 2 2 6 2 6 10 2 6 10 14 2 6 3 2
74 W 2 2 6 2 6 10 2 6 10 14 2 6 4 2
75 Re 2 2 6 2 6 10 2 6 10 14 2 6 5 2
76 Os 2 2 6 2 6 10 2 6 10 14 2 6 6 2
77 Ir 2 2 6 2 6 10 2 6 10 14 2 6 7 2
78 Pt 2 2 6 2 6 10 2 6 10 14 2 6 9 1
79 Au 2 2 6 2 6 10 2 6 10 14 2 6 10 1
80 Hg 2 2 6 2 6 10 2 6 10 14 2 6 10 2
81 Tl 2 2 6 2 6 10 2 6 10 14 2 6 10 2 1
82 Pb 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2
83 Bi 2 2 6 2 6 10 2 6 10 14 2 6 10 2 3
84 Po 2 2 6 2 6 10 2 6 10 14 2 6 10 2 4
85 At 2 2 6 2 6 10 2 6 10 14 2 6 10 2 5 ← Halogen
86 Rn 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 ← Inert gas
87 Fr 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 ← Alkali
88 Ra 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 metal
89 Ac 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 1 2
90 Th 2 2 6 2 6 10 2 6 10 14 2 6 10 2 6 2 2
91 Pa 2 2 6 2 6 10 2 6 10 14 2 6 10 2 2 6 1 2
92 U 2 2 6 2 6 10 2 6 10 14 2 6 10 3 2 6 1 2
93 Np 2 2 6 2 6 10 2 6 10 14 2 6 10 4 2 6 1 2
94 Pu 2 2 6 2 6 10 2 6 10 14 2 6 10 5 2 6 1 2
95 Am 2 2 6 2 6 10 2 6 10 14 2 6 10 6 2 6 1 2
96 Cm 2 2 6 2 6 10 2 6 10 14 2 6 10 7 2 6 1 2
97 Bk 2 2 6 2 6 10 2 6 10 14 2 6 10 8 2 6 1 2
98 Cf 2 2 6 2 6 10 2 6 10 14 2 6 10 10 2 6 2
99 Es 2 2 6 2 6 10 2 6 10 14 2 6 10 11 2 6 2

100 Fm 2 2 6 2 6 10 2 6 10 14 2 6 10 12 2 6 2
101 Md 2 2 6 2 6 10 2 6 10 14 2 6 10 13 2 6 2
102 No 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 2
103 Lr 2 2 6 2 6 10 2 6 10 14 2 6 10 14 2 6 1 2
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Table 7.4 (Cont.)
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Here n � 2 for the 2s electron, its ionization energy is E2 � �5.39 eV, and E1 � �13.6 eV is
the ionization energy of the hydrogen atom. Hence

Z � n 
� � 2 
� � 1.26

The effective charge is 1.26e and not e because the shielding of 2e of the nuclear charge of 3e
by the two 1s electrons is not complete: as we can see in Fig. 6.11, the 2s electron has a certain
probability of being found inside the 1s electrons.

Ionization Energy

Figure 7.10 shows how the ionization energies of the elements vary with atomic number.
As we expect, the inert gases have the highest ionization energies and the alkali metals
the lowest. The larger an atom, the farther the outer electron is from the nucleus and
the weaker the force is that holds it to the atom. This is why the ionization energy
generally decreases as we go down a group in the periodic table. The increase in ion-
ization energy from left to right across any period is accounted for by the increase in
nuclear charge while the number of inner shielding electrons stays constant. In pe-
riod 2, for instance, the outer electron in a lithium atom is held by an effective charge
of about �e, while each outer electron in beryllium, boron, carbon, and so on, is held
by effective charges of about �2e, �3e, �4e, and so on. The ionization energy of
lithium is 5.4 eV whereas that of neon, which ends the period, is 21.6 eV.

At the other extreme from alkali metal atoms, which tend to lose their outermost
electrons, are halogen atoms, whose imperfectly shielded nuclear charges tend to
complete their outer subshells by picking up an additional electron each. Halogen
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Figure 7.10 The variation of ionization energy with atomic number.
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Many-Electron Atoms 245

atoms accordingly form negative ions of charge �e readily. Reasoning of this kind
accounts for the similarities of the members of the various groups of the periodic
table.

Size

Although, strictly speaking, an atom of a certain kind cannot be said to have a defi-
nite size, from a practical point of view a fairly definite size can usually be attributed
to it on the basis of the observed interatomic spacings in closely packed crystal lattices.
Figure 7.11 shows how the resulting radii vary with atomic number. The periodicity
here is as conspicuous as in the case of ionization energy and has a similar origin in
the partial shielding by inner electrons of the full nuclear charge. The greater the shield-
ing, the lower the binding energy of an outer electron and the farther it is on the average
from the nucleus.

The relatively small range of atomic radii is not surprising in view of the binding-
energy curves of Fig. 7.8. There we see that in contrast to the enormous increase in
the binding energies of the unshielded 1s electrons with Z, the binding energies of
the outermost electrons (whose probability-density distributions are what determine
atomic size) vary through a narrow range. The heaviest atoms, with over 90 elec-
trons, have radii only about 3 times that of the hydrogen atom, and even the cesium
atom, the largest in size, has a radius only 4.4 times that of the hydrogen atom.
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Figure 7.11 Atomic radii of the elements.
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Transition Elements

The origin of the transition elements lies in the tighter binding of s electrons than
d or f electrons in complex atoms, discussed in the previous section (see Fig. 7.8).
The first element to exhibit this effect is potassium, whose outermost electron is in
a 4s instead of a 3d substate. The difference in binding energy between 3d and 4s
electrons is not very great, as the configurations of chromium and copper show. In
both these elements an additional 3d electron is present at the expense of a vacancy
in the 4s subshell.

The order in which electron subshells tend to be filled, together with the maximum
occupancy of each subshell, is usually as follows:

1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p6 5s2

4d10 5p6 6s2 4f14 5d10 6p6 7s2 6d10 5f14

Figure 7.12 illustrates this sequence. The remarkable similarities in chemical behavior
among the lanthanides and actinides are easy to understand on the basis of this se-
quence. All the lanthanides have the same 5s25p66s2 configurations but have incom-
plete 4f subshells. The addition of 4f electrons has almost no effect on the chemical
properties of the lanthanide elements, which are determined by the outer electrons.
Similarly, all the actinides have 6s26p67s2 configurations and differ only in the num-
bers of their 5f and 6d electrons.

These irregularities in the binding energies of atomic electrons are also responsible
for the lack of completely full outer shells in the heavier inert gases. Helium (Z � 2)
and neon (Z � 10) contain closed K and L shells, respectively, but argon (Z � 18) has
only 8 electrons in its M shell, corresponding to closed 3s and 3p subshells. The rea-
son the 3d subshell is not filled next is that 4s electrons have higher binding energies

s
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s
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p
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Figure 7.12 The sequence of quantum states in an atom. Not to scale.
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than do 3d electrons. Hence the 4s subshell is filled first in potassium and calcium. As
the 3d subshell is filled in successively heavier transition elements, there are still one or
two outer 4s electrons that make possible chemical activity. Not until krypton (Z � 36)
is another inert gas reached, and here a similarly incomplete outer shell occurs with
only the 4s and 4p subshells filled. Following krypton is rubidium (Z � 37), which
skips both the 4d and 4f subshells to have a 5s electron. The next inert gas is xenon
(Z � 54), which has filled 4d, 5s, and 5p subshells, but now even the inner 4f sub-
shell is empty as well as the 5d and 5f subshells. The same pattern recurs with the last
inert gas, radon.

Hund’s Rule

I n general, the electrons in a subshell remain unpaired—that is, have parallel spins—whenever
possible (Table 7.5). This principal is called Hund’s rule. The ferromagnetism of iron, cobalt,

and nickle (
 5 26, 27, 28) is in part a consequence of Hund’s rule. The 3d subshells of their
atoms are only partially occupied, and the electrons in these subshells do not pair off to permit
their spin magnetic moments to cancel out. In iron, for instance, five of the six 3d electrons have
parallel spins, so that each iron atom has a large resultant magnetic moment.

The origin of Hund’s rule lies in the mutual repulsion of atomic electrons. Because of this
repulsion, the farther apart the electrons in an atom are, the lower the energy of the atom. Elec-
trons in the same subshell with the same spin must have different ml values and accordingly are
described by wave functions whose spatial distributions are different. Electrons with parallel
spins are therefore more separated in space than they would be if they paired off. This arrange-
ment, having less energy, is the more stable one.

Table 7.5 Electron Configurations of Elements from Z � 5 to Z � 10. The p
electrons have parallel spins whenever possible, in accord with Hund’s rule.

Atomic Spins of p
Element Number Configuration Electrons

Boron 5 1s22s22p1 ↑
Carbon 6 1s22s22p2 ↑ ↑
Nitrogen 7 1s22s22p3 ↑ ↑ ↑
Oxygen 8 1s22s22p4 ↑↓ ↑ ↑
Fluorine 9 1s22s22p5 ↑↓ ↑↓ ↑
Neon 10 1s22s22p6 ↑↓ ↑↓ ↑↓

7.7   SPIN-ORBIT COUPLING

Angular momenta linked magnetically

The fine-structure doubling of spectral lines arises from a magnetic interaction between
the spin and orbital angular momenta of an atomic electron called spin-orbit coupling.

Spin-orbit coupling can be understood in terms of a straightforward classical model.
An electron revolving about a nucleus finds itself in a magnetic field because in its own
frame of reference, the nucleus is circling about it Fig. 7.13. This magnetic field then
acts upon the electron’s own spin magnetic moment to produce a kind of internal
Zeeman effect.
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The potential energy Um of a magnetic dipole of moment � in a magnetic field B
is, as we know,

Um � ��B cos � (6.38)

where � is the angle between � and B. The quantity � cos � is the component of �
parallel to B. In the case of the spin magnetic moment of the electron this component
is �sz � 	�B. Hence

� cos � � 	�B

and so

Spin-orbit coupling Um � 	�BB (7.15)

Depending on the orientation of its spin vector S, the energy of an atomic electron will
be higher or lower by �BB than its energy without spin-orbit coupling. The result is
that every quantum state (except s states in which there is no orbital angular momen-
tum) is split into two substates.

The assignment of s � �
1
2

� is the only one that agrees with the observed fine-structure
doubling. Because what would be single states without spin are in fact twin states, the
2s � 1 possible orientations of the spin vector S must total 2. With 2s � 1 � 2, the
result is s � �

1
2

�.

Example 7.3

Estimate the magnetic energy Um for an electron in the 2p state of a hydrogen atom using the
Bohr model, whose n � 2 state corresponds to the 2p state.

Solution

A circular wire loop of radius r that carries the current I has a magnetic field at its center of
magnitude

B �
�0I
�
2r

+ Ze – e

B

(a) (b)

Figure 7.13 (a) An electron circles an atomic nucleus, as viewed from the frame of reference of the
nucleus. (b) From the electron’s frame of reference, the nucleus is circling it. The magnetic field the
electron experiences as a result is directed upward from the plane of the orbit. The interaction between
the electron’s spin magnetic moment and this magnetic field leads to the phenomenon of spin-orbit
coupling.
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The orbiting electron “sees” itself circled f times per second by the proton of charge �e that is
the nucleus, for a resulting magnetic field of

B �

The frequency of revolution and orbital radius for n � 2 are, from Eqs. (4.4) and (4.14),

f � � 8.4 � 1014 s�1

r � n2a0 � 4a0 � 2.1 � 10�10 m

Hence the magnetic field experienced by the electron is

B � � 0.40 T

which is a fairly strong field. Since the value of the Bohr magneton is �B � e��2m � 9.27 �
10�24 J/T, the magnetic energy of the electron is

Um � �BB � 3.7 � 10�24 J � 2.3 � 10�5 eV

The energy difference between the upper and lower substates is twice this, 4.6 � 10�5 eV, which
is not far from what is observed (Fig. 7.14).

7.8   TOTAL ANGULAR MOMENTUM

Both magnitude and direction are quantized

Each electron in an atom has a certain orbital angular momentum L and a certain
spin angular momentum S, both of which contribute to the total angular momen-
tum J of the atom. Let us first consider an atom whose total angular momentum is
provided by a single electron. Atoms of the elements in group 1 of the periodic

(4� � 10�7 T � m /A)(8.4 � 1014 s�1)(1.6 � 10�19 C)
������

(2)(2.1 � 10�10 m)

�
�
2�r

�0fe
�

2r

2p

1s

–µBB

2µBB∆E =

+µBB

Figure 7.14 Spin-orbit coupling splits the 2p state in the hydrogen atom into two substates �E apart. The result is a doublet 
(two closely spaced lines) instead of a single spectral line for the 2p → 1s transition.
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table—hydrogen, lithium, sodium, and so on—are of this kind. They have single
electrons outside closed inner shells (except for hydrogen, which has no inner elec-
trons) and the exclusion principle ensures that the total angular momentum and mag-
netic moment of a closed shell are zero. Also in this category are the ions He�, Be�,
Mg�, B2�, Al2�, and so on.

In these atoms and ions, the outer electron’s total angular momentum J is the vector
sum of L and S:

J � L � S (7.16)

Like all angular momenta, J is quantized in both magnitude and direction. The mag-
nitude of J is given by

J � �j( j � 1�)�� j � l � s � l 	 �
1
2

� (7.17)

If l � 0, j has the single value j � �
1
2

�. The component Jz of J in the z direction is given by

Jz � mj� mj � �j, �j � 1, . . . , j � 1, j (7.18)

Because of the simultaneous quantization of J, L, and S they can have only cer-
tain specific relative orientations. This is a general conclusion; in the case of a one-
electron atom, there are only two relative orientations possible. One relative orien-
tation corresponds to j � l � s, so that J � L, and the other to j � l � s, so that
J 
 L. Figure 7.15 shows the two ways in which L and S can combine to form J
when l � 1. Evidently the orbital and spin angular-momentum vectors can never
be exactly parallel or antiparallel to each other or to the total angular-momentum
vector.

Total atomic
angular momentum

J

S

L

J

S

L

j = l + s = 3_
2

j = l – s = 1_
2

Figure 7.15 The two ways in which L and S can be added to form J when l � 1, s � �
1

2
�.
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J =   j (j + 1) 3
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hh =
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Figure 7.16 Space quantization of total angular momentum when the orbital angular momentum is l � 1.

Example 7.4

What are the possible orientations of J for the j � �
3
2

� and j � �
1
2

� states that correspond to l � 1?

Solution

For the j � �
3
2

� state, Eq. (7.18) gives mj � ��
3
2

�, ��
1
2

�, �
1
2

�, �
3
2

�. For the j � �
1
2

� state, mj � ��
1
2

�, �
1
2

�. 
Figure 7.16 shows the orientations of J relative to the z axis for these values of j.

The angular momenta L and S interact magnetically, as we saw in Sec. 7.7. If there
is no external magnetic field, the total angular momentum J is conserved in magni-
tude and direction, and the effect of the internal torques is the precession of L and S
around the direction of their resultant J (Fig. 7.17). However, if there is an external
magnetic field B present, then J precesses about the direction of B while L and S
continue precessing about J, as in Fig. 7.18. The precession of J about B is what gives
rise to the anomalous Zeeman effect, since different orientations of J involve slightly
different energies in the presence of B.

LS Coupling

When more than one electron contributes orbital and spin angular momenta to the total
angular momentum J of an atom, J is still the vector sum of these individual momenta.
The usual pattern for all but the heaviest atoms is that the orbital angular momenta Li of
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the various electrons are coupled together into a single resultant L. The spin angular mo-
menta Si are also coupled together into another single resultant S. The momenta L and 
S then interact via the spin-orbit effect to form a total angular momentum J. This scheme,
called LS coupling, can be summarized as follows:

L � 	Li

LS coupling S � 	Si (7.19)

J � L � S

The angular momentum magnitudes L, S, J and their z components Lz, Sz, and Jz are
all quantized in the usual ways, with the respective quantum numbers L, S, J, ML,
MS, and MJ. Hence

L � �L(L �� 1)��

Lz � ML�

S � �S(S �� 1)��

Sz � MS�

J � �J(J ��1)��

Jz � MJ� (7.20)

Both L and ML are always integers or 0, while the other quantum numbers are half-
integral if an odd number of electrons is involved and integral or 0 if an even number
of electrons is involved. When L � S, J can have 2S � 1 values; when L 
 S, J can
have 2L � 1 values.

Figure 7.18 In the presence of an external magnetic field B, the
total angular-momentum vector J precesses about B.

B

The atom

S
Cone traced

out by J

L

J

B B

Figure 7.17 The orbital and spin angular-momentum vectors L and
S precess about J.

J

Cone traced out by L

Cone traced out by S

The atom

S

L
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Example 7.5

Find the possible values of the total angular-momentum quantum number J under LS coupling
of two atomic electrons whose orbital quantum numbers are l1 � 1 and l2 � 2.

Solution

As in Fig. 7.19a, the vectors L1 and L2 can be combined in three ways into a single vector L
that is quantized according to Eq. (7.20). These correspond to L � 1, 2, and 3 since all val-
ues of L are possible from �l1 � l2� (� 1 here) to l1 � l2. The spin quantum number s is al-
ways �

1
2

�, which gives the two possibilities for S1 � S2 shown in Fig. 7.19b, corresponding to
S � 0 and S � 1.

We note that if the vector sums are not 0, L1 and L2 can never be exactly parallel to L, nor
can S1 and S2 be parallel to S. Because J can have any value between �L � S� and L � S, the
five possible values here are J � 0, 1, 2, 3, and 4.

Figure 7.19 When l1 � 1, s1 � �
1

2
�, and l2 � 2, s2 � �

1

2
�, there are three ways in which L1 and L2 can

combine to form L and two ways in which S1 and S2 can combine to form S.

L

L2

L1

L

L2

L1

L L2

L1

L = 3 L = 2 L = 1 S = 1 S = 0

S1 S2

S1

S2

S

(b)(a)

Atomic nuclei also have intrinsic angular momenta and magnetic moments, and
these contribute to the total atomic angular momenta and magnetic moments. Such
contributions are small because nuclear magnetic moments are �10�3 the magnitude
of electronic moments. They lead to the hyperfine structure of spectral lines with typ-
ical spacings between components of �10�3 nm as compared with typical fine-
structure spacings a hundred times greater.

Term Symbols

In Sec. 6.5 we saw that individual orbital angular-momentum states are customarily
described by a lowercase letter, with s corresponding to l � 0, p to l � 1, d to l � 2,
and so on. A similar scheme using capital letters is used to designate the entire elec-
tronic state of an atom according to its total orbital angular-momentum quantum
number L as follows:

L � 0 1 2 3 4 5 6 . . .

S P D F G H I . . .
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A superscript number before the letter (2P, for instance) is used to indicate the
multiplicity of the state, which is the number of different possible orientations of L
and S and hence the number of different possible values of J. The multiplicity is equal
to 2S � 1 in the usual situation where L � S, since J ranges from L � S to L � S.
Thus when S � 0, the multiplicity is 1 (a singlet state) and J � L; when S � �

1
2

�, the
multiplicity is 2 (a doublet state) and J � L 	 �

1
2

�; when S � 1, the multiplicity is 3
(a triplet state) and J � L � 1, L, or L � 1; and so on. (In a configuration in which
S � L, the multiplicity is given by 2L � 1.) The total angular-momentum quan-
tum number J is used as a subscript after the letter, so that a 2P3�2 state (read as “dou-
blet P three-halves”) refers to an electronic configuration in which S � �

1
2

�, L � 1, and
J � �

3
2

�. For historical reasons, these designations are called term symbols.
In the event that the angular momentum of the atom arises from a single outer

electron, the principal quantum number n of this electron is used as a prefix. Thus
the ground state of the sodium atom is described by 32S1�2, since its electronic
configuration has an electron with n � 3, l � 0, and s � �

1
2

� (and hence j � �
1
2

�) out-
side closed n � 1 and n � 2 shells. For consistency it is conventional to denote the
above state by 32S1�2 with the superscript 2 indicating a doublet, even though there
is only a single possibility for J since L � 0.

Example 7.6

The term symbol of the ground state of sodium is 32S1�2 and that of its first excited state 
is 32P1�2. List the possible quantum numbers n, l, j, and mj of the outer electron in each
case.

Solution

32S1�2: n � 3, l � 0, j � �
1
2

�, mj � 	�
1
2

�

32P1�2: n � 3, l � 1, j � �
3
2

�, mj � 	�
1
2

�, 	�
3
2

�

n � 3, l � 1, j � �
1
2

�, mj � 	�
1
2

�

Example 7.7

Why is it impossible for a 22P5�2 state to exist?

Solution

A P state has L � 1 and J � L 	 �
1
2

�, so J � �
5
2

� is impossible.

7.9 X-RAY SPECTRA

They arise from transitions to inner shells

In Chap. 2 we learned that the x-ray spectra of targets bombarded by fast electrons show
narrow spikes at wavelengths characteristic of the target material. These are besides a
continuous distribution of wavelengths down to a minimum wavelength inversely pro-
portional to the electron energy (see Fig. 2.17). The continuous x-ray spectrum is the
result of the inverse photoelectric effect, with electron kinetic energy being transformed
into photon energy h	. The line spectrum, on the other hand, comes from electronic
transitions within atoms that have been disturbed by the incident electrons.

bei48482_Ch07.qxd  1/23/02  9:02 AM  Page 254



Many-Electron Atoms 255

The transitions of the outer electrons of an atom usually involve only a few
electronvolts of energy, and even removing an outer electron requires at most 24.6 eV
(for helium). Such transitions accordingly are associated with photons whose wave-
lengths lie in or near the visible part of the electromagnetic spectrum. The inner
electrons of heavier elements are a quite different matter, because these electrons are
not well shielded from the full nuclear charge by intervening electron shells and so are
very tightly bound.

In sodium, for example, only 5.13 eV is needed to remove the outermost 3s electron,
whereas the corresponding figures for the inner ones are 31 eV for each 2p electron,
63 eV for each 2s electron, and 1041 eV for each 1s electron. Transitions that involve
the inner electrons in an atom are what give rise to x-ray line spectra because of the
high photon energies involved.

Figure 7.20 shows the energy levels (not to scale) of a heavy atom. The energy dif-
ferences between angular momentum states within a shell are minor compared with

Figure 7.20 The origin of x-ray spectra.
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Henry G. J. Moseley (1887–1915)
was born in Weymouth, on Eng-
land’s south coast. He studied
physics at Oxford, where his father
had been professor of anatomy. Af-
ter graduating in 1910, Moseley
joined Rutherford at Manchester,
where he began a systematic study
of x-ray spectra that he later contin-
ued at Oxford. From the data he was

able to infer a relationship between the x-ray wavelengths of an
element and its atomic number, a relationship that permitted him
to correct ambiguities in then-current atomic number assignments
and to predict the existence of several then-unknown elements.
Moseley soon recognized the important link between his discov-
ery and Bohr’s atomic model. By then World War I had broken
out and Moseley enlisted in the British Army. Rutherford unsuc-
cessfully tried to have him assigned to scientific work, but in 1915
Moseley was sent to Turkey on the ill-conceived and disastrous
Dardanelles campaign and was killed at the age of twenty-seven.

the energy differences between shells. Let us look at what happens when an energetic
electron strikes the atom and knocks out one of the K-shell electrons. The K electron
could also be raised to one of the unfilled upper states of the atom, but the difference
between the energy needed to do this and that needed to remove the electron com-
pletely is insignificant, only 0.2 percent in sodium and still less in heavier atoms.

An atom with a missing K electron gives up most of its considerable excitation en-
ergy in the form of an x-ray photon when an electron from an outer shell drops into
the “hole” in the K shell. As indicated in Fig. 7.20, the K series of lines in the x-ray
spectrum of an element consists of wavelengths arising in transitions from the L, M, N,
. . . levels to the K level. Similarly the longer-wavelength L series originates when an
L electron is knocked out of the atom, the M series when an M electron is knocked
out, and so on. The two spikes in the x-ray spectrum of molybdenum in Fig. 2.17 are
the K
 and K� lines of its K series.

It is easy to find an approximate relationship between the frequency of the K
 x-ray
line of an element and its atomic number Z. A K
 photon is emitted when an L (n � 2)
electron undergoes a transition to a vacant K (n � 1) state. The L electron experiences
a nuclear charge of Ze that is reduced to an effective charge in the neighborhood 
of (Z � 1)e by the shielding effect of the remaining K electron. Thus we can use 
Eqs. (4.15) and (4.16) to find the K
 photon frequency by letting ni � 2 and nf � 1,
and replacing e4 by (Z � 1)2e4. This gives

	 � � � � � cR(Z � 1)2� � �
K� x-rays 	 � (7.21)

where R � me4�8�2
0 ch3 � 1.097 � 107 m�1 is the Rydberg constant. The energy of a

K
 x-ray photon is given in electronvolts in terms of (Z � 1) by the formula

E(K
) � (10.2 eV)(Z � 1)2 (7.22)

In 1913 and 1914 the young British physicist H. G. J. Moseley confirmed Eq. (7.21)
by measuring the K
 frequencies of most of the then-known elements using the dif-
fraction method described in Sec. 2.6. Besides supporting Bohr’s newly formulated atomic
model, Moseley’s work provided for the first time a way to determine experimentally the
atomic number Z of an element. As a result, the correct sequence of elements in the

3cR(Z � 1)2

��
4

1
�
22

1
�
12

1
�
ni

2

1
�
nf

2

m(Z � 1)2e4

��
8�2

0h3
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periodic table could be established. The ordering of the elements by atomic number
(which is what matters) is not always the same as their ordering by atomic mass, which
until then was the method used. Atomic number was originally just the number of an
element in the list of atomic masses. For instance, Z � 27 for cobalt and Z � 28 for
nickel, but their respective atomic masses are 58.93 and 58.71. The order dictated by
atomic mass could not be understood on the basis of the chemical properties of cobalt
and nickel.

In addition, Moseley found gaps in his data that corresponded to Z � 43, 61, 72,
and 75, which suggested the existence of hitherto unknown elements that were later
discovered. The first two, technetium and promethium, have no stable isotopes and
were first produced in the laboratory many years later. The last two, hafnium and
rhenium, were isolated in the 1920s.

In the operation of this x-ray spectrometer, a stream of fast electrons is
directed at a sample of unknown composition. Some of the electrons
knock out inner electrons in the target atoms, and when outer electrons
replace them, x-ray are emitted whose wavelengths are characteristic of
the elements present. The identity and relative amounts of the elements
in the sample can be found in this way.

Example 7.8

Which element has a K
 x-ray line whose wavelength is 0.180 nm?

Solution

The frequency corresponding to a wavelength of 0.180 nm � 1.80 � 10�10 m is

	 � � � 1.67 � 1018 Hz
3.00 � 108 m/s
��
1.80 � 10�10 m

c
�
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Figure 7.21 When an electron from an outer shell of an atom with a missing inner electron drops to
fill the vacant state, the excitation energy can be carried off by an x-ray photon or by another outer
electron. The latter process is called the Auger effect.

From Eq. (7.21) we have

Z � 1 � 
� � 
���� 26

Z � 27

The element with atomic number 27 is cobalt.

(4)(1.67 � 1018 Hz)
�����
(3)(3.00 � 108 m/s)(1.097 � 107 m�1)

4
�
3cR

Auger Effect

A n atom with a missing inner electron can also lose excitation energy by the Auger effect
without emitting an x-ray photon. In this effect, which was discovered by the French physi-

cist Pierre Auger, an outer-shell electron is ejected from the atom at the same time that another
outer-shell electron drops to the incomplete inner shell. Thus the ejected electron carries off the
atom’s excitation energy instead of a photon doing this (Fig. 7.21). In a sense the Auger effect
represents an internal photoelectric effect, although the photon never actually comes into being
within the atom.

The Auger process is competitive with x-ray emission in most atoms, but the resulting
electrons are usually absorbed in the target material while the x-rays emerge to be detected.
Those Auger electrons that do emerge come either from atoms on the surface of the material
or just below the surface. Because the energy levels of an atom are affected by its participa-
tion in a chemical bond, the energies of Auger electrons provide insight into the chemical
environment of the atoms involved. Auger spectroscopy has turned out to be a valuable
method for studying the properties of surfaces, information especially needed by manufac-
turers of semiconductor devices that consist of thin layers of different materials deposited on
one another.

X-ray photon

X-ray
emission

Outer electronAuger
effectHigh-energy

electron
dislodges
inner atomic
electron

OR
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Appendix  to  Chapter  7

Atomic Spectra

W e are now in a position to understand the chief features of the spectra of
the various elements. Before we examine some representative examples,
it should be mentioned that further complications exist which have not

been considered here, for instance those that originate in relativistic effects and in the
coupling between electrons and vacuum fluctuations in the electromagnetic field (see
Sec. 6.9). These additional factors split certain energy states into closely spaced sub-
states and therefore represent other sources of fine structure in spectral lines.

Hydrogen

Figure 7.22 shows the various states of the hydrogen atom classified by their total quan-
tum number n and orbital angular-momentum quantum number l. The selection rule

Figure 7.22 Energy-level diagram for hydrogen showing the origins of some of the more prominent
spectral lines. The detailed structures of the n � 2 and n � 3 levels and the transitions that lead to
the various components of the H
 line are pictured in the inset.
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for allowed transitions here is

Selection rule �l � 	1

which is illustrated by the transitions shown. The principal quantum number n can
change by any amount.

To indicate some of the detail that is omitted in a simple diagram of this kind, the
detailed structures of the n � 2 and n � 3 levels are pictured. Not only are all sub-
states of the same n and different j separated in energy, but the same is true of states
of the same n and j but with different l. The latter effect is most marked for states of
small n and l, and was first established in 1947 in the “Lamb shift” of the 22S1�2 state
relative to the 22P1�2 state. The various separations conspire to split the H
 spectral
line (n � 3 → n � 2) into seven closely spaced components.

Sodium

The sodium atom has a single 3s electron outside closed inner shells, and so if we
assume that the 10 electrons in its inner core completely shield �10e of nuclear charge
(which is not quite true), the outer electron is acted upon by an effective nuclear charge
of �e just as in the hydrogen atom. Hence we expect, as a first approximation, that
the energy levels of sodium will be the same as those of hydrogen except that the
lowest one will correspond to n � 3 instead of n � 1 because of the exclusion principle.
Figure 7.23 is the energy-level diagram for sodium. By comparison with the hydrogen
levels also shown, there is indeed agreement for the states of highest l, that is, for the
states of highest angular momentum.

To understand the reason for the discrepancies at lower values of l, we need only
refer to Fig. 6.11 to see how the probability for finding the electron in a hydrogen
atom varies with distance from the nucleus. The smaller the value of l for a given n,
the closer the electron gets to the nucleus on occasion. Although the sodium wave
functions are not identical with those of hydrogen, their general behavior is similar.
Accordingly we expect the outer electron in a sodium atom to penetrate the core of
inner electrons most often when it is in an s state, less often when it is in a p state,
still less often when it is in a d state, and so on. The less shielded an outer electron
is from the full nuclear charge, the greater the average force acting on it, and the
smaller (that is, the more negative) its total energy. For this reason the states of small
l in sodium are displaced downward from their equivalents in hydrogen, as in
Fig. 7.23, and there are pronounced differences in energy between states of the same
n but different l.

Helium

A single electron is responsible for the energy levels of both hydrogen and sodium.
However, there are two 1s electrons in the ground state of helium, and coupling affects
the properties and behavior of the helium atom. These are the selection rules for allowed
transitions under LS coupling:

�L � 0, 	1

LS selection rules � J � 0, 	1

�S � 0
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When only a single electron is involved, �L � 0 is prohibited and �L � �l � 	1 is
the only possibility. Furthermore, J must change when the initial state has J � 0, so
that J � 0 → J � 0 is prohibited.

The helium energy-level diagram is shown in Fig. 7.24. The various levels repre-
sent configurations in which one electron is in its ground state and the other is in an
excited state. Because the angular momenta of the two electrons are coupled, the levels
are characteristic of the entire atom. Three differences between this diagram and the
corresponding ones for hydrogen and sodium are conspicuous:

1 There is a division into singlet and triplet states. These are, respectively, states in
which the spins of the two electrons are antiparallel (to give S � 0) and parallel (to
give S � 1). Because of the selection rule �S � 0, no allowed transitions can occur
between singlet states and triplet states, and the helium spectrum arises from transi-
tions in one set or the other.

Figure 7.23 Energy-level diagram for sodium. The energy levels of hydrogen are included for
comparison.
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Helium atoms in singlet states (antiparallel spins) constitute parahelium and
those in triplet states (parallel spins) constitute orthohelium. An orthohelium atom
can lose excitation energy in a collision and become one of parahelium, while a
parahelium atom can gain excitation energy in a collision and become one of or-
thohelium. Ordinary liquid or gaseous helium is therefore a mixture of both. The
lowest triplet states are metastable because, in the absence of collisions, an atom in
one of them can retain its excitation energy for a relatively long time (a second or
more) before radiating.
2 Another obvious peculiarity in Fig. 7.24 is the absence of the 13S state in helium.
The lowest triplet state is 23S, although the lowest singlet state is 11S. The 13S state is
missing because of the exclusion principle, since in this state the two electrons would
have parallel spins and therefore identical sets of quantum numbers.
3 The energy difference between the ground state and the lowest excited state in
helium is relatively large. This reflects the tight binding of closed-shell electrons dis-
cussed earlier in this chapter. The ionization energy of helium—the work that must
be done to remove an electron from a helium atom—is 24.6 eV, the highest of any
element.
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Figure 7.24 Energy-level diagram for helium showing the division into singlet (parahelium) and triplet
(orthohelium) states. There is no 13S state because the exclusion principle prohibits two electrons with
parallel spins in the same state.
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Mercury

The last energy-level diagram we consider is that of mercury, which has two electrons
outside an inner core of 78 electrons in closed shells or subshells (Table 7.4). We ex-
pect a division into singlet and triplet states as in helium. Because the atom is so heavy
we might also expect signs of a breakdown in the LS coupling of angular momenta.

As Fig. 7.25 reveals, both of these expectations are realized, and several promi-
nent lines in the mercury spectrum arise from transitions that violate the �S � 0
selection rule. The transition 3P1 → 1S0 is an example, and is responsible for the
strong 253.7-nm line in the ultraviolet. To be sure, this does not mean that the tran-
sition probability is necessarily very high, since the three 3P1 states tend to be highly
populated in excited mercury vapor. The 3P0 → 1S0 and 3P2 → 1S0 transitions,
respectively, violate the rules that forbid transitions from J � 0 to J � 0 and that
limit �J to 0 or 	1, as well as violating �S � 0, and hence are considerably less
likely to occur than the 3P1 → 1S0 transition. The 3P0 and 3P2 states are therefore
metastable, and in the absence of collisions, an atom can persist in either of them
for a relatively long time. The strong spin-orbit interaction in mercury that leads to
the partial failure of LS coupling is also responsible for the wide spacing of the
elements of the 3P triplet.
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Figure 7.25 Energy-level diagram for mercury. In each excited level one outer electron is in the ground
state, and the designation of the levels in the diagram corresponds to the state of the other electron.
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7.1 Electron Spin

1. A beam of electrons enters a uniform 1.20-T magnetic field.
(a) Find the energy difference between electrons whose spins
are parallel and antiparallel to the field. (b) Find the wavelength
of the radiation that can cause the electrons whose spins are
parallel to the field to flip so that their spins are antiparallel.

2. Radio astronomers can detect clouds of hydrogen in our galaxy
too cool to radiate in the optical part of the spectrum by means
of the 21-cm spectral line that corresponds to the flipping of
the electron in a hydrogen atom from having its spin parallel to
the spin of the proton to having it antiparallel. Find the mag-
netic field experienced by the electron in a hydrogen atom.

3. Find the possible angles between the z axis and the direction of
the spin angular-momentum vector S.

7.2 Exclusion Principle

7.3 Symmetric and Antisymmetric Wave Functions

4. In superconductivity, which occurs in certain materials at very
low temperatures, electrons are linked together in “Cooper
pairs” by their interaction with the crystal lattices of the materi-
als. Cooper pairs do not obey the exclusion principle. What
aspect of these pairs do you think permits this?

5. Protons and neutrons, like electrons, are spin-�
1
2

� particles. The
nuclei of ordinary helium atoms, �

4
2

� He, contain two protons and
two neutrons each; the nuclei of another type of helium atom,
�
3
2

� He, contain two protons and one neutron each. The properties
of liquid �

4
2

� He and liquid �
3
2

� He are different because one type of
helium atom obeys the exclusion principle but the other does
not. Which is which, and why?

6. A one-dimensional potential well like those of Secs. 3.6 and 5.8
has a width of 1.00 nm and contains 10 electrons. The system
of electrons has the minimum total energy possible. What is the
least energy, in eV, a photon must have in order to excite a
ground-state (n � 1) electron in this system to the lowest
higher state it can occupy?

7.4 Periodic Table

7.5 Atomic Structures

7.6 Explaining the Periodic Table

7. In what way does the electron structure of an alkali metal atom
differ from that of a halogen atom? From that of an inert gas
atom?

8. What is true in general of the properties of elements in the same
period of the periodic table? Of elements in the same group?

9. How many electrons can occupy an f subshell?

10. (a) How would the periodic table be modified if the electron
had a spin of 1, so it could have spin states of �1, 0, and �1?
Assume (wrongly) that such electrons are fermions and so obey
the exclusion principle. Which elements would then be inert
gases? (b) Such electrons would in fact be bosons. Which
elements in this case would be inert gases?

11. If atoms could contain electrons with principal quantum
numbers up to and including n � 6, how many elements
would there be?

12. Verify that atomic subshells are filled in order of increasing n � l,
and within a group of given n � l in order of increasing n.

13. The ionization energies of Li, Na, K, Rb, and Cs are, respec-
tively, 5.4, 5.1, 4.3, 4.2, and 3.9 eV. All are in group 1 of the
periodic table. Account for the decrease in ionization energy
with increasing atomic number.

14. The ionization energies of the elements of atomic numbers 20
through 29 are very nearly equal. Why should this be so when
considerable variations exist in the ionization energies of other
consecutive sequences of elements?

15. (a) Make a rough estimate of the effective nuclear charge that
acts on each electron in the outer shell of the calcium (Z � 20)
atom. Would you think that such an electron is relatively easy
or relatively hard to detach from the atom? (b) Do the same for
the sulfur (Z � 16) atom.

16. The effective nuclear charge that acts on the outer electron in
the sodium atom is 1.84e. Use this figure to calculate the ion-
ization energy of sodium.

17. Why are Cl atoms more chemically active than Cl� ions?
Why are Na atoms more chemically active than Na� ions?

18. Account for the general trends of the variation of atomic radius
with atomic number shown in Fig. 7.11.

19. In each of the following pairs of atoms, which would you
expect to be larger in size? Why? Li and F; Li and Na; F and
Cl; Na and Si.

20. The nucleus of a helium atom consists of two protons and two
neutrons. The Bohr model of this atom has two electrons in the
same orbit around the nucleus. Estimate the average separation
of the electrons in a helium atom in the following way. 
(1) Assume that each electron moves independently of the
other in a ground-state Bohr orbit and calculate its ionization
energy on this basis. (2) Use the difference between the calcu-
lated ionization energy and the measured one of 24.6 eV to
find the interaction energy between the two electrons. (3) On
the assumption that the interaction energy results from the re-
pulsion between the electrons, find their separation. How does
this compare with the radius of the orbit?

21. Why is the normal Zeeman effect observed only in atoms with
an even number of electrons?

E X E R C I S E S

No plan survives contact with the enemy. —Field Marshal von Moltke
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7.7 Spin-Orbit Coupling

22. Why is the ground state of the hydrogen atom not split into
two sublevels by spin-orbit coupling?

23. The spin-orbit effect splits the 3P → 3S transition in sodium
(which gives rise to the yellow light of sodium-vapor highway
lamps) into two lines, 589.0 nm corresponding to 3P3�2 → 3S1�2

and 589.6 nm corresponding to 3P1�2 → 3S1�2. Use these wave-
lengths to calculate the effective magnetic field experienced by the
outer electron in the sodium atom as a result of its orbital motion.

7.8 Total Angular Momentum

24. An atom has a single electron outside closed inner shells. What
total angular momentum J can the atom have if it is in a P
state? In a D state?

25. If j � �
5
2

�, what values of l are possible?

26. (a) What are the possible values of L for a system of two elec-
trons whose orbital quantum numbers are l1 � 1 and l2 � 3?
(b) What are the possible values of S? (c) What are the possible
values of J?

27. What must be true of the subshells of an atom which has a 1S0

ground state?

28. Find the S, L, and J values that correspond to each of the fol-
lowing states: 1S0, 3P2, 2D3�2, 5F5, 6H5�2.

29. The lithium atom has one 2s electron outside a filled inner
shell. Its ground state is 2S1�2. (a) What are the term symbols of
the other allowed states, if any? (b) Why would you think the
2S1�2 state is the ground state?

30. The magnesium atom has two 3s electrons outside filled inner
shells. Find the term symbol of its ground state.

31. The aluminum atom has two 3s electrons and one 3p electron
outside filled inner shells. Find the term symbol of its ground
state.

32. In a carbon atom, only the two 2p electrons contribute to its
angular momentum. The ground state of this atom is 3P0, and
the first four excited states, in order of increasing energy, are
3P1, 3P2, 1D2, and 1S0. (a) Give the L, S, and J values for each
of these five states. (b) Why do you think the 3P0 state is the
ground state?

33. Why is it impossible for a 22D3�2 state to exist?

34. (a) What values can the quantum number j have for a d elec-
tron in an atom whose total angular momentum is provided by
this electron? (b) What are the magnitudes of the corresponding
angular momenta of the electron? (c) what are the angles
between the directions of L and S in each case? (d) What are
the term symbols for this atom?

35. Answer the questions of Exercise 34 for an f electron in an
atom whose total angular momentum is provided by this
electron.

36. Show that if the angle between the directions of L and S in
Fig. 7.15 is �,

cos � �

37. The magnetic moment �J of an atom in which LS coupling
holds has the magnitude

�J � �J(J ��1)gJ�B�

where �B � e��2m is the Bohr magneton and 

gJ � 1 �

is the Landé g factor. (a) Derive this result with the help of the
law of cosines starting from the fact that averaged over time,
only the components of �L and �S parallel to J contribute to
�J. (b) Consider an atom that obeys LS coupling that is in a
weak magnetic field B in which the coupling is preserved. How
many substates are there for a given value of J?  What is the
energy difference between different substates?

38. The ground state of chlorine is 2P3�2. Find its magnetic moment
(see previous exercise).  Into how many substates will the
ground state split in a weak magnetic field?

7.9 X-Ray Spectra

39. Explain why the x-ray spectra of elements of nearby atomic
numbers are qualitatively very similar, although the optical
spectra of these elements may differ considerably.

40. What element has a K
 x-ray line of wavelength 0.144 nm?

41. Find the energy and the wavelength of the K
 x-rays of
aluminum.

42. The effective charge experienced by an M (n � 3) electron in an
atom of atomic number Z is about (Z � 7.4)e. Show that the
frequency of the L
 x-rays of such an element is given by 
5cR(Z � 7.4)2�36.

Appendix: Atomic Spectra

43. Distinguish between singlet and triplet states in atoms with two
outer electrons.

44. Which of the following elements would you expect to have
energy levels divided into singlet and triplet states: 
Ne, Mg, Cl, Ca, Cu, Ag, Ba?

J(J � 1) � L(L � 1) � S(S � 1)
����

2J(J � 1)

j ( j � 1) � l(l � 1) � s(s � 1)
����

2�l(l � 1�) s(s �� 1)�
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CHAPTER 8

Molecules

8.1 THE MOLECULAR BOND
Electric forces hold atoms together to form
molecules

8.2 ELECTRON SHARING
The mechanism of the covalent bond

8.3 THE H2
� MOLECULAR ION

Bonding requires a symmetric wave function

8.4 THE HYDROGEN MOLECULE
The spins of the electrons must be antiparallel

8.5 COMPLEX MOLECULES
Their geometry depends on the wave functions of
the outer electrons of their atoms

8.6 ROTATIONAL ENERGY LEVELS
Molecular rotational spectra are in the
microwave region

8.7 VIBRATIONAL ENERGY LEVELS
A molecule may have many different modes
of vibration

8.8 ELECTRONIC SPECTRA OF MOLECULES
How fluorescence and phosphorescence occur

This infrared spectrometer measures the absorption of infrared radiation by a sample as a function
of wavelength, which provides information about the structure of the molecules in the sample.
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I
ndividual atoms are rare on the earth and in the lower part of its atmosphere. Only
inert gas atoms occur by themselves. All other atoms are found joined together in
small groups called molecules and in large groups as liquids and solids. Some mol-

ecules, liquids, and solids are composed entirely of atoms of the same element; others
are composed of atoms of different elements.

What holds atoms together? This question, of fundamental importance to the
chemist, is no less important to the physicist, whose quantum theory of the atom can-
not be correct unless it provides a satisfactory answer. The ability of the quantum the-
ory to explain chemical bonding with no special assumptions is further testimony to
the power of this approach.

8.1   THE MOLECULAR BOND

Electric forces hold atoms together to form molecules

A molecule is an electrically neutral group of atoms held together strongly enough to
behave as a single particle.

A molecule of a given kind always has a certain definite composition and structure.
Hydrogen molecules, for instance, always consist of two hydrogen atoms each, and
water molecules always consist of one oxygen atom and two hydrogen atoms each. If
one of the atoms of a molecule is somehow removed or another atom becomes attached,
the result is a molecule of a different kind with different properties.

A molecule exists because its energy is less than that of the system of separate
noninteracting atoms. If the interactions among a certain group of atoms reduce their
total energy, a molecule can be formed. If the interactions increase their total energy,
the atoms repel one another.

Let us see what happens when two atoms are brought closer and closer together.
Three extreme situations can occur:

1 A covalent bond is formed. One or more pairs of electrons are shared by the two atoms.
As these electrons circulate between the atoms, they spend more time between the
atoms than elsewhere, which produces an attractive force. An example is H2, the hy-
drogen molecule, whose electrons belong to both protons (Fig. 8.1). The attractive
force the electrons exert on the protons is more than enough to counterbalance the
direct repulsion between them. If the protons are too close together, however, their
repulsion becomes dominant and the molecule is not stable.

The balance between attractive and repulsive forces occurs at a separation of 
7.42 � 10�11 m, where the total energy of the H2 molecule is �4.5 eV. Hence 4.5 eV
of work must be done to break a H2 molecule into two H atoms:

H2 � 4.5 eV S H � H

By comparison, the binding energy of the hydrogen atom is 13.6 eV:

H � 13.6 eV S p� � e�

This is an example of the general rule that it is easier to break up a molecule than to
break up an atom.

2 An ionic bond is formed. One or more electrons from one atom may transfer to the
other and the resulting positive and negative ions attract each other. An example is
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rock salt, NaCl, where the bond exists between Na� and Cl� ions and not between
Na and Cl atoms (Fig. 8.2). Ionic bonds usually do not result in the formation of mol-
ecules. The crystals of rock salt are aggregates of sodium and chlorine ions which, al-
though always arranged in a certain definite structure (Fig. 8.3), do not pair off into
molecules consisting of one Na� ion and one Cl� ion. Rock salt crystals may have any
size and shape. There are always equal numbers of Na� and Cl� ions in rock salt, so
that the formula NaCl correctly represents its composition. Molten NaCl also consists
of Na� and Cl� ions: these ions form molecules rather than crystals only in the gaseous
state. Ionic bonding is further discussed in Chap. 10.

Figure 8.2 An example of ionic bonding. Sodium and chlorine combine chemically by the transfer of
electrons from sodium atoms to chlorine atoms; the resulting ions attract each other electrically.

Na+

Cl–

Figure 8.3 Scale model of an NaCl
crystal.

Cl
+17

Na
+11

Cl–
+17

+11
Na+

Figure 8.1 (a) Orbit model of the hydrogen molecule. (b) Quantum-mechanical model of the hydro-
gen molecule. In both models the shared electrons spend more time on the average between the nuclei,
which leads to an attractive force. Such a bond is said to be covalent.

(a)

(b)

Electron

H

+ =

H 2

Proton

High probability
of finding electrons

+ =
H H H2

Low probability
of finding electrons

H
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In H2 the bond is purely covalent and in NaCl it is purely ionic. In many molecules
an intermediate type of bond occurs in which the atoms share electrons to an unequal
extent. An example is the HCl molecule, where the Cl atom attracts the shared elec-
trons more strongly than the H atom. We can think of the ionic bond as an extreme
case of the covalent bond.
3 No bond is formed. When the electron structures of two atoms overlap, they consti-
tute a single system. According to the exclusion principle, no two electrons in such a
system can exist in the same quantum state. If some of the interacting electrons are
forced into higher energy states than they occupied in the separate atoms, the system
may have more energy than before and be unstable. Even when the exclusion princi-
ple can be obeyed with no increase in energy, there will be an electric repulsive force
between the various electrons. This is a much less significant factor than the exclusion
principle in influencing bond formation, however.

8.2   ELECTRON SHARING

The mechanism of the covalent bond

The simplest possible molecular system is H2
�, the hydrogen molecular ion, in which

a single electron bonds two protons. Before we consider the bond in H2
� in detail,

let us look in a general way into how it is possible for two protons to share an elec-
tron and why such sharing should lead to a lower total energy and hence to a stable
system.

In Chap. 5 the phenomenon of quantum-mechanical barrier penetration was
examined. There we saw that a particle can “leak” out of a box even without enough
energy to break through the wall because the particle’s wave function extends 
beyond it. Only if the wall is infinitely strong is the wave function wholly inside
the box.

The electric field around a proton is in effect a box for an electron, and two nearby
protons correspond to a pair of boxes with a wall between them (Fig. 8.4). No mech-
anism in classical physics permits the electron in a hydrogen atom to jump sponta-
neously to a neighboring proton more distant than its parent proton. In quantum
physics, however, such a mechanism does exist. There is a certain probability that an
electron trapped in one box will tunnel through the wall and get into the other box,
and once there it has the same probability for tunneling back. This situation can be
described by saying the electron is shared by the protons.

To be sure, the likelihood that an electron will pass through the region of high po-
tential energy—the “wall”—between two protons depends strongly on how far apart
the protons are. If the proton-proton distance is 0.1 nm, the electron may be regarded
as going from one proton to the other about every 10�15 s. We can legitimately con-
sider such an electron as being shared by both. If the proton-proton distance is 1 nm,
however, the electron shifts across an average of only about once per second, which is
practically an infinite time on an atomic scale. Since the effective radius of the 1s wave
function in hydrogen is 0.053 nm, we conclude that electron sharing can take place
only between atoms whose wave functions overlap appreciably.

Granting that two protons can share an electron, a simple argument shows why the
energy of such a system could be less than that of a separate hydrogen atom and pro-
ton. According to the uncertainty principle, the smaller the region to which we restrict
a particle, the greater must be its momentum and hence kinetic energy. An electron
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(a)

(b)

Total
electron
energy

Proton a Proton b

R
r0

V

Electron

Figure 8.4 (a) Potential energy of an electron in the electric field of two nearby protons. The total
energy of a ground-state electron in the hydrogen atom is indicated. (b) Two nearby protons corre-
spond quantum-mechanically to a pair of boxes separated by a barrier.

shared by two protons is less confined than one belonging to a single proton, which
means that it has less kinetic energy. The total energy of the electron in H2

� is there-
fore less than that of the electron in H � H�. Provided the magnitude of the proton-
proton repulsion in H2

� is not too great, then, H2
� ought to be stable.

8.3   THE H2
� MOLECULAR ION

Bonding requires a symmetric wave function

What we would like to know is the wave function � of the electron in H2
�, since from

� we can calculate the energy of the system as a function of the separation R of the
protons. If E(R) has a minimum, we will know that a bond can exist, and we can also
determine the bond energy and the equilibrium spacing of the protons.

Solving Schrödinger’s equation for � is a long and complicated procedure. An in-
tuitive approach that brings out the physics of the situation is more appropriate here.
Let us begin by trying to predict what � is when R, the distance between the protons,
is large compared with a0, the radius of the smallest Bohr orbit in the hydrogen atom.
In this event � near each proton must closely resemble the 1s wave function of the
hydrogen atom, as pictured in Fig. 8.5. The 1s wave function around proton a is called
�a and that around proton b is called �b.
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Figure 8.5 (a)–(d) The combination of two hydrogen-atom 1s wave functions to form the symmetric
H2

� wave function �S. The result is a stable H2
� molecular ion because the electron has a greater

probability of being between the protons than outside them. (e) If the protons could join together,
the resulting wave function would be the same as the 1s wave function of a He� ion.
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We also know what � looks like when R is 0, that is, when the protons are imag-
ined to be fused together. Here the situation is that of the He� ion, since the electron
is now near a single nucleus whose charge is �2e. The 1s wave function of He� has
the same form as that of H but with a greater amplitude at the origin, as in Fig. 8.5e.
Evidently � is going to be something like the wave function sketched in Fig. 8.5d when
R is comparable with a0. There is an enhanced likelihood of finding the electron in the
region between the protons, which corresponds to the sharing of the electron by the
protons. Thus there is on the average an excess of negative charge between the pro-
tons, and this attracts the protons together. We have still to establish whether this
attraction is strong enough to overcome the mutual repulsion of the protons.

The combination of �a and �b in Fig. 8.5 is symmetric, since exchanging a and b
does not affect � (see Sec. 7.3). However, it is also conceivable that we could have an
antisymmetric combination of �a and �b, as in Fig. 8.6. Here there is a node between
a and b where � � 0, which implies a reduced likelihood of finding the electron be-
tween the protons. Now there is on the average a deficiency of negative charge be-
tween the protons and in consequence a repulsive force. With only repulsive forces
acting, bonding cannot occur.

An interesting question concerns the behavior of the antisymmetric H2
� wave func-

tion �A as R S 0. Obviously �A does not become the 1s wave function of He� when
R � 0. However, �A does approach the 2p wave function of He� (Fig. 8.6e), which has
a node at the origin. But the 2p state of He� is an excited state whereas the 1s state is
the ground state. Hence H2

� in the antisymmetric state ought to have more energy
than when it is in the symmetric state, which agrees with our inference from the shapes
of the wave functions �A and �S that in the former case there is a repulsive force and
in the latter, an attractive one.

System Energy

A line of reasoning similar to the preceding one lets us estimate how the total energy
of the H2

� system varies with R. We first consider the symmetric state. When R is
large, the electron energy ES must be the �13.6-eV energy of the hydrogen atom, while
the electric potential energy Up of the protons,

Up � (8.1)

falls to 0 as R S �. (Up is a positive quantity, corresponding to a repulsive force.) When
R S 0, Up S � as 1�R. At R � 0, the electron energy must equal that of the He� ion,
which is Z2, or 4 times, that of the H atom. (See Exercise 35 of Chap. 4; the same re-
sult is obtained from the quantum theory of one-electron atoms.) Hence ES � �54.4 eV
when R � 0.

Both ES and Up are sketched in Fig. 8.7 as functions of R. The shape of the curve
for ES can only be approximated without a detailed calculation, but we do have its
value for both R � 0 and R � � and, of course, Up obeys Eq. (8.1).

The total energy ES
total of the system is the sum of the electron energy ES and the

potential energy Up of the protons. Evidently ES
total has a minimum, which corresponds

to a stable molecular state. This result is confirmed by the experimental data on H2
�

which indicate a bond energy of 2.65 eV and an equilibrium separation R of 0.106 nm.
By “bond energy” is meant the energy needed to break H2

� into H � H�. The total

e2

�
4��0R
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Figure 8.6 (a)–(d) The combination of two hydrogen-atom 1s wave functions to form the antisymmetric
H2

� wave function �A. A stable H2
� molecular ion is not formed because now the electron has a smaller

probability of being between the protons than outside them. (e) If the protons could join together,
the resulting wave function would be the same as the 2p wave function of a He� ion. In the 2p state
a He� ion has more energy than in the 2s state.
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energy of H2
� is the �13.6 eV of the hydrogen atom plus the �2.65-eV bond energy,

or �16.3 eV in all.
In the case of the antisymmetric state, the analysis proceeds in the same way except

that the electron energy EA when R � 0 is that of the 2p state of He�. This energy is
proportional to Z2�n2. With Z � 2 and n � 2, EA is just equal to the �13.6 eV of the
ground-state hydrogen atom. Since EA S 13.6 eV also as R S �, we might think that
the electron energy is constant, but actually there is a small dip at intermediate dis-
tances. However, the dip is not nearly enough to yield a minimum in the total energy
curve for the antisymmetric state, as shown in Fig. 8.7, and so in this state no bond
is formed.

8.4 THE HYDROGEN MOLECULE

The spins of the electrons must be antiparallel

The H2 molecule has two electrons instead of the single electron of H2
�. According to

the exclusion principle, both electrons can share the same orbital (that is, be described
by the same wave function �nlml

) provided their spins are antiparallel.
With two electrons to contribute to the bond, H2 ought to be more stable than

H2
�—at first glance, twice as stable, with a bond energy of 5.3 eV compared with

Figure 8.7 Electron, proton repulsion, and total energies in H2
+ as a function of nuclear separation R

for the symmetric and antisymmetric states. The antisymmetric state has no minimum in its total
energy.
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2.65 eV for H2
�. However, the H2 orbitals are not quite the same as those of H2

�

because of the electric repulsion between the two electrons in H2, a factor absent in
the case of H2

�. This repulsion weakens the bond in H2, so that the actual energy is
4.5 eV instead of 5.3 eV. For the same reason, the bond length in H2 is 0.074 nm,
which is somewhat larger than the use of unmodified H2

� wave functions would
indicate. The general conclusion in the case of H2

� that the symmetric wave function
�S leads to a bound state and the antisymmetric wave function �A to an unbound one
remains valid for H2.

In Sec. 7.3 the exclusion principle was formulated in terms of the symmetry and
antisymmetry of wave functions, and it was concluded that systems of electrons are al-
ways described by antisymmetric wave functions (that is, by wave functions that re-
verse sign upon the exchange of any pair of electrons). However, the bound state in
H2 corresponds to both electrons being described by a symmetrical wave function �S,
which seems to contradict the above conclusion.

A closer look shows that there is really no contradiction. The complete wave func-
tion �(1, 2) of a system of two electrons is the product of a spatial wave function
�(1, 2) which describes the coordinates of the electrons and a spin function s(1, 2)
which describes the orientations of their spins. The exclusion principle requires that
the complete wave function

�(1, 2) � �(1, 2) s(1, 2)

be antisymmetric to an exchange of both coordinates and spins, not �(1, 2) by itself.
An antisymmetric complete wave function �A can result from the combination of a
symmetric coordinate wave function �S and an antisymmetric spin function sA or from
the combination of an antisymmetric coordinate wave function �A and a symmetric
spin function sS. That is, only

�(1, 2) � �SsA and �(1, 2) � �AsS

are acceptable.
If the spins of the two electrons are parallel, their spin function is symmetric since

it does not change sign when the electrons are exchanged. Hence the coordinate wave
function � for two electrons whose spins are parallel must be antisymmetric:

Spins parallel �(1, 2) � �AsS

On the other hand, if the spins of the two electrons are antiparallel, their spin func-
tion is antisymmetric since it reverses sign when the electrons are exchanged. Hence
the coordinate wave function � for two electrons whose spins are antiparallel must be
symmetric:

Spins antiparallel �(1, 2) � �SsA

Schrödinger’s equation for the H2 molecule has no exact solution. In fact, only for
H2

� is an exact solution possible, and all other molecular systems must be treated ap-
proximately. The results of a detailed analysis of the H2 molecule are shown in Fig. 8.8
for the case when the electrons have their spins parallel and the case when their spins
are antiparallel. The difference between the two curves is due to the exclusion prin-
ciple, which leads to a dominating repulsion when the spins are parallel.
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8.5 COMPLEX MOLECULES

Their geometry depends on the wave functions of the outer electrons of
their atoms

Covalent bonding in molecules other than H2, diatomic as well as polyatomic, is usu-
ally a more complicated story. It would be yet more complicated but for the fact that
any alteration in the electronic structure of an atom due to the proximity of another
atom is confined to its outermost, or valence, electron shell. There are two reasons
for this:

1 The inner electrons are much more tightly bound and hence less responsive to
external influences, partly because they are closer to their parent nucleus and partly
because they are shielded from the nuclear charge by fewer intervening electrons.
2 The repulsive interatomic forces in a molecule become predominant while the inner
shells of its atoms are still relatively far apart.

The idea that only the valence electrons are involved in chemical bonding is sup-
ported by x-ray spectra that arise from transitions to inner-shell electron states. These
spectra are virtually independent of how the atoms are combined in molecules or solids.

We have seen that two H atoms can combine to form an H2 molecule; and, indeed,
hydrogen molecules in nature always consist of two H atoms. The exclusion principle
is what prevents molecules such as He2 and H3 from existing, while permitting such
other molecules as H2O to be stable.

Every He atom in its ground state has a 1s electron of each spin. If it is to join with
another He atom by exchanging electrons, each atom will have two electrons with the
same spin for part of the time. That is, one atom will have both electron spins up (↑↑)
and the other will have both spins down (↓↓). The exclusion principle, of course,
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Figure 8.8 The variation of the energy of the system H � H with their distances apart when the electron
spins are parallel and antiparallel.
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prohibits two 1s electrons in an atom from having the same spins, which is manifested
in a repulsion between He atoms. Hence the He2 molecule cannot exist.

A similar argument holds in the case of H3. An H2 molecule contains two 1s elec-
trons whose spins are antiparallel (↑↓). Should another H atom approach whose elec-
tron spin is, say, up, the resulting molecule would have two spins parallel (↑↑↓), and
this is impossible if all three electrons are to be in 1s states. Hence the existing H2 mol-
ecule repels the additional H atom. The exclusion-principle argument does not apply
if one of the three electrons in H3 is in an excited state. All such states are of higher
energy than the 1s state, however, and the resulting configuration therefore has more
energy than H2 � H and so will decay rapidly to H2 � H.

Molecular Bonds

The interaction between two atoms that gives rise to a covalent bond between them
may involve probability-density distributions for the participating electrons that are
different from those of Fig. 6.12 for atoms alone in space. Figure 8.9 shows the

Orbital n l ml

s 0 01,2,3, ...

px 1 ±12,3,4, ...

py 1 ±12,3,4, ...

pz 1 02,3,4, ...

z

+ y

x
z

y

x
z

y

x

– +

–

+

z

y

x –

+

Figure 8.9 Boundary surface diagrams for s and p atomic orbitals. Each orbital can “contain” two elec-
trons. There is a high probability of finding an electron described by one of these orbitals in the shaded
regions. The sign of the wave function in each lobe is indicated.
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configurations of the s and p atomic orbitals important in bond formation. What are
drawn are boundary surfaces of constant ���2 � �R���2 that outline the regions within
which the probability of finding the electron has some definite value, say 90 or 95 per-
cent. The diagrams thus show ����2 in each case; Fig. 6.11 gives the corresponding
radial probabilities. The sign of the wave function � is indicated in each lobe of the
orbitals.

In Fig. 8.9 the s and pz orbitals are the same as the hydrogen-atom wave functions
for s and p (ml � 0) states. The px and py orbitals are linear combinations of the
p (ml � �1) and p (ml � �1) orbitals, where

�px
� (��1 � ��1) �py

� (��1 � ��1) (8.2)

The 1��2� factors are needed to normalize the wave functions. Because the energies
of the ml � �1 and ml � �1 orbitals are the same, the superpositions of the wave
functions in Eq. (8.2) are also solutions of Schrödinger’s equation (see Sec. 5.4).

When two atoms come together, their orbitals overlap. If the result is an increased
���2 between them, the combined orbitals constitute a bonding molecular orbital. In
Sec. 8.4 we saw how the 1s orbitals of two hydrogen atoms could join to form the
bonding orbital �S. Molecular bonds are classified by Greek letters according to their
angular momenta L about the bond axis, which is taken to be the z axis: � (the Greek
equivalent of s) corresponds to L � 0, � (the Greek equivalent of p) corresponds to
L � �, and so on in alphabetic order.

Figure 8.10 shows the formation of � and � bonding molecular orbitals from s and
p atomic orbitals. Evidently �S for H2 is an ss� bond. Since the lobes of pz orbitals are
on the bond axis, they form � molecular orbitals; the px and py orbitals usually form
� molecular orbitals.

1
�
�2�

1
�
�2�

Figure 8.10 The formation of ss�, pp�, and pp� bonding molecular orbitals. Two py atomic orbitals
can combine to form a pp� molecular orbital in the same way as shown for two px atomic orbitals
but with a different orientation.
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The atomic orbitals that combine to form a molecular orbital may be different in
the two atoms. An example is the water molecule H2O. Although one 2p orbital in O
is fully occupied by two electrons, the other two 2p orbitals are only singly occupied
and so can join with the 1s orbitals of two H atoms to form sp� bonding orbitals
(Fig. 8.11). The mutual repulsion between the H nuclei (which are protons) widens
the angles between the bond axes from 90� to the observed 104.5�.

Hybrid Orbitals

The straightforward way in which the shape of the H2O molecule is explained fails in
the case of methane, CH4. A carbon atom has two electrons in its 2s orbital and one
electron in each of two 2p orbitals. Thus we would expect the hydride of carbon to be
CH2, with two sp� bonding orbitals and a bond angle of a little over 90�. The 2s elec-
trons should not participate in the bonding at all. Yet CH4 exists and is perfectly
symmetrical in structure with tetrahedral molecules whose C—H bonds are exactly
equivalent to one another.

The problem of CH4 (and those of many other molecules) was solved by Linus
Pauling in 1928. He proposed that linear combinations of both the 2s and 2p atomic
orbitals of C contribute to each molecular orbital in CH4. The 2s and 2p wave func-
tions are both solutions of the same Schrödinger’s equation if the corresponding en-
ergies are the same, which is not true in the isolated C atom. However, in an actual
CH4 molecule the electric field experienced by the outer C electrons is affected by the
nearby H nuclei, and the energy difference between 2s and 2p states then can disap-
pear. Hybrid orbitals that consist of mixtures of s and p orbitals occur when the
bonding energies they produce are greater than those which pure orbitals would pro-
duce. In CH4 the four hybrid orbitals are mixtures of one 2s and three 2p orbitals,
and accordingly are called sp3 hybrids (Fig. 8.12). The wave functions of these hybrid
orbitals are

�1 � (�s � �px
� �py

� �pz
) �3 � (�s � �px

� �py
� �pz

)

�2 � (�s � �px
� �py

� �pz
) �4 � (�s � �px

� �py
� �pz

)

Figure 8.13 shows the resulting structure of the CH4 molecule.
Two other types of hybrid orbital in addition to sp3 can occur in carbon atoms.

In sp2 hybridization, one outer electron is in a pure p orbital and the other three are

1
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�
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�
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H

Figure 8.11 Formation of an H2O
molecule. Overlaps represent sp�
covalent bonds. The angle be-
tween the bonds is 104.5°.
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Figure 8.12 In sp3 hybridization, an s orbital and three p orbitals in the same atom combine to form
four sp3 hybrid orbitals.

H

H

H

H

C

Figure 8.13 The bonds in the
CH4 (methane) molecule involve
sp3 hybrid orbitals.
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in hybrid orbitals that are �
1
3

� s and �
2
3

� p in character. In sp hybridization, two outer
electrons are in pure p orbitals and the other two are in hybrid orbitals that are �

1
2

� s
and �

1
2

� p in character.
Ethylene, C2H4, is an example of sp2 hybridization in which the two C atoms are

joined by two bonds, one a � bond and one a � bond (Fig. 8.14). The conventional
structural formula of ethylene shows these two bonds:

Ethylene

The electrons in the � bond are “exposed” outside the molecule, so ethylene and sim-
ilar compounds are much more reactive chemically than compounds whose molecules
have only � bonds between their C atoms.

In benzene, C6H6, the six C atoms are arranged in a flat hexagonal ring, as in
Fig. 8.15, with three sp2 orbitals per C atom forming � bonds with each other and
with the H atoms. This leaves each C atom with one 2p orbital. The total of six 2p
orbitals in the molecule combine into bonding � orbitals that are continuous above
and below the plane of the ring. The six electrons involved belong to the molecule as
a whole and not to any particular pair of atoms; these electrons are delocalized. An
appropriate structural formula for benzene is therefore

H

CC

C C

C

C

H

H

H

H

H

C
H

H

C
H

H

Linus Pauling (1901–1994), a native
of Oregon, received his Ph.D. from the
California Institute of Technology and
remained there for his entire scientific
career except for a period in the mid-
dle 1920s when he was in Germany to
study the new quantum mechanics. A
pioneer in the application of quantum
theory to chemistry, he provided many
of the key insights that permitted the

details of chemical bonding to be understood. His The Nature
of the Chemical Bond has been one of the most influential books
in the history of science. Pauling also did important work in
molecular biology, in particular protein structure: with the help
of x-ray diffraction, he discovered the helical and pleated sheet
forms that protein molecules can have. It was Pauling who
realized that sickle cell anemia is a “molecular disease” due to

hemoglobin with one wrong amino acid resulting from a ge-
netic fault. He received the Nobel Prize in chemistry in 1954.

In 1923 Pauling met Ava Helen Miller in a chemistry class,
and she married him despite his admission that “If I had to
choose between you and science, I’m not sure that I would
choose you.” She introduced him to the world outside the lab-
oratory, and he became more and more politically active in his
later years. Pauling fought to stop the atmospheric testing of
nuclear weapons with its attendant radioactive fallout, a cru-
sade that did not endear him to Caltech or to the FBI, whose
file on him grew to 2500 pages. Elsewhere his ideas were better
received in the forms of a nuclear test ban treaty and the Nobel
Peace Prize. Pauling championed large daily doses of vitamin
C as an aid to good health, an idea rejected at first by the medical
establishment but eventually shown to have much in its favor.
He died at ninety-three of cancer, certain that vitamin C had
prolonged his life.
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(b) c)
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H
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C
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(

H

Figure 8.15 The benzene molecule. (a) The overlaps between the sp2

hybrid orbitals in the C atoms with each other and with the s orbitals
of the H atoms lead to � bonds. (b) Each C atom has a pure px orbital
occupied by one electron. (c) The bonding � molecular orbitals formd
by the six px atomic orbitals constitute a continuous electron probability
distribution around the molecule that contains six delocalized electrons.

(a)

C C

H

HH

H

H

C

H

H

C

H

H

C C

(b)

(c)

H

H

H

Figure 8.14 (a) The ethylene (C2H4) molecule. All the atoms
lie in a plane perpendicular to the plane of the paper. (b) Top
view, showing the sp2 hybrid orbitals that form � bonds be-
tween the C atoms and between each C atoms. (c) Side view,
showing the pure px orbitals that form a � bond between
the C atoms.

Dorothy Crowfoot Hodgkin (1910–
1994) was fascinated at the age of ten
by the growth of crystals in alum and
copper sulfate solutions as their sol-
vent water evaporated. This fascina-
tion with crystals never left her. She
studied chemistry at Oxford Univer-
sity despite the difficulties women stu-
dents of science had to face in those
days, and as an undergraduate had
mastered x-ray crystallography well
enough to have a research paper pub-
lished. In this technique a narrow
beam of x-rays is directed at a crystal

from various angles and the resulting interference patterns are
analyzed to yield the arrangement of the atoms in the crystal.
Dorothy Crowfoot (as she then was) went on to Cambridge Uni-
versity to work with J. D. Bernal, who had just begun to use
x-rays to investigate biological molecules. Under the right con-
ditions many such molecules form crystals from whose struc-

tures the structures of the molecules themselves can be inferred.
In particular, the structures of protein molecules are important
because they are closely related to their biological functions.
She and Bernal were the first to map the arrangement of the
atoms in a protein, the digestive enzyme pepsin.

After two intense years at Cambridge, Dorothy Crowfoot re-
turned to Oxford where she married Thomas Hodgkin and had
three children while continuing active research. Her most no-
table work was on penicillin (then the most complex molecule
to be successfully analyzed), vitamin B12, and insulin (it took
thirty-five years of on-and-off effort to finish the job). She was
a pioneer in using computers to interpret x-ray data, an ardu-
ous task for all but the simplest molecules. For all her achieve-
ments and their recognition in the scientific world, Hodgkin
was for many years shabbily treated at Oxford: poor laboratory
facilities, the lowest possible official status, half the pay of her
male colleagues with continual worries about making ends meet
until outside support (much of it from the Rockefeller Foun-
dation of the United States) became available. She received the
Nobel Prize in chemistry in 1964, the third woman to do so.
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8.6 ROTATIONAL ENERGY LEVELS

Molecular rotational spectra are in the microwave region

Molecular energy states arise from the rotation of a molecule as a whole, from the vibrations
of its atoms relative to one another, and from changes in its electronic configuration:

1 Rotational states are separated by quite small energy intervals (10�3 eV is typical).
The spectra that arise from transitions between these states are in the microwave region
with wavelengths of 0.1 mm to 1 cm. The absorption by water molecules of rotational
energy from microwaves underlies the operation of microwave ovens.
2 Vibrational states are separated by somewhat larger energy intervals (0.1 eV is typ-
ical). Vibrational spectra are in the infrared region with wavelengths of 1 �m to
0.1 mm.
3 Molecular electronic states have the highest energies, with typical separations between
the energy levels of outer electrons of several eV. The corresponding spectra are in the
visible and ultraviolet regions.

A detailed picture of a particular molecule can often be obtained from its spectrum,
including bond lengths, force constants, and bond angles. For simplicity the treatment
here will cover only diatomic molecules, but the main ideas apply to more compli-
cated ones as well.

The lowest energy levels of a diatomic molecule arise from rotation about its center
of mass. We may picture such a molecule as consisting of atoms of masses m1 and m2

a distance R apart, as in Fig. 8.16. The moment of inertia of this molecule about an axis
passing through its center of mass and perpendicular to a line joining the atoms is

I � m1r2
1 � m2r2

2 (8.3)

where r1 and r2 are the distances of atoms 1 and 2, respectively, from the center of
mass. From the definition of center of mass,

m1r1 � m2r2 (8.4)

Hence the moment of inertia may be written

Moment of inertia I � (r1 � r2)2 � m
R2 (8.5)

Here

Reduced mass m
 � (8.6)
m1m2
�
m1 � m2

m1m2
�
m1 � m2

Axis Center
of mass

m2

R

r2
r1

m1

Figure 8.16 A diatomic molecule can rotate about its center of mass.
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We have been considering only rotation about an axis perpendicular to the bond axis of a
diatomic molecules, as in Fig 8.16—end-over-end rotations. What about rotations about

the axis of symmetry itself?
Such rotations can be neglected because the mass of an atom is located almost entirely in its

nucleus, whose radius is only �10�4 of the radius of the atom itself. The main contribution to
the moment of inertia of a diatomic molecule about its bond axis therefore comes from its elec-
trons, which are concentrated in a region whose radius about the axis is roughly half the bond
length R but whose total mass is only about �

40
1
00
� of the total molecular mass. Since the allowed

rotational energy levels are proportional to 1�I, rotation about the symmetry axis must involve
energies �104 times the EJ values for end-over-end rotations. Hence energies of at least several
eV would be involved in any rotation about the symmetry axis of a diatomic molecule. Bond
energies are also of this order of magnitude, so the molecule would be likely to dissociate in any
environment in which such a rotation could be excited.

Rotations about the Bond Axis

is the reduced mass of the molecule. Equation (8.5) states that the rotation of a di-
atomic molecule is equivalent to the rotation of a single particle of mass m
 about an
axis located a distance R away.

The angular momentum L of the molecule has the magnitude

L � I� (8.7)

where � is its angular velocity. Angular momentum is always quantized in nature, as
we know. If we denote the rotational quantum number by J, we have here

L � �J ( J � 1�)� � J � 0, 1, 2, 3, . . . (8.8)

The energy of a rotating molecule is �
1
2

�I�2, and so its energy levels are specified by

EJ � I�2 �

� (8.9)
J ( J � 1)�2

��
2I

Rotational energy
levels

L2

�
2I

1
�
2

Angular
momentum

Example 8.1

The carbon monoxide (CO) molecule has a bond length R of 0.113 nm and the masses of the
12C and 16O atoms are respectively 1.99 � 10�26 kg and 2.66 � 10�26 kg. Find (a) the energy
and (b) the angular velocity of the CO molecule when it is in its lowest rotational state.

Solution

(a) The reduced mass m
 of the CO molecule is

m
 � � � � � 10�26 kg

� 1.14 � 10�26 kg

(1.99)(2.66)
��
1.99 � 2.66

m1m2
�
m1 � m2
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and its moment of inertia I is

I � m
R2 � (1.14 � 10�26 kg)(1.13 � 10�10 m)2

� 1.46 � 10�46 kg � m2

The lowest rotational energy level corresponds to J � 1, and for this level in CO

EJ�1 � � �

� 7.61 � 10�23 J � 4.76 � 10�4 eV

This is not a lot of energy, and at room temperature, when kT 	 2.6 � 10�2 eV, nearly all the
molecules in a sample of CO are in excited rotational states.
(b) The angular velocity of the CO molecule when J � 1 is

� � 
� � 
��
� 3.23 � 1011 rad/s

Rotational Spectra

Rotational spectra arise from transitions between rotational energy states. Only mole-
cules that have electric dipole moments can absorb or emit electromagnetic photons
in such transitions. For this reason nonpolar diatomic molecules such as H2 and sym-
metric polyatomic molecules such as CO2 (O“C“O) and CH4 (Fig. 8.13) do not
exhibit rotational spectra. Transitions between rotational states in molecules like H2,
CO2, and CH4 can take place during collisions, however.

Even in molecules with permanent dipole moments, not all transitions between ro-
tational states involve radiation. As in the case of atomic spectra, certain selection rules
summarize the conditions for a radiative transition between rotational states to be pos-
sible. For a rigid diatomic molecule the selection rule for rotational transitions is

Selection rule �J � �1 (8.10)

In practice, rotational spectra are always obtained in absorption, so that each tran-
sition that is found involves a change from some initial state of quantum number J to
the next higher state of quantum number J � 1. In the case of a rigid molecule, the
frequency of the absorbed photon is

�J→J�1 � �

Rotational spectra � ( J � 1) (8.11)

where I is the moment of inertia for end-over-end rotations. The spectrum of a rigid
molecule therefore consists of equally spaced lines, as in Fig. 8.17. The frequency
of each line can be measured, and the transition it corresponds to can often be
found from the sequence of lines. From these data the moment of inertia of the
molecule can be calculated. Alternatively, the frequencies of any two successive lines
may be used to determine I if the lowest-frequency lines in a particular spectral
sequence are not recorded.

�
�
2�I

EJ�1 � EJ
��

h

�E
�

h

(2)(7.61 � 10�23 J)
���
1.46 � 10�46 kg � m2

2E
�

I

(1.054 � 10�34 J � s)2

���
1.46 � 10�46 kg � m2

�2

�
I

J( J � 1)�2

��
2I
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Example 8.2

In CO the J � 0 S J � 1 absorption line occurs at a frequency of 1.15 � 1011 Hz. What is the
bond length of the CO molecule?

Solution

First we find the moment of inertia of this molecule from Eq. (8.11):

ICO � ( J � 1) � � 1.46 � 10�46 kg � m2

In Example 8.1 we saw that the reduced mass of the CO molecule is m
 � 1.14 � 10�26 kg.

From Eq. (8.5), I � m
R2, we obtain

RCO � 
� � 
�� � 1.13 � 10�10 m � 0.113 nm

This is the way in which the bond length for CO quoted earlier was determined.

8.7   VIBRATIONAL ENERGY LEVELS

A molecule may have many different modes of vibration

When sufficiently excited, a molecule can vibrate as well as rotate. Figure 8.18 shows
how the potential energy of a diatomic molecule varies with the internuclear distance
R. Near the minimum of this curve, which corresponds to the normal configuration of
the molecule, the shape of the curve is very nearly a parabola. In this region, then,

Parabolic approximation U � U0 � k(R � R0)2 (8.12)

where R0 is the equilibrium separation of the atoms.

1
�
2

1.46 � 10�46 kg � m2

���
1.14 � 10�26 kg

I
�
m


1.054 � 10�34 J � s
���
(2�)(1.15 � 1011 s�1)

�
�
2��

J = 4

J = 3

J = 2

J = 1
J = 0

Rotational
energy
levels

Rotational
spectrum �

EJ

Figure 8.17 Energy levels and spectrum of molecular rotation.
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The interatomic force that gives rise to this potential energy is given by differenti-
ating U:

F � � � �k(R � R0) (8.13)

The force is just the restoring force that a stretched or compressed spring exerts—a
Hooke’s law force—and, as with a spring, a molecule suitably excited can undergo
simple harmonic oscillations.

Classically, the frequency of a vibrating body of mass m connected to a spring of
force constant k is

�0 � 
� (8.14)

What we have in the case of a diatomic molecule is the somewhat different situation
of two bodies of masses m1 and m2 joined by a spring, as in Fig. 8.19. In the absence

k
�
m

1
�
2�

dU
�
dR

Parabolic approximation

U

U0

R0
R

Figure 8.18 The potential energy of a diatomic molecule as a function of internuclear distance.

Force constant k
m1

Force constant k
m2 m′=

m′ = m, m2
m, + m2

Figure 8.19 A two-body oscillator behaves like an ordinary harmonic oscillator with the same spring constant
but with the reduced mass m
.
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of external forces the linear momentum of the system remains constant, and the
oscillations of the bodies therefore cannot effect the motion of their center of mass. For
this reason m1 and m2 vibrate back and forth relative to their center of mass in oppo-
site directions, and both reach the extremes of their respective motions at the same
times. The frequency of oscillation of such a two-body oscillator is given by Eq. (8.14)
with the reduced mass m
 of Eq. (8.6) substituted for m:

�0 � 
� (8.15)

When the harmonic-oscillator problem is solved quantum mechanically (see Sec.
5.11), the energy of the oscillator turns out to be restricted to the values

E	 � (	 � �
1

2
�)h�0 (8.16)

where 	, the vibrational quantum number, may have the values

	 � 0, 1, 2, 3, . . .

The lowest vibrational state (	 � 0) has the zero-point energy �
1
2

� h�0, not the classical
value of 0. This result is in accord with the uncertainty principle, because if the oscil-
lating particle were stationary, the uncertainty in its position would be �x � 0 and its
momentum uncertainty would then have to be infinite—and a particle with E � 0
cannot have an infinitely uncertain momentum. In view of Eq. (8.15) the vibrational
energy levels of a diatomic molecule are specified by

E	 � (	 � �
1
2

�)� 
� (8.17)

The higher vibrational states of a molecule do not obey Eq. (8.16) because the par-
abolic approximation to its potential-energy curve becomes less and less valid with
increasing energy. As a result, the spacing between adjacent energy levels of high 	 is
less than the spacing between adjacent levels of low 	, which is shown in Fig. 8.20.

k
�
m


Vibrational energy 
levels

Vibrational 
quantum number

Harmonic 
oscillator

k
�
m


1
�
2�

Two-body 
oscillator

Gerhard Herzberg (1904–1999)
was born in Hamburg, Germany,
and received his doctorate from the
Technical University of Darmstadt
in 1928. The rise to power of the
Nazis led Herzberg to leave Ger-
many in 1935 for Canada, where
he joined the University of
Saskatchewan. From 1945 to 1948

he was at Yerkes Observatory in Wisconsin, and after that he
directed the Division of Pure Physics of Canada’s National Re-
search Council in Ottawa until he retired in 1969. Herzberg
was a pioneer in using spectra to determine molecular struc-
tures, and also did important work in analyzing the spectra of
stars, interstellar gas, comets, and planetary atmospheres. His
books under the general title Molecular Spectra and Molecular
Structure are classics in the field. He received the Nobel Prize
in chemistry in 1971.
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This diagram also shows the fine structure in the vibrational levels caused by the
simultaneous excitation of rotational levels.

Vibrational Spectra

The selection rule for transitions between vibrational states is

Selection rule �	 � �1 (8.18)

in the harmonic-oscillator approximation. This rule is easy to understand. An oscillat-
ing dipole whose frequency is �0 can absorb or emit only electromagnetic radiation of
the same frequency and all quanta of frequency �0 have the energy h�0. The oscillat-
ing dipole accordingly can only absorb �E � h�0 at a time, in which case its energy
increases from (	 � �

1
2

�)h�0 to (	 � �
1
2

� � 1)h�0. It can also emit only �E � h�0 at a
time, in which case its energy decreases from (	 � �

1
2

�)h�0 to (	 � �
1
2

� � 1)h�0. Hence
the selection rule �	 � �1.

Example 8.3

When CO is dissolved in liquid carbon tetrachloride, infrared radiation of frequency 6.42 �
1013 Hz is absorbed. Carbon tetrachloride by itself is transparent at this frequency, so the
absorption must be due to the CO. (a) What is the force constant of the bond in the CO molecule?
(b) What is the spacing between its vibrational energy levels?

Vibrational energy levels

Rotational energy levels

U

R

Figure 8.20 The potential energy of a diatomic molecule as a function of interatomic distance, show-
ing vibrational and rotational energy levels.
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E

0.1915 eV

E

0.4527 eV

E

0.4656 eV

Symmetric
bending

H H

O

H H

O

H H

O

Symmetric
stretching

Asymmetric
stretching

Figure 8.21 The normal modes of vibration of the H2O molecule and the energy levels of each mode.
More energy is needed to stretch the molecule than to bend it, which is generally true.

Solution

(a) As we know, the reduced mass of the CO molecule is m
 � 1.14 � 10�26 kg. From Eq. (8.15),
�0 � (1�2�) �k�m
�, the force constant is

k � 4�2�2
0 m
 � (4�2)(6.42 � 1013 Hz)2(1.14 � 10�26 kg)

� 1.86 � 103 N/m

This is about 10 lb/in.
(b) The separation �E between the vibrational levels in CO is

�E � E	 �1 � E	 � h�0 � (6.63 � 10�34 J � s)(6.42 � 1013 Hz)

� 4.26 � 10�20 J � 0.266 eV

This is considerably more than the spacing between its rotational energy levels. Because �E � kT
for vibrational states in a sample at room temperature, most of the molecules in such a sample
exist in the 	 � 0 state with only their zero-point energies. This situation is very different from
that characteristic of rotational states, where the much smaller energies mean that the majority
of the molecules in a room-temperature sample are excited to higher states.

A complex molecule may have many different modes of vibration. Some of these
modes involve the entire molecule (Figs. 8.21 and 8.22), but others (“local modes”)
involve only groups of atoms whose vibrations occur more or less independently of
the rest of the molecule. Thus the —–OH group has a characteristic vibrational fre-
quency of 1.1 � 1014 Hz and the —–NH2 group has a frequency of 1.0 � 1014 Hz.

The characteristic vibrational frequency of a carbon-carbon group depends upon

the number of bonds between the C atoms: the group vibrates at about

3.3 � 1013 Hz, the group vibrates at about 5.0 � 1013 Hz, and the

group vibrates at about 6.7 � 1013 Hz. (As we would expect, the more
carbon-carbon bonds, the larger the force constant k and the higher the frequency.) In
each case the frequency does not depend strongly on the particular molecule or the
location in the molecule of the group, which makes vibrational spectra a valuable tool
in determining molecular structures.

C C

C C

C C
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Figure 8.22 The normal modes of vibration of the CO2 molecule and the energy levels of each mode The
symmetric bending mode can occur in two perpendicular planes. In this molecule the O atoms are neg-
atively charged and the C atom is positively charged. The symmetric streching mode cannot be initiated
by the absorption of a photon because the overall charge distribution in the molecule does not change in
this mode. In the other modes of vibration, however, the charge distribution does change and the mole-
cule can absorb photons of appropriate wavelength (4.26 �m and 15.00 �m for the asymmetric stretch-
ing and symmetric bending modes, respectively). The absorption of infrared radiation from the earth by
atmospheric CO2 molecules is partly responsible for the greenhouse effect (see Fig. 9.8), and the increase
in the CO2 content of the atmosphere due to the burning of fossil fuels seems to be the chief cause of
the global warming trend now under way. Other molecules in the atmosphere, such as H2O and CH4

(methane), also contribute to the greenhouse effect, but N2 and O2 do not because, since their overall
charge distributions do not change when they vibrate, they do not absorb infrared radiation.

This tunable dye laser emits light with wavelengths from 370 to 900 nm,
which includes the entire visible spectrum. The bandwidth can be as narrow
as 500 kHz.

E

0.2912 eV

E

0.1649 eV

E

0.0827 eV

OCO

Symmetric
bending

Symmetric
stretching

Asymmetric
stretching

O OC O OC

An example is thioacetic acid, whose structure might conceivably be either
CH3CO—SH or CH3CS—OH. The infrared absorption spectrum of thioacetic acid 

contains lines at frequencies equal to the vibrational frequencies of the and  

and —SH groups, but no lines corresponding to the groups. The 
first alternative is evidently the correct one.

C OHS  or

C O
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λ

Figure 8.23 A portion of the band spectrum of PN.

Vibration-Rotation Spectra

Pure vibrational spectra are observed only in liquids where interactions between adja-
cent molecules inhibit rotation. Because the excitation energies involved in molecular
rotation are much smaller than those involved in vibration, the freely moving mole-
cules in a gas or vapor nearly always are rotating, regardless of their vibrational state.
The spectra of such molecules do not show isolated lines corresponding to each
vibrational transition, but instead a large number of closely spaced lines due to tran-
sitions between the various rotational states of one vibrational level and the rotational
states of the other. In spectra obtained using a spectrometer with inadequate resolu-
tion, the lines appear as a broad streak called a vibration-rotation band.

8.8   ELECTRONIC SPECTRA OF MOLECULES

How fluorescence and phosphorescence occur

The energies of rotation and vibration in a molecule are due to the motion of its atomic
nuclei, which contain virtually all the molecule’s mass. The molecule’s electrons also
can be excited to higher energy levels than those corresponding to its ground state.
However, the spacing of these levels is much greater than the spacing of rotational or
vibrational levels.

Electronic transitions involve radiation in the visible or ultraviolet parts of the spec-
trum. Each transition appears as a series of closely spaced lines, called a band, due to
the presence of different rotational and vibrational states in each electronic state
(Fig. 8.23). All molecules exhibit electronic spectra, since a dipole moment change al-
ways accompanies a change in the electronic configuration of a molecule. Therefore
homonuclear molecules, such as H2 and N2, which have neither rotational nor

T he existence of bands of extremely closely spaced lines in molecular spectra underlies the
operation of the tunable dye laser. Such a laser uses an organic dye whose molecules are

“pumped” to excited states by light from another laser. The dye then fluoresces in a broad emis-
sion band. From this band, light of the desired wavelength 
 can be selected for laser amplifi-
cation with the help of a pair of facing mirrors, one of them partly transparent. The separation
of the mirrors is set to an integral multiple of 
�2. As in the case of the lasers discussed in
Sec. 4.9, the trapped laser light forms an optical standing wave that emerges through the partly
transparent mirror. A dye laser of this kind can be tuned to a precision of better than one part
in a million by adjusting the spacing of the mirrors.

Tunable Dye Lasers
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Representative coordinate

Excited state

E
n

er
gy

Vibrational transition

Ground state

Figure 8.24 The origin of fluorescence. The emitted radiation is lower in frequency than the absorbed
radiation.

vibrational spectra because they lack permanent dipole moments, nevertheless have
electronic spectra whose rotational and vibrational fine structures enable moments of
inertia and bond force constants to be found.

Electronic excitation in a polyatomic molecule often leads to a change in the mol-
ecule’s shape, which can be determined from the rotational fine structure in its band
spectrum. The origin of such changes lies in the different characters of the wave
functions of electrons in different states, which lead to correspondingly different bond
geometries. For example, the molecule beryllium hydride, BeH2, is linear (H—Be—H)
in one state and bent (H—Be) in another.


H

Fluorescence

A molecule in an excited electronic state can lose energy and return to its ground state
in various ways. The molecule may, of course, simply emit a photon of the same frequency
as that of the photon it absorbed, thereby returning to the ground state in a single step.
Another possibility is fluorescence. Here the molecule gives up some of its vibrational
energy in collisions with other molecules, so that the downward radiative transition orig-
inates from a lower vibrational level in the upper electronic state (Fig. 8.24). Fluorescent
radiation is therefore of lower frequency than that of the absorbed radiation.

Fluorescence excited by ultraviolet light has many applications, for instance to help
identify minerals and biochemical compounds. Fabric “brighteners” that are sometimes
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Figure 8.25 The origin of phosphorescence. The final transition is delayed because it violates the
selection rules for electronic transitions.

added to detergents absorb ultraviolet radiation in daylight and then fluoresce blue
light. In a fluorescent lamp, a mixture of mercury vapor and an inert gas such as ar-
gon inside a glass tube gives off ultraviolet radiation when an electric current is passed
through it. The inside of the tube is coated with a fluorescent material called a phos-
phor that emits visible light when excited by the ultraviolet radiation. The process is
much more efficient than using a current to heat a filament to incandescence, as in
ordinary light bulbs.

Phosphorescence

In molecular spectra, radiative transitions between electronic states of different total
spin are prohibited. Figure 8.25 shows a situation in which the molecule in its singlet
(total spin quantum number S � 0) ground state absorbs a photon and is raised to a
singlet excited state. In collisions the molecule can undergo radiationless transitions to
a lower vibrational level that may happen to have about the same energy as one of the
levels in the triplet (S � 1) excited state. There is then a certain probability for a shift
to the triplet state to occur. Further collisions in the triplet state bring the molecule’s
energy below that of the crossover point, so that it is now trapped in the triplet state
and ultimately reaches the 	 � 0 level.

A radiative transition from a triplet to a singlet state is “forbidden” by the selection
rules, which really means not that it is impossible but that it has only a small likeli-
hood of occurring. Such transitions accordingly have long half-lives, and the resulting
phosphorescent radiation may be emitted minutes or even hours after the initial
absorption.
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8.3 The H2
� Molecular Ion

8.4 The Hydrogen Molecule

1. The energy needed to detach the electron from a hydrogen
atom is 13.6 eV, but the energy needed to detach an electron
from a hydrogen molecule is 15.7 eV. Why do you think the
latter energy is greater?

2. The protons in the H2
� molecular ion are 0.106 nm apart, and

the binding energy of H2
� is 2.65 eV. What negative charge

must be placed halfway between two protons this distance apart
to give the same binding energy?

3. At what temperature would the average kinetic energy of the mol-
ecules in a hydrogen sample be equal to their binding energy?

8.6 Rotational Energy Levels

4. Microwave communication systems operate over long distances
in the atmosphere. The same is true for radar, which locates
objects such as ships and aircraft by means of microwave pulses
they reflect. Molecular rotational spectra are in the microwave
region. Can you think of the reason why atmospheric gases do
not absorb microwaves to any great extent?

5. When a molecule rotates, inertia causes its bonds to stretch.
(This is why the earth bulges at the equator.) What effects does
this stretching have on the rotational spectrum of the molecule?

6. Find the frequencies of the J � 1 S J � 2 and J � 2 S J � 3
rotational absorption lines in NO, whose molecules have the
moment of inertia 1.65 � 10�46 kg � m2.

7. The J � 0 S J � 1 rotational absorption line occurs at 1.153 �
1011 Hz in 12C16O and at 1.102 � 1011 Hz in ?C16O. Find the
mass number of the unknown carbon isotope.

8. Calculate the energies of the four lowest non-zero rotational en-
ergy states of the H2 and D2 molecules, where D represents the
deuterium atom 2

1H.

9. The rotational spectrum of HCl contains the following
wavelengths:

12.03 � 10�5 m

9.60 � 10�5 m

8.04 � 10�5 m

6.89 � 10�5 m

6.04 � 10�5 m

If the isotopes involved are 1H and 35Cl, find the distance
between the hydrogen and chlorine nuclei in an HCl molecule.

10. The lines of the rotational spectrum of HBr are 5.10 � 1011 Hz
apart in frequency. Find the internuclear distance in HBr. (Note:
Since the Br atom is about 80 times more massive than the

294 Chapter Eight

*Atomic masses are given in the Appendix.

E X E R C I S E S *

We are wiser than we know. —Ralph Waldo Emerson

proton, the reduced mass of an HBr molecule can be taken as
just the 1H mass.)

11. A 200Hg35Cl molecule emits a 4.4-cm photon when it under-
goes a rotational transition from J � 1 to J � 0. Find the inter-
atomic distance in this molecule.

12. The lowest frequency in the rotational absorption spectrum of
1H19F is 1.25 � 1012 Hz. Find the bond length in this molecule.

13. In Sec. 4.6 it was shown that, for large quantum numbers, the
frequency of the radiation from a hydrogen atom that drops from
an initial state of quantum number n to a final state of quantum
number n � 1 is equal to the classical frequency of revolution of
an electron in the nth Bohr orbit. This is an example of Bohr’s
correspondence principle. Show that a similar correspondence
holds for a diatomic molecule rotating about its center of mass.

14. Calculate the classical frequency of rotation of a rigid body
whose energy is given by Eq. (8.9) for states of J � J and J �

J � 1, and show that the frequency of the spectral line associ-
ated with a transition between these states is intermediate
between the rotational frequencies of the states.

8.7 Vibrational Energy Levels

15. The hydrogen isotope deuterium has an atomic mass approxi-
mately twice that of ordinary hydrogen. Does H2 or HD have
the greater zero-point energy? How does this affect the binding
energies of the two molecules?

16. Can a molecule have zero vibrational energy? Zero rotational
energy?

17. The force constant of the 1H19F molecule is approximately 966 N/m.
(a) Find the frequency of vibration of the molecule. (b) The bond
length in 1H19F is approximately 0.92 nm. Plot the potential en-
ergy of this molecule versus internuclear distance in the vicinity of
0.92 nm and show the vibrational energy levels as in Fig. 8.20.

18. Assume that the H2 molecule behaves exactly like a harmonic
oscillator with a force constant of 573 N/m. (a) Find the energy
(in eV) of its ground and first excited vibrational states.
(b) Find the vibrational quantum number that approximately
corresponds to its 4.5-eV dissociation energy.

19. The lowest vibrational states of the 23Na35Cl molecule are 0.063
eV apart. Find the approximate force constant of this molecule.

20. Find the amplitude of the ground-state vibrations of the CO
molecule. What percentage of the bond length is this? Assume
the molecule vibrates like a harmonic oscillator.

21. The bond between the hydrogen and chlorine atoms in a
1H35Cl molecule has a force constant of 516 N/m. Is it likely
that an HCl molecule will be vibrating in its first excited vibra-
tional state at room temperature?
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tively, though in each case some are in higher states than J � 1
or 	 � 1.) (b) To justify considering only two degrees of rota-
tional freedom in the H2 molecule, calculate the temperature at
which kT is equal to the minimum nonzero rotational energy 
an H2 molecule can have for rotation about its axis of symme-
try. (c) How many vibrations does an H2 molecule with J � 1
and 	 � 1 make per rotation?

Temperature, K
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Figure 8.26 Molar specific heat of hydrogen at constant volume.

22. The observed molar specific heat of hydrogen gas at constant
volume is plotted in Fig. 8.26 versus absolute temperature.
(The temperature scale is logarithmic.) Since each degree of
freedom (that is, each mode of energy possession) in a gas mol-
ecule contributes �1 kcal/kmol � K to the specific heat of the
gas, this curve is interpreted as indicating that only translational
motion, with three degrees of freedom, is possible for hydrogen
molecules at very low temperatures. At higher temperatures the
specific heat rises to �5 kcal/kmol � K, indicating that two
more degrees of freedom are available, and at still higher tem-
peratures the specific heat is �7 kcal/kmol � K, indicating two
further degrees of freedom. The additional pairs of degrees of
freedom represent respectively rotation, which can take place
about two independent axes perpendicular to the axis of sym-
metry of the H2 molecule, and vibration, in which the two de-
grees of freedom correspond to the kinetic and potential modes
of energy possession by the molecule. (a) Verify this interpreta-
tion of Fig. 8.26 by calculating the temperatures at which kT is
equal to the minimum rotational energy and to the minimum
vibrational energy an H2 molecule can have. Assume that the
force constant of the bond in H2 is 573 N/m and that the H
atoms are 7.42 � 10�11 m apart. (At these temperatures, ap-
proximately half the molecules are rotating or vibrating, respec-
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CHAPTER 9CHAPTER 9

Statistical Mechanics

The Crab Nebula is the result of a supernova explosion that was observed in A.D. 1054.
The explosion left behind a star believed to consist entirely of neutrons. Statistical mechanics
is needed to understand the properties of neutron stars.
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T
he branch of physics called statistical mechanics considers how the overall
behavior of a system of many particles is related to the properties of the parti-
cles themselves. As its name implies, statistical mechanics is not concerned with

the actual motions or interactions of individual particles, but instead with what is most
likely to happen. While statistical mechanics cannot help us find the life history of one
of the particles in a system, it is able to tell us, for instance, the probability that the
particle has a certain amount of energy at a certain moment.

Because so many phenomena in the physical world involve systems of great num-
bers of particles, the value of a statistical approach is clear. Owing to the generality of
its arguments, statistical mechanics can be applied equally well to classical systems (no-
tably molecules in a gas) and to quantum-mechanical systems (notably photons in a
cavity and free electrons in a metal), and it is one of the most powerful tools of the
theoretical physicist.

9.1   STATISTICAL DISTRIBUTIONS

Three different kinds

What statistical mechanics does is determine the most probable way in which a certain
total amount of energy E is distributed among the N members of a system of particles
in thermal equilibrium at the absolute temperature T. Thus we can establish how many
particles are likely to have the energy �1, how many to have the energy �2, and so on.

The particles are assumed to interact with one another and with the walls of their
container to an extent sufficient to establish thermal equilibrium but not so much that
their motions are strongly correlated. More than one particle state may correspond to
a certain energy �. If the particles are not subject to the exclusion principle, more than
one particle may be in a certain state.

A basic premise of statistical mechanics is that the greater the number W of differ-
ent ways in which the particles can be arranged among the available states to yield a
particular distribution of energies, the more probable is the distribution. It is assumed
that each state of a certain energy is equally likely to be occupied. This assumption is
plausible but its ultimate justification (as in the case of Schrödinger’s equation) is that
the conclusions arrived at with its help agree with experiment.

The program of statistical mechanics begins by finding a general formula for W for
the kind of particles being considered. The most probable distribution, which corre-
sponds to the system’s being in thermal equilibrium, is the one for which W is a max-
imum, subject to the condition that the system consists of a fixed number N of particles
(except when they are photons or their acoustic equivalent called phonons) whose to-
tal energy is some fixed amount E. The result in each case is an expression for n(�),
the number of particles with the energy �, that has the form

n(�) � g(�)f(�) (9.1)

where g(�) � number of states of energy �
� statistical weight corresponding to energy �

f(�) � distribution function
� average number of particles in each state of energy �
� probability of occupancy of each state of energy �

Number of particles
of energy �

Statistical Mechanics 297
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When a continuous rather than a discrete distribution of energies is involved, g(�) is
replaced by g(�) d�, the number of states with energies between � and � � d�.

We shall consider systems of three different kinds of particles:

1 Identical particles that are sufficiently far apart to be distinguishable, for instance,
the molecules of a gas. In quantum terms, the wave functions of the particles overlap
to a negligible extent. The Maxwell-Boltzmann distribution function holds for such
particles.
2 Identical particles of 0 or integral spin that cannot be distinguished one from another
because their wave functions overlap. Such particles, called bosons in Chap. 7, do not
obey the exclusion principle, and the Bose-Einstein distribution function holds for
them. Photons are in this category, and we shall use Bose-Einstein statistics to account
for the spectrum of radiation from a blackbody.
3 Identical particles with odd half-integral spin (�

1

2
�, �

3

2
�, �

5

2
�, . . .) that also cannot be

distinguished one from another. Such particles, called fermions, obey the exclusion
principle, and the Fermi-Dirac distribution function holds for them. Electrons are in
this category, and we shall use Fermi-Dirac statistics to study the behavior of the free
electrons in a metal that are responsible for its ability to conduct electric current.

9.2   MAXWELL-BOLTZMANN STATISTICS

Classical particles such as gas molecules obey them

The Maxwell-Boltzmann distribution function states that the average number of parti-
cles fMB(�) in a state of energy � in a system of particles at the absolute temperature T is

298 Chapter Nine

Ludwig Boltzmann(1844–1906)
was born in Vienna and attended
the university there. He then
taught and carried out both ex-
perimental and theoretical re-
search at a number of institutions
in Austria and Germany, moving
from one to another every few
years. Boltzmann was interested in
poetry, music, and travel as well as
in physics; he visited the United

States three times, something unusual in those days.
Of Boltzmann’s many contributions to physics, the most im-

portant were to the kinetic theory of gases, which he developed
independently of Maxwell, and to statistical mechanics, whose
foundations he established. The constant k in the formula �

3
2

� kT
for the average energy of a gas molecule is named after him in
honor of his work on the distribution of molecular energies in
a gas. In 1884 Boltzmann derived from thermodynamic con-
siderations the Stefan-Boltzmann law R � �T4 for the radiation
rate of a blackbody. Josef Stefan, who had been one of Boltzmann’s

teachers, had discovered this law experimentally 5 years earlier.
One of Boltzmann’s major achievements was the interpretation
of the second law of thermodynamics in terms of order and dis-
order. A monument to Boltzmann in Vienna is inscribed with
his formula S � k log W, which relates the entropy S of a sys-
tem to its probability W.

Boltzmann was a champion of the atomic theory of matter,
still controversial in the late nineteenth century because there
was then only indirect evidence for the existence of atoms and
molecules. Battles with nonbelieving scientists deeply upset
Boltzmann, and in his later years asthma, headaches, and in-
creasingly poor eyesight further depressed his spirits. He com-
mitted suicide in 1906, not long after Albert Einstein published
a paper on brownian motion that was to convince the remain-
ing doubters of the atomic theory of its correctness. Boltzmann
had not been alone in his despair over doubters of the reality
of atoms. Planck was driven to an extreme of pessimism: “A
new scientific truth does not triumph by convincing its oppo-
nents and making them see the light, but rather because its
opponents eventually die and a new generation grows up that
is familiar with it.”
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fMB(�) � Ae���kT (9.2)

The value of A depends on the number of particles in the system and plays a role here
analogous to that of the normalization constant of a wave function. As usual, k is Boltz-
mann’s constant, whose value is

k � 1.381 � 10�23 J/K � 8.617 � 10�5 eV/K

Combining Eqs. (9.1) and (9.2) gives us the number n(�) of identical, distinguish-
able particles in an assembly at the temperature T that have the energy �:

Maxwell-Boltzmann n(�) � Ag(�)e���kT (9.3)

Example   9.1

A cubic meter of atomic hydrogen at 0°C and at atmospheric pressure contains about 2.7 � 1025

atoms. Find the number of these atoms in their first excited states (n � 2) at 0°C and at 10,000°C.

Solution

(a) The constant A in Eq. (9.3) is the same for atoms in both states, so the ratio between the
numbers of atoms in the n � 1 and n � 2 states is

� e�(�2��1)�kT

From Eq. (7.14) we know that the number of possible states that correspond to the quantum
number n is 2n2. Thus the number of states of energy �1 is g(�1) � 2; a 1s electron has 
l � 0 and ml � 0 but ms can be ��

1

2
� or ��

1

2
�. The number of states of energy �2 is g(�2) � 8; a

2s (l � 0) electron can have ms � ��
1

2
� and a 2p (l � 1) electron can have ml � 0, �1, in each

case with ms � ��
1

2
�. Since the ground-state energy is �1 � �13.6 eV, �2 � �1/n2 � �3.4 eV and

�1 � �2 � 10.2 eV. Here T � 0°C � 273 K, so

� � 434

The result is

� � � e�434 � 1.3 � 10�188

Thus about 1 atom in every 10188 is in its first excited state at 0°C. With only 2.7 � 1025 atoms
in our sample, we can be confident that all are in their ground states. (If all the known matter
in the universe were in the form of hydrogen atoms, there would be about 1078 of them, and if
they were at 0°C the same conclusion would still hold.)
(b) When T � 10,000°C � 10,273 K,

� 11.5

and � � �e�11.5 � 4.0 � 10�5

Now the number of excited atoms is about 1021, a substantial number even though only a small
fraction of the total.

8
�
2

n(�2)
�
n(�1)

�2 � �1
�

kT

8
�
2

n(�2)
�
n(�1)

10.2 eV
����
(8.617 � 10�5 eV/K)(273 K)

�2 � �1
�

kT

g(�2)
�
g(�1)

n(�2)
�
n(�1)

Boltzmann’s
constant

Maxwell-Boltzmann
distribution function
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Example   9.2

Obtain a formula for the populations of the rotational states of a rigid diatomic molecule.

Solution

For such a molecule Eq. (8.9) gives the energy states in terms of the rotational quantum 
number J as

�J � J( J � 1)

More than one rotational state may correspond to a particular J because the component Lz in
any specified direction of the angular momentum L may have any value in multiples of 	 from
J	 through 0 to �J	, for a total of 2J � 1 possible values. Each of these 2J � 1 possible orien-
tations of L constitutes a separate quantum state, and so

g(�) � 2J � 1

If the number of molecules in the J � 0 state is n0, the normalization constant A in Eq. (9.3) is
just n0, and the number of molecules in the J � J state is

nJ � Ag(�)e���kT � n0(2J � 1)e�J( J�1)	2�2IkT

In carbon monoxide, to give an example, this formula shows that the J � 7 state is the most
highly populated at 20°C. The intensities of the rotational lines in a molecular spectrum are pro-
portional to the relative populations of the various rotational energy levels.

9.3   MOLECULAR ENERGIES IN AN IDEAL GAS

They vary about an average of �
3
2

�kT

We now apply Maxwell-Boltzmann statistics to find the distribution of energies among
the molecules of an ideal gas. Energy quantization is inconspicuous in the translational
motion of gas molecules, and the total number of molecules N in a sample is usually
very large. It is therefore reasonable to consider a continuous distribution of molecu-
lar energies instead of the discrete set �1, �2, �3, . . . If n(�) d� is the number of molecules
whose energies lie between � and � � d�, Eq. (9.1) becomes

n(�) d� � [g(�) d�][f(�)] � Ag(�)e���kT d� (9.4)

The first task is to find g(�) d�, the number of states that have energies between 
� and � � d�. This is easiest to do in an indirect way. A molecule of energy � has a
momentum p whose magnitude p is specified by

p � �2m�� � �px
2 � p�y

2 � pz
2�

Each set of momentum components px, py, pz specifies a different state of motion. Let
us imagine a momentum space whose coordinate axes are px, py, pz, as in Fig. 9.1.

Number of
molecules with
energies between �
and � � d�

	2

�
2I
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The number of states g(p) dp with momenta whose magnitudes are between p and 
p � dp is proportional to the volume of a spherical shell in momentum space p in
radius and dp thick, which is 4�p2 dp. Hence

g(p) dp � Bp2 dp (9.5)

where B is some constant. [The function g(p) here is not the same as the function g(�)
in Eq. (9.4).]

Since each momentum magnitude p corresponds to a single energy �, the number
of energy states g(�) d� between � and � � d� is the same as the number of momentum
states g(p) dp between p and p � dp, and so

g(�) d� � Bp2 dp (9.6)

Because

p2 � 2m� and dp �

Eq. (9.6) becomes

g(�) d� � 2m3�2 B��� d� (9.7)

The number of molecules with energies between � and d� is therefore

n(�) d� � C��� e���kT d� (9.8)

where C(� 2m3�2 AB) is a constant to be evaluated.
To find C we make use of the normalization condition that the total number of

molecules is N, so that

Normalization N � �


0
n(�) d� � C �


0
��� e���kTd� (9.9)

Number of energy
states

m d�
�
�2m��

Number of
momentum states

Statistical Mechanics 301

Figure 9.1 The coordinates in momentum space are px, py, pz. The number of momentum states avail-
able to a particle with a momentum whose magnitude is between p and p � dp is proportional to the
volume of a spherical shell in momentum space of radius p and thickness dp.
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From a table of definite integrals we find that

�


0
�x� e�axdx � �	

Here a � 1�kT, and the result is

N � ��� (kT)3�2

C � (9.10)

and, finally,

n(�) d� � ��� e���kT d� (9.11)

This formula gives the number of molecules with energies between � and � � d� in a
sample of an ideal gas that contains N molecules and whose absolute temperature is T.

Equation (9.11) is plotted in Fig. 9.2 in terms of kT. The curve is not symmetrical
about the most probable energy because the lower limit to � is � � 0 while there is,
in principle, no upper limit (although the likelihood of energies many times greater
than kT is small).

Average Molecular Energy

To find the average energy per molecule we begin by calculating the total internal
energy of the system. To do this we multiply n(�)d� by the energy � and then integrate
over all energies from 0 to 
:

E � �


0
� n(�) d� � �


0
�3�2 e���kT d�

Making use of the definite integral

�


0
x3�2 e�ax dx � �	

we have

E � 
 � 
 (kT)2��kT�� � NkT (9.12)

The average energy of an ideal-gas molecule is E�N, or

�� � kT (9.13)

which is independent of the molecule’s mass: a light molecule has a greater average
speed at a given temperature than a heavy one. The value of �� at room temperature is
about 0.04 eV, �

2
1
5
� eV.

3
�
2

Average molecular
energy

3
�
2

3
�
4

2�N
�
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�
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Figure 9.2 Maxwell-Boltzmann
energy distribution for the mole-
cules of an ideal gas. The average
molecular energy is �� � �

3

2
�kT.
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Distribution of Molecular Speeds

The distribution of molecular speeds in an ideal gas can be found from Eq. (9.11) by
making the substitutions

� � �
1
2

�m�2 d� � m� d�

The result for the number of molecules with speeds between � and � � d� is

n(�) d� � 4�N� �
3�2

�2e�m� 2�2kT d� (9.14)

This formula, which was first obtained by Maxwell in 1859, is plotted in Fig. 9.3.
The speed of a molecule with the average energy of �

3
2

� kT is

�rms � ���2�� ��� (9.15)

since �
2
1

�m�2 � �
3
2

�kT. This speed is denoted �rms because it is the square root of the average
of the squared molecular speeds—the root-mean-square speed—and is not the same
as the simple arithmetical average speed ��. The relationship between �� and �rms de-
pends on the distribution law that governs the molecular speeds in a particular sys-
tem. For a Maxwell-Boltzmann distribution the rms speed is about 9 percent greater
than the arithmetical average speed.

3kT
�

m
RMS speed

m
�
2�kT

Molecular-speed
distribution
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Equipartition of Energy

A gas molecule has three degrees of freedom that correspond to motions in three independ-
ent (that is, perpendicular) directions. Since the average kinetic energy of the molecule is �

3
2

�kT
we can associate �

1
2

� kT with the average energy of each degree of freedom: �
1
2

� m��x�2� � �
1
2

� m��y�2� � �
1
2

� m��z�2��
�
1
2

� kT. This association turns out to be quite general and is called the equipartition theorem:

The average energy per degree of freedom of any classical object that is a member of a
system of such objects in thermal equilibrium at the temperature T is �

1
2

�kT.

Degrees of freedom are not limited to linear velocity components—each variable that appears
squared in the formula for the energy of a particular object represents a degree of freedom. Thus
each component �i of angular velocity (provided it involves a moment of inertia Ii), is a degree
of freedom, so that �

1
2

�Ii�


i
2 � �

1
2

�kT. A rigid diatomic molecule of the kind described in Sec. 8.6
therefore has five degrees of freedom, one each for motions in the x, y, and z directions and two
for rotations about axes perpendicular to its symmetry axis.

A degree of freedom is similarly associated with each component �si of the displacement
of an object that gives rise to a potential energy proportional to (�si)

2. For example, a one-
dimensional harmonic oscillator has two degrees of freedom, one that corresponds to its kinetic
energy �

1
2

�m�x
2 and the other to its potential energy �

1
2

�K(�x)2, where K is the force constant. Each
oscillator in a system of them in thermal equilibrium accordingly has a total average energy of
2(�

1
2

�kT) � kT provided that quantization can be disregarded. To a first approximation, the con-
stituent particles (atoms, ions, or molecules) of a solid behave thermally like a system of classi-
cal harmonic oscillators, as we shall see shortly.

The equipartition theorem also applies to nonmechanical systems, for instance to thermal
fluctuations (“noise”) in electrical circuits.
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Example 9.3

Verify that the rms speed of an ideal-gas molecule is about 9 percent greater than its average speed.

Solution

Equation (9.14) gives the number of molecules with speeds between � and � � d� in a sample
of N molecules. To find their average speed ��, we multiply n(�) d� by �, integrate over all values
of � from 0 to 
, and then divide by N. (See the discussion of expectation values in Sec. 5.5.)
This procedure gives

�� � �


� n(�) d� � 4� � �
3�2 �


�3e�m�2�2kT d�

If we let a � m�2kT, we see that the integral is the standard one

�


0
x3e�ax2

dx �

and so �� � 
4� � �
3�2

� 
 � �
2

� � �	
Comparing �� with �rms from Eq. (9.15) shows that

�rms � �	 � �	�� � 1.09�

Because the speed distribution of Eq. (9.14) is not symmetrical, the most probable
speed �p is smaller than either �� or �rms. To find �p, we set equal to zero the derivative
of n(�) with respect to � and solve the resulting equation for �. The result is

�p � �	 (9.16)
2kT
�

m

Most probable
speed

3�
�
8

3kT
�

m

8kT
�
�m

2kT
�

m

1
�
2

m
�
2�kT

1
�
2a2

m
�
2�kT

1
�
N
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Figure 9.3 Maxwell-Boltzmann speed distribution.

v2 = root-mean-square speed =   3kT/m

vp = most probable speed =   2kT/m

v = average speed =   8kT/πm

v

n(
v)
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Molecular speeds in a gas vary considerably on either side of �p. Figure 9.4 shows
the distribution of speeds in oxygen at 73 K (�200°C), in oxygen at 273 K (0°C), and
in hydrogen at 273 K. The most probable speed increases with temperature and de-
creases with molecular mass. Accordingly molecular speeds in oxygen at 73 K are on
the whole less than at 273 K, and at 273 K molecular speeds in hydrogen are on the
whole greater than in oxygen at the same temperature. The average molecular energy
is the same in both oxygen and hydrogen at 273 K, of course.

Example 9.4

Find the rms speed of oxygen molecules at 0°C.

Solution

Oxygen molecules have two oxygen atoms each. Since the atomic mass of oxygen is 16.0 u, the
molecular mass of O2 is 32.0 u which is equivalent to

m � (32.0 u)(1.66 � 10�27 kg/u) � 5.31 � 10�26 kg

At an absolute temperature of 273 K, the rms speed of an O2 molecule is

�rms � �	 � �		 � 461 m 
s

This is a little over 1000 mi/h.

9.4   QUANTUM STATISTICS

Bosons and fermions have different distribution functions

As mentioned in Sec. 9.1, the Maxwell-Boltzmann distribution function holds for sys-
tems of identical particles that can be distinguished one from another, which means
particles whose wave functions do not overlap very much. Molecules in a gas fit this

3(1.38 � 10�23 J/K)(273 K)
���

5.31 � 10�26 kg

3kT
�

m
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Figure 9.4 The distributions of molecular speeds in oxygen at 73 K, in oxygen at 273 K, and in
hydrogen at 273 K. 

0

Oxygen (73 K)

1

2

3

400 800 1200 1600 2000

Oxygen (273 K)

Hydrogen (273 K)

Molecular speed, m/s

P
er

ce
n

ta
ge

 o
f 

m
ol

ec
u

le
s 

w
it

h
 s

pe
ed

s
w

it
h

in
 1

0 
m

/s
 o

f 
th

e 
in

di
ca

te
d 

sp
ee

d

bei48482_Ch09.qxd   1/22/02  8:45 PM  Page 305



description and obey Maxwell-Boltzmann statistics. If the wave functions do overlap
appreciably, the situation changes because the particles cannot now be distinguished,
although they can still be counted. The quantum-mechanical consequences of indis-
tinguishability were discussed in Sec. 7.3, where we saw that systems of particles with
overlapping wave functions fall into two categories:

1 Particles with 0 or integral spins, which are bosons. Bosons do not obey the exclu-
sion principle, and the wave function of a system of bosons is not affected by the ex-
change of any pair of them. A wave function of this kind is called symmetric. Any
number of bosons can exist in the same quantum state of the system.
2 Particles with odd half-integral spins (�

1
2

�, �
3
2

�, �
5
2

�, . . .), which are fermions. Fermi-
ons obey the exclusion principle, and the wave function of a system of fermions
changes sign upon the exchange of any pair of them. A wave function of this kind
is called antisymmetric. Only one fermion can exist in a particular quantum state
of the system.

We shall now see what difference all this makes in the probability f(�) that a par-
ticular state of energy � will be occupied.

Let us consider a system of two particles, 1 and 2, one of which is in state a and
the other in state b. When the particles are distinguishable there are two possibilities
for occupancy of the states, as described by the wave functions

�I � �a(1)�b(2) (9.17)

�II � �a(2)�b(1) (9.18)

When the particles are not distinguishable, we cannot tell which of them is in which
state, and the wave function must be a combination of �I and �II to reflect their equal
likelihoods. As we found in Sec. 7.3, if the particles are bosons, the system is described
by the symmetric wave function

Bosons �B � [�a(1)�b(2) � �a(2)�b(1)] (9.19)

and if they are fermions, the system is described by the antisymmetric wave function

Fermions �F � [�a(1)�b(2) � �a(2)�b(1)] (9.20)

The 1��2� factors are needed to normalize the wave functions.
Now we ask what the likelihood in each case is that both particles be in the same

state, say a. For distinguishable particles, both �I and �II become

�M � �a(1)�a(2) (9.21)

to give a probability density of

�*M �M � �*a(1)�*a(2)�a(1)�a(2) (9.22)
Distinguishable
particles

1
�
�2�

1
�
�2�
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For bosons the wave function becomes

�B � [�a(1)�a(2) � �a(1)�a(2)] � �a(1)�a(2) � �2��a(1)�a(2) (9.23)

to give a probability density of

Bosons �*B�B � 2�*a(1)�*a(2)�a(1)�a(2) � 2�*M�M (9.24)

Thus the probability that both bosons be in the same state is twice what it is for
distinguishable particles!

For fermions the wave function becomes

Fermions �F � [�a(1)�a(2) � �a(1)�a(2)] � 0 (9.25)

It is impossible for both particles to be in the same state, which is a statement of the
exclusion principle.

These results can be generalized to apply to systems of many particles:

1 In a system of bosons, the presence of a particle in a certain quantum state increases
the probability that other particles are to be found in the same state;
2 In a system of fermions, the presence of a particle in a certain state prevents any
other particles from being in that state.

Bose-Einstein and Fermi-Dirac Distribution Functions

The probability f(�) that a boson occupies a state of energy � turns out to be

f BE(�) � (9.26)

and the probability for a fermion turns out to be

f FD(�) � (9.27)
1

��
e�e��kT � 1

Fermi-Dirac 
distribution function

1
��
e�e��kT � 1

Bose-Einstein 
distribution function

1
�
�2�

2
�
�2�

1
�
�2�
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T he Indian physicist S. N. Bose in 1924 derived Planck’s radiation formula on the basis of
the quantum theory of light with indistinguishable photons whose number is not conserved.

His paper was rejected by a leading British journal. He then sent it to Einstein, who translated
the paper into German and submitted it to a German journal where it was published. Because
Einstein extended Bose’s treatment to material particles whose number is conserved, both names
are attached to Eq. 9.26. Two years later Enrico Fermi and Paul Dirac independently realized
that Pauli’s exclusion principle would lead to different statistics for electrons, and so Eq. 9.27 is
named after them.

Names of the Functions
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The quantity � depends on the properties of the particular system and may be a func-
tion of T. Its value is determined by the normalization condition that the sum over all
energy states of n(�) � g(�)f(�) be equal to the total number of particles in the system.
If the number of particles is not fixed, as in the case of a photon gas, then from the
way � is defined in deriving Eqs. (9.26) and (9.27), � � 0, e� � 1.

The �1 term in the denominator of Eq. (9.26) expresses the increased likelihood
of multiple occupancy of an energy state by bosons compared with the likelihood
for distinguishable particles such as molecules. The �1 term in the denominator of
Eq. (9.27) is a consequence of the uncertainty principle: No matter what the values
of �, �, and T, f (�) can never exceed 1. In both cases, when � 

 kT the functions
f (�) approach that of Maxwell-Boltzmann statistics, Eq. (9.2). Figure 9.5 is a com-
parison of the three distribution functions. Clearly f BE(�) for bosons is always greater
at a given ratio of ��kT than it is for molecules, and f FD(�) for fermions is always
smaller.

From Eq. (9.27) we see that f FD(�) � �
1

2
� for an energy of

Fermi energy �F � ��kT (9.28)

This energy, called the Fermi energy, is a very important quantity in a system of
fermions, such as the electron gas in a metal. In terms of �F the Fermi-Dirac distribution
function becomes

Fermi-Dirac f FD(�) � (9.29)

To appreciate the significance of the Fermi energy, let us consider a system of fermi-
ons at T � 0 and investigate the occupancy of states whose energies are less than �F

and greater than �F. What we find is this:

T � 0, � � �F: f FD(�) � � � � 1

T � 0, � 
 �F: f FD(�) � � � 0
1

�
e
 � 1

1
��
e(���F)�kT � 1

1
�
0 � 1

1
�
e�
 � 1

1
��
e(���F)�kT � 1

1
��
e(���F)�kT � 1
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Figure 9.5 A comparison of the
three distribution functions for
the same value of �. The Bose-
Einstein function is always higher
than the Maxwell-Boltzmann one,
which is a pure exponential, and
the Fermi-Dirac function is al-
ways lower. The functions give
the probability of occupancy of a
state of energy � at the absolute
temperature T.
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Thus at absolute zero all energy states up to �F are occupied, and none above �F

(Fig. 9.6a). If a system contains N fermions, we can calculate its Fermi energy �F by
filling up its energy states with the N particles in order of increasing energy starting
from � � 0. The highest state to be occupied will then have the energy � � �F. This
calculation will be made for the electrons in a metal in Sec. 9.9.

As the temperature is increased above T � 0 but with kT still smaller than �F,
fermions will leave states just below �F to move into states just above it, as in
Fig. 9.6b. At higher temperatures, fermions from even the lowest state will begin to
be excited to higher ones, so fFD(0) will drop below 1. In these circumstances fFD(�)
will assume a shape like that in Fig. 9.6c, which corresponds to the lowest curve
in Fig. 9.5.

The properties of the three distribution functions are summarized in Table 9.1. It
is worth recalling that to find the actual number n(�) of particles with an energy �, the
functions f(�) must be multiplied by the number of states g(�) with this energy:

n(�) � g (�)f(�) (9.1)
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Figure 9.6 Distribution function
for fermions at three different tem-
peratures. (a) At T � 0, all the en-
ergy states up to the Fermi energy
�F are occupied. (b) At a low tem-
perature, some fermions will leave
states just below �F and move into
states just above �F. (c) At a higher
temperature, fermions from any
state below �F may move into
states above �F.

U nder ordinary conditions, the wave packets that correspond to individual atoms in a gas
of atoms are sufficiently small in size relative to their average spacing for the atoms to move

independently and be distinguishable. If the temperature of the gas is reduced, the wave pack-
ets grow larger as the atoms lose momentum, in accord with the uncertainty principle. When
the gas becomes very cold, the dimensions of the wave packets exceed the average atomic spacing
so that the wave packets overlap. If the atoms are bosons, the eventual result is that all the atoms
fall into the lowest possible energy state and their separate wave packets merge into a single
wave packet. The atoms in such a Bose-Einstein condensate are barely moving, are indistin-
guishable, and form one entity—a superatom.

Although such condensates were first visualized by Einstein in 1924, not until 1995 was one
actually created. The problem was to achieve a cold enough gas without it becoming a liquid or
solid first. This was accomplished by Eric Cornell, Carl Wieman, and their coworkers in Colorado
using a gas of rubidium atoms. The atoms were first cooled and trapped by six intersecting beams
of laser light. The frequency of the light was adjusted so that the atoms moving against one of
the beams would “see” light whose frequency was doppler-shifted to that of one of rubidium’s
absorption lines. Thus the atoms would only absorb photons coming toward them, which would
slow the atoms and thereby cool the assembly as well as pushing the atoms together and away
from the warm walls of the chamber. To get the assembly still colder, the lasers were turned off
and a magnetic field held the slower atoms together while allowing the faster ones to escape.
(Such evaporative cooling is familiar in everyday life when the faster molecules of a liquid, for
instance perspiration, leave its surface and so reduce the average energy of the remaining mol-
ecules.) Finally, when the temperature was down to under 10�7 K—a tenth of a millionth of a
degree above absolute zero—about 2000 rubidium atoms came together in a Bose-Einstein con-
densate 10 �m long that lasted for 10 s.

Soon after this achievement other groups succeeded in creating Bose-Einstein condensates in
lithium and sodium. One condensate in sodium contained about 5 million atoms, was shaped like
a pencil 8 �m across and 150 �m long, and lasted for 20 s. Still larger condensates were later pro-
duced, including one that consisted of 108 hydrogen atoms. It proved possible to extract from con-
densates beams of atoms whose behavior confirmed that they were coherent, with all the atomic
wave functions in phase just like the light waves in the coherent beam from a laser. Bose-Einstein
condensates are extremely interesting from a number of points of view both fundamental and
applied—for example, for possible use in ultrasensitive measurements of various kinds.

Bose-Einstein Condensate
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Paul A. M. Dirac (1902–1984) was
born in Bristol, England, and stud-
ied electrical engineering there. He
then switched his interest to math-
ematics and finally to physics, ob-
taining his Ph.D. from Cambridge
in 1926. After reading Heisenberg’s
first paper on quantum mechanics
in 1925, Dirac soon devised a more
general theory and the next year

formulated Pauli’s exclusion principle in quantum-mechanical
terms. He investigated the statistical behavior of particles that
obey the Pauli principle, such as electrons, which Fermi had done
independently a little earlier, and the result is called Fermi-Dirac
statistics in honor of both. In 1928 Dirac joined special relativ-
ity to quantum theory to give a theory of the electron that not
only permitted its spin and magnetic moment to be calculated
but also predicted the existence of positively charged electrons,
or positrons, which were discovered by Carl Anderson in the
United States in 1932.
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Table 9.1 The Three Statistical Distribution Functions

Maxwell-Boltzmann Bose-Einstein Fermi-Dirac

Applies to systems of Identical, distingui- Identical, indistin- Identical, indistinguish-
shable particles guishable particles able particles that obey 

that do not obey exclusion principle
exclusion principle

Category of particles Classical Bosons Fermions

Properties of particles Any spin, particles far Spin 0, 1, 2, . . . ; wave Spin �
1

2
�, �

3

2
�, �

5

2
�, . . . ; wave

enough apart so wave functions are symmetric functions are antisym-
functions do not overlap to interchange of  metric to interchange 

particle labels of particle labels

Examples Molecules of a gas Photons in a cavity; Free electrons in a metal;
phonons in a solid; electrons in a star whose 
liquid helium at low atoms have collapsed 
temperatures (white dwarf stars)

Distribution function fMB(�) � Ae���kT fBE(�) � fFD(�) �

(number of particles in 
each state of energy �
at the temperature T)

Properties of No limit to number of No limit to number of Never more than 1 
distribution particles per state particles per state; more particle per state; fewer

particles per state than particles per state than
fMB at low energies; fMB at low energies;
approaches fMB at high approaches fMB at high 
energies energies

1
��
e(���F)�kT � 1

1
��
e�e��kT � 1

In an attempt to explain why charge is quantized, Dirac in
1931 found it necessary to postulate the existence of mag-
netic monopoles, isolated N or S magnetic poles. More recent
theories show that magnetic monopoles should have been
created in profusion just after the Big Bang that marked the
beginning of the universe; the predicted monopole mass is
�1016 GeV/c2 (�10�8 g!). As Dirac said in 1981, “From the
theoretical point of view one would think that monopoles
should exist, because of the prettiness of the mathematics.
Many attempts to find them have been made, but all have
been unsuccessful. One should conclude that pretty mathe-
matics by itself is not an adequate reason for nature to have
made use of a theory.”

In 1932 Dirac became Lucasian Professor of Mathematics at
Cambridge, the post Newton had held two and a half centuries
earlier, and in 1933 shared the Nobel Prize in physics with
Schrödinger. He remained active in physics for the rest of his
life, after 1969 in the warmer climate of Florida, but as is often
the case in science he will be remembered for the brilliant
achievements of his youth.
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9.5 RAYLEIGH-JEANS FORMULA

The classical approach to blackbody radiation

Blackbody radiation was discussed briefly in Sec. 2.2, where we learned about the
failure of classical physics to account for the shape of the blackbody spectrum—the
“ultraviolet catastrophe” —and how Planck’s introduction of energy quantization led
to the correct formula for this spectrum. Because the origin of blackbody radiation is
such a fundamental question, it deserves a closer look.

Figure 2.6 shows the blackbody spectrum for two temperatures. To explain this
spectrum, the classical calculation by Rayleigh and Jeans begins by considering a
blackbody as a radiation-filled cavity at the temperature T (Fig. 2.5). Because the
cavity walls are assumed to be perfect reflectors, the radiation must consist of stand-
ing em waves, as in Fig. 2.7. In order for a node to occur at each wall, the path
length from wall to wall, in any direction, must be an integral number j of half-
wavelengths. If the cavity is a cube L long on each edge, this condition means that
for standing waves in the x, y, and z directions respectively, the possible wavelengths
are such that

jx � � 1, 2, 3, . . . � number of half-wavelengths in x direction

jy � � 1, 2, 3, . . . � number of half-wavelengths in y direction (9.30)

jz � � 1, 2, 3, . . . � number of half-wavelengths in z direction

For a standing wave in any arbitrary direction, it must be true that

jx
2 � jy

2 � jz
2 � � �

2

(9.31)

in order that the wave terminate in a node at its ends. (Of course, if jx � jy � jz � 0,
there is no wave, though it is possible for any one or two of the j’s to equal 0.)

To count the number of standing waves g(	) d	 within the cavity whose wavelengths
lie between 	 and 	 � d	, what we have to do is count the number of permissible
sets of jx, jy, jz values that yield wavelengths in this interval. Let us imagine a j-space
whose coordinate axes are jx, jy, and jz; Fig. 9.7 shows part of the jx-jy plane of such a
space. Each point in the j-space corresponds to a permissible set of jx, jy, jz values and
thus to a standing wave. If j is a vector from the origin to a particular point jx, jy, jz,
its magnitude is

j � �jx
2 � jy

2� � jz
2� (9.32)

The total number of wavelengths between 	 and 	 � d	 is the same as the number
of points in j space whose distances from the origin lie between j and j � dj. The
volume of a spherical shell of radius j and thickness dj is 4�j2 dj, but we are only
interested in the octant of this shell that includes non-negative values of jx, jy, and jz.
Also, for each standing wave counted in this way, there are two perpendicular

jx � 0, 1, 2, . . .
jy � 0, 1, 2, . . .
jz � 0, 1, 2, . . .

2L
�
	

Standing waves
in a cubic cavity

2L
�
	

2L
�
	

2L
�
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Figure 9.7 Each point in j space
corresponds to a possible stand-
ing wave.
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directions of polarization. Hence the number of independent standing waves in the
cavity is

g(j) dj � (2)(�
1
8

�)(4�j2 dj) � �j2 dj (9.33)

What we really want is the number of standing waves in the cavity as a function
of their frequency 
 instead of as a function of j. From Eqs. (9.31) and (9.32) we
have

j � � dj � d


and so

g(
) d
 � �� �
2

d
 � 
2 d
 (9.34)

The cavity volume is L3, which means that the number of independent standing waves
per unit volume is

G(
) d
 � g(
) d
 � (9.35)

Equation (9.35) is independent of the shape of the cavity, even though we used a
cubical cavity to facilitate the derivation. The higher the frequency, the shorter the
wavelength and the greater the number of standing waves that are possible, as must
be the case.

The next step is to find the average energy per standing wave. Here is where classi-
cal and quantum physics diverge. According to the classical theorem of equipartition of
energy, as already mentioned, the average energy per degree of freedom of an entity that
is part of a system of such entities in thermal equilibrium at the temperature T is �

1
2

�kT.
Each standing wave in a radiation-filled cavity corresponds to two degrees of freedom,
for a total �� of kT, because each wave originates in an oscillator in the cavity wall. Such
an oscillator has two degrees of freedom, one that represents its kinetic energy and one
that represents its potential energy. The energy u(
) d
 per unit volume in the cavity in
the frequency interval from 
 to 
 � d
 is therefore, according to classical physics,

u(
) d
 � ��G(
) d
 � kT G(
) d


� (9.36)

The Rayleigh-Jeans formula, which has the spectral energy density of blackbody
radiation increasing as 
2 without limit, is obviously wrong. Not only does it predict
a spectrum different from the observed one (see Fig. 2.8), but integrating Eq. (9.36)
from 
 � 0 to 
 � 
 gives the total energy density as infinite at all temperatures. The
discrepancy between theory and observation was at once recognized as fundamental.
This is the failure of classical physics that led Max Planck in 1900 to discover that only
if light emission is a quantum phenomenon can the correct formula for u(
) d
 be
obtained.

8�
2kT d

��

c3

Rayleigh-Jeans
formula

8�
2d

�

c3

1
�
L3

Density of
standing waves
in a cavity

8�L3

�
c3

2L
�
c

2L

�

c
Number of 
standing waves

2L
�
c

2L

�

c

2L
�
	

Number of 
standing waves
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9.6 PLANCK RADIATION LAW

How a photon gas behaves

Planck found that he had to assume that the oscillators in the cavity walls were limited
to energies of �n � nh
, where n � 0, 1, 2, . . . . He then used the Maxwell-Boltzmann
distribution law to find that the number of oscillators with the energy �n is propor-
tional to e��n�kT at the temperature T. In this case the average energy per oscillator
(and so per standing wave in the cavity) is

�� � (9.37)

instead of the energy-equipartition average of kT which Rayleigh and Jeans had used.
The result was

u(
) d
 � ��G(
) d
 � (9.38)

which agrees with the experimental findings.
Although Planck got the right formula, his derivation is, from today’s perspective,

seriously flawed. We now know that the harmonic oscillators in the cavity walls have


3 d

��
eh
�kT � 1

8�h
�

c3

Planck radiation 
formula

h

��
eh
�kT � 1
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Lord Rayleigh (1842–1919) was
born John William Strutt to a
wealthy English family and inher-
ited his title on the death of his
father. After being educated at home,
he went on to be an outstanding
student at Cambridge University and
then spent some time in the United
States. On his return Rayleigh set up
a laboratory in his home. There he

carried out both experimental and theoretical research except for
a five-year period when he directed the Cavendish Laboratory at
Cambridge following Maxwell’s death in 1879.

For much of his life Rayleigh’s work concerned the behav-
ior of waves of all kinds, and he made many contributions to
acoustics and optics. One of the types of wave an earthquake
produces is named after him. In 1871 Rayleigh explained the
blue color of the sky in terms of the preferential scattering of
short-wavelength sunlight in the atmosphere. The formula for
the resolving power of an optical instrument is another of his
achievements.

At the Cavendish Laboratory, Rayleigh completed the stan-
dardization of the volt, the ampere, and the ohm, a task Maxwell
had begun. Back at home, he found that nitrogen prepared from
air is very slightly denser than nitrogen prepared from nitrogen-
containing compounds. Together with the chemist William
Ramsay, Rayleigh showed that the reason for the discrepancy
was a hitherto unknown gas that makes up about 1 percent of

the atmosphere. They called the gas argon, from the Greek word
for “inert,” because argon did not react with other substances.
Ramsay went on to discover the other inert gases neon (“new”),
krypton (“hidden”), and xenon (“stranger”). He was also able
to isolate the lightest inert gas, helium, which had thirty years
earlier been identified in the sun by its spectral lines; helios
means “sun” in Greek. Rayleigh and Ramsay won Nobel Prizes
in 1904 for their work on argon.

What was possibly Rayleigh’s greatest contribution to science
came after the discovery of argon and took the form of an equa-
tion that did not agree with experiment. The problem was
accounting for the spectrum of blackbody radiation, that is, the
relative intensities of the different wavelengths present in such
radiation. Rayleigh calculated the shape of this spectrum; be-
cause the astronomer James Jeans pointed out a small error
Rayleigh had made, the result is called the Rayleigh-Jeans for-
mula. The formula follows directly from the laws of physics
known at the end of the nineteenth century—and it is hope-
lessly incorrect, as Rayleigh and Jeans were aware. (For instance,
the formula predicts that a blackbody should radiate energy at
an infinite rate.) The search for a correct blackbody formula led
to the founding of the quantum theory of radiation by Max
Planck and Albert Einstein, a theory that was to completely rev-
olutionize physics.

Despite the successes of quantum theory and of Einstein’s
theory of relativity that followed soon afterward, Rayleigh, after
a lifetime devoted to classical physics, never really accepted
them. He died in 1919.
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the energies �n � (n � �
1
2

�)h
, not nh
. Including the zero-point energy of �
1
2

�h
 does not
lead to the average energy of Eq. (9.37) when Maxwell-Boltzmann statistics are used.
The proper procedure is to consider the em waves in a cavity as a photon gas subject
to Bose-Einstein statistics, since the spin of a photon is 1. The average number of
photons f(
) in each state of energy � � h
 is therefore given by the Bose-Einstein
distribution function of Eq. (9.26).

The value of � in Eq. (9.26) depends on the number of particles in the system being
considered. But the number of photons in a cavity need not be conserved: unlike gas
molecules or electrons, photons are created and destroyed all the time. Although the
total radiant energy in a cavity at a given temperature remains constant, the number
of photons that incorporate this energy can change. As mentioned in Sec. 9.4, the
nonconservation of photons means that � � 0. Hence the Bose-Einstein distribution
function for photons is

f(
) � (9.39)

Equation (9.35) for the number of standing waves of frequency 
 per unit volume
in a cavity is valid for the number of quantum states of frequency 
 since photons also
have two directions of polarization, which corresponds to two orientations of their
spins relative to their directions of motion. The energy density of photons in a cavity
is accordingly

u(
) d
 � h
G(
)f(
) d
 � 

which is Eq. (9.38).

Example 9.5

How many photons are present in 1.00 cm3 of radiation in thermal equilibrium at 1000 K? What
is their average energy?

Solution

(a) The total number of photons per unit volume is given by

� �


0
n(
) d


where n(
) d
 is the number of photons per unit volume with frequencies between 
 and 

 � d
. Since such photons have energies of h
,

n(
) d
 �

with u(
) dv being the energy density given by Planck’s formula, Eq. (9.38). Hence the total
number of photons in the volume V is

N � V �


0
� �


0


2 d

��
eh
�kT � 1

8�V
�

c3

u(
) d

�

h


u(
) d

�

h


N
�
V


3 d

��
eh
�kT � 1

8�h
�

c3

1
��
eh
�kT � 1

Photon distribution
function
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If we let h
�kT � x, then 
 � kTx�h and d
 � (kT�h) dx, so that

N � 8�V� �
3 �


0

The definite integral is a standard one equal to 2.404. Inserting the numerical values of the other
quantities, with V � 1.00 cm3 � 1.00 � 10�6 m3, we find that

N � 2.03 � 1010 photons

(b) The average energy �� of the photons is equal to the total energy per unit volume divided by
the number of photons per unit volume:

�� � �

Since a � 4��c (see the discussion of the Stefan-Boltzmann law later in this section) and
N � (2.405) [8�V(kT�hc)3],

�� � � 3.73 � 10�20 J � 0.233 eV
�c2h3T

��
(2.405)(2�k3)

aT4

�
N�V

�


0
u(
) d


�
n(
) d


x2 dx
�
ex � 1

kT
�
hc
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A thermograph measures the amount of infrared radiation each
small portion of a person's skin emits and presents this informa-
tion in pictorial form by different shades of gray or different colors
in a thermogram. The skin over a tumor is warmer than elsewhere
(perhaps because of increased blood flow or a higher metabolic
rate), and thus a thermogram is a valuable diagnostic aid for
detecting such maladies as breast and thyroid cancer. A small dif-
ference in skin temperature leads to a significant difference in
radiation rate.
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It is worth noting again that every body of condensed matter radiates according to
Eq. (9.38), regardless of its temperature. An object need not be so hot that it glows
conspicuously in the visible region in order to be radiating. The radiation from an
object at room temperature, for instance, is chiefly in the infrared part of the spectrum
to which the eye is not sensitive. Thus the interior of a greenhouse is warmer than the
outside air because sunlight can enter through its windows but the infrared radiation
given off by the interior cannot escape through them (Fig. 9.8).

Wien’s Displacement Law

An interesting feature of the blackbody spectrum at a given temperature is the wave-
length 	max for which the energy density is the greatest. To find 	max we first express
Eq. (9.38) in terms of wavelength and solve du(	)�d	 � 0 for 	 � 	max. We obtain in
this way

� 4.965

which is more conveniently expressed as

	maxT � � 2.898 � 10�3 m � K (9.40)

Equation (9.40) is known as Wien’s displacement law. It quantitatively expresses
the empirical fact that the peak in the blackbody spectrum shifts to progressively
shorter wavelengths (higher frequencies) as the temperature is increased, as in
Fig. 2.6.

hc
�
4.965k

Wien’s 
displacement law

hc
�
kT	max
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Figure 9.8 The greenhouse effect is important in heating the earth's atmosphere. Much of the short-
wavelength visible light from the sun that reaches the earth's surface is reradiated as long-wavelength
infrared light that is readily absorbed by CO2 and H2O in the atmosphere. This means that the
atmosphere heated mainly from below by the earth rather than from above by the sun. The total
energy that the earth and its atmosphere radiate into space on the average equals the total energy
that they receive from the sun.
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Example 9.6

Radiation from the Big Bang has been doppler-shifted to longer wavelengths by the expansion
of the universe and today has a spectrum corresponding to that of a blackbody at 2.7 K. Find
the wavelength at which the energy density of this radiation is a maximum. In what region of
the spectrum is this radiation?

Solution

From Eq. (9.40) we have

	max � � � 1.1 � 10�3 m � 1.1 mm

This wavelength is in the microwave region (see Fig. 2.2). The radiation was first detected in a
microwave survey of the sky in 1964.

Stefan-Boltzmann Law

Another result we can obtain from Eq. (9.38) is the total energy density u of the radiation
in a cavity. This is the integral of the energy density over all frequencies,

u � �


0
u(
) d
 � T4 � aT4

where a is a universal constant. The total energy density is proportional to the fourth
power of the absolute temperature of the cavity walls. We therefore expect that the
energy R radiated by an object per second per unit area is also proportional to T4, a
conclusion embodied in the Stefan-Boltzmann law:

R � e�T4 (9.41)

The value of Stefan’s constant � is

� � � 5.670 � 10�8 W/m2 � K4

The emissivity e depends on the nature of the radiating surface and ranges from 0, for
a perfect reflector which does not radiate at all, to 1, for a blackbody. Some typical values
of e are 0.07 for polished steel, 0.6 for oxidized copper and brass, and 0.97 for matte
black paint.

Example 9.7

Sunlight arrives at the earth at the rate of about 1.4 kW/m2 when the sun is directly overhead.
The average radius of the earth’s orbit is 1.5 � 1011 m and the radius of the sun is 7.0 � 108 m.
From these figures find the surface temperature of the sun on the assumption that it radiates
like a blackbody, which is approximately true.

ac
�
4

Stefan’s constant

Stefan-Boltzmann 
law

8�5k4

�
15c3h3

2.898 � 10�3 m � K
���

2.7 K

2.898 � 10�3 m � K
���

T
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Stimulated

emission

Spontaneous

emission

Stimulated

absorption

Nj atoms

Ni atoms

NiBiju(�) NjBjiu(�)NjAji

Ej

Ei

h�h� h�
h�

h�
h� = Ej − Ei

Solution

We begin by finding the total power P radiated by the sun. The area of a sphere whose radius
re is that of the earth’s orbit is 4�r e

2. Since solar radiation falls on this sphere at a rate of P�A �
1.4 kW/m2,

P � � �(4� e
2) � (1.4 � 103 W/m2)(4�)(1.5 � 1011 m)2 � 3.96 � 1026 W

Next we find the radiation rate R of the sun. If rs is the sun’s radius, its surface area is 4�rs
2 and

R � � � � 6.43 � 107 W/m2

The emissivity of a blackbody is e � 1, so from Eq. (9.41) we have

T � � �1�4
� � �1�4

� 5.8 � 103 K

9.7   EINSTEIN’S APPROACH

Introducing stimulated emission

The stimulated emission of radiation was mentioned in Sec. 4.9 as the key concept
behind the laser. In a 1917 paper Einstein introduced stimulated emission and used it
to arrive at the form of Planck’s radiation law in an elegantly simple manner. By the
early 1920s this idea together with what had become known about the physics of the
atom would have enabled the laser to have been invented then, but somehow nobody
connected the dots until over thirty years later.

Let us consider two energy states in a particular atom, a lower one i and an upper
one j (Fig. 9.9). If the atom is initially in state i, it can be raised to state j by absorb-
ing a photon of frequency


 � (9.42)

Now we imagine an assembly of Ni atoms in state i and Nj atoms in state j, all in
thermal equilibrium at the temperature T with light of frequency 
 and energy density
u(
). The probability that an atom in state i absorbs a photon is proportional to the

Ej � Ei
�

h

6.43 � 107 W/m2

���
(1)(5.67 � 10�8 W/m2 � K4

R
�
e�

3.96 � 1026W
���
(4�)(7.0 � 108 m)2

P
�
4�rs

2

power output
��

surface area

P
�
A
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Figure 9.9 Three kinds of transi-
tion between states of energies Ei

and Ej in an atom. In spontaneous
emission, the photon leaves the
atom in a random direction. In
stimulated emission, the photons
that leave are in phase with each
other and with the incident pho-
ton, and all the photons move in
the same direction. The number
of atoms that undergo each tran-
sition per second is indicated,
where the quantity u(
) is the
density of photons of frequency 

and Aji, Bij, and Bji are constants
that depend on the properties of
the atomic states.
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energy density u(
) and also to the properties of states i and j, which we can include
in some constant Bij. Hence the number Ni→j of atoms per second that absorb photons
is given by

Ni→j � NiBiju(
) (9.43)

An atom in the upper state j has a certain probability Aji to spontaneously drop to
state i by emitting a photon of frequency 
. We also suppose that light of frequency 

can somehow interact with an atom in state j to induce its transition to the lower state
i. An energy density of u(
) therefore means a probability for stimulated emission of
Bjiu(
), where Bji, like Bij and Aji, depends on the properties of states i and j. Since Nj

is the number of atoms in state j, the number of atoms per second that fall to the lower
state i is

Nj → i � Nj[Aji � Bjiu(
)] (9.44)

As discussed in Sec. 4.9, stimulated emission has a classical analog in the behavior
of a harmonic oscillator. Of course, classical physics often does not apply on an atomic
scale, but we have not assumed that stimulated emission does occur, only that it may
occur. If we are wrong, we will ultimately find merely that Bji � 0.

Since the system here is in equilibrium, the number of atoms per second that go
from state i to j must equal the number that go from j to i. Therefore

Ni → j � Nj → i

Ni Biju(
) � Nj [Aji � Bjiu(
)]

Dividing both sides of the latter equation by NjBji and solving for u(
) gives

� �� �u(
) � � u(
)

u(
) � (9.45)

Finally we draw on Eq. (9.2) for the numbers of atoms of energies Ei and Ej in a
system of these atoms at the temperature T, which we can write as

Ni � Ce�Ei�kT

Nj � Ce�Ej�kT

Hence

� e�(Ei�Ej)�kT � e(Ej�Ei)�kT � eh��kT (9.46)
Ni
�
Nj

Aji�Bji
��

��
N

N
i

j

����
B

B
i

j

j

i

�� � 1

Aji
�
Bji

Bij
�
Bji

Ni
�
Nj

Number of atoms
that emit photons

Number of atoms
that absorb photons
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and so

u(
) �
(9.47)

This formula gives the energy density of photons of frequency 
 in equilibrium at the
temperature T with atoms whose possible energies are Ei and Ej.

Equation (9.47) is consistent with the Planck radiation law of Eq. (9.38) if

Bij � Bji (9.48)

and

� (9.49)

We can draw these conclusions:

1 Stimulated emission does occur and its probability for a transition between two states
is equal to the probability for absorption.
2 The ratio between the probabilities for spontaneous and stimulated emission varies
with �3, so the relative likelihood of spontaneous emission increases rapidly with the
energy difference between the two states.
3 All we need to know is one of the probabilities Aji, Bij, Bji to find the others.

Conclusion 3 suggests that the process of spontaneous emission is intimately related
to the processes of absorption and stimulated emission. Absorption and stimulated
emission can be understood classically by considering the interaction between an atom
and an electromagnetic waves, but spontaneous emission can occur in the absence of
any such wave, yet apparently by a comparable interaction. This paradox is removed
by the theory of quantum electrodynamics. As briefly described in Sec. 6.9, this theory
shows that “vacuum fluctuations” in E and B occur even when E � B � 0 classically,
and these fluctuations, analogs of the zero-point vibrations of a harmonic oscillator,
stimulate what is apparently spontaneous emission.

9.8 SPECIFIC HEATS OF SOLIDS

Classical physics fails again

Blackbody radiation is not the only familiar phenomenon whose explanation requires
quantum statistical mechanics. Another is the way in which the internal energy of a
solid varies with temperature.

Let us consider the molar specific heat of a solid at constant volume, cV. This is the
energy that must be added to 1 kmol of the solid, whose volume is held fixed, to raise
its temperature by 1 K. The specific heat at constant pressure cp is 3 to 5 percent higher
than cV in solids because it includes the work associated with a volume change as well
as the change in internal energy.

The internal energy of a solid resides in the vibrations of its constituent particles,
which may be atoms, ions, or molecules; we shall refer to them as atoms here for

8�h
3

�
c3

Aji
�
Bji

Aji�Bji
��

��
B

B
i

j

j

i
�� eh
�kT � 1
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convenience. These vibrations may be resolved into components along three perpen-
dicular axes, so that we may represent each atom by three harmonic oscillators. As we
know, according to classical physics a harmonic oscillator in a system of them in ther-
mal equilibrium at the temperature T has an average energy of kT. On this basis each
atom in a solid should have 3kT of energy. A kilomole of a solid contains Avogadro’s
number N0 of atoms, and its total internal energy E at the temperature T accordingly
ought to be

E � 3N0kT � 3RT (9.50)

where R � N0k � 8.31 � 103 J/Kmol � K � 1.99 kcal/kmol � K

is the universal gas constant. (We recall that in an ideal-gas sample of n kilomoles, 
pV � nRT.)

The specific heat at constant volume is given in terms of E by

cV � � �
V

and so here

cV � 3R � 5.97 kcal/kmol � K (9.51)

Over a century ago Dulong and Petit found that, indeed, cV � 3R for most solids at
room temperature and above, and Eq. (9.51) is known as the Dulong-Petit law in
their honor.

However, the Dulong-Petit law fails for such light elements as boron, beryllium, and
carbon (as diamond), for which cV � 3.34, 3.85, and 1.46 kcal/kmol � K respectively
at 20°C. Even worse, the specific heats of all solids drop sharply at low temperatures
and approach 0 as T approaches 0 K. Figure 9.10 shows how cV varies with T for sev-
eral elements. Clearly something is wrong with the analysis leading up to Eq. (9.51),
and it must be something fundamental because the curves of Fig. 9.10 share the same
general character.

Dulong-Petit law 

�E
�
�T

Specific heat at 
constant volume

Classical internal
energy of solid 
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Figure 9.10 The variation with temperature of the molar specific heat at constant volume CV for several
elements.
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Einstein’s Formula

In 1907 Einstein discerned that the basic flaw in the derivation of Eq. (9.51) lies in
the figure of kT for the average energy per oscillator in a solid. This flaw is the same
as that responsible for the incorrect Rayleigh-Jeans formula for blackbody radiation.
According to Einstein, the probability f(
) that an oscillator have the frequency 
 is
given by Eq. (9.39), f(
) � 1�(ehv�kT � 1). Hence the average energy for an oscillator
whose frequency of vibration is 
 is

�� � h
 f(
) � (9.52)

and not �� � kT. The total internal energy of a kilomole of a solid therefore becomes

E � 3N0�
 � (9.53)

and its molar specific heat is

cV � � �
V

� 3R � �2

(9.54)

We can see at once that this approach is on the right track. At high temperatures,
h
 �� kT, and

eh
�kT � 1 �

since ex � 1 � x � � � � � �

Hence Eq. (9.52) becomes �
 � h
(h
�kT ) � kT , which leads to cV � 3R, the 
Dulong-Petit value, as it should. At high temperatures the spacing h
 between
possible energies is small relative to kT, so � is effectively continuous and classical
physics holds.

As the temperature decreases, the value of cV given by Eq. (9.54) decreases. The
reason for the change from classical behavior is that now the spacing between possi-
ble energies is becoming large relative to kT, which inhibits the possession of energies
above the zero-point energy. The natural frequency 
 for a particular solid can be
determined by comparing Eq. (9.54) with an empirical curve of its cV versus T. The
result in the case of aluminum is 
 � 6.4 � 1012 Hz, which agrees with estimates
made in other ways, for instance on the basis of elastic moduli.

Why is it that the zero-point energy of a harmonic oscillator does not enter this analy-
sis? As we recall, the permitted energies of a harmonic oscillator are (n � �

1
2

�)h
, n � 0,
1, 2, . . . . The ground state of each oscillator in a solid is therefore �0 � �

1
2

�h
, the zero-
point value, and not �0 � 0. But the zero-point energy merely adds a constant,
temperature-independent term of �0 � (3N0)(�

1
2

�h
) to the molar energy of a solid, and
this term vanishes when the partial derivative (�E��T)V is taken to find cV.

x3

�
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9.9 FREE ELECTRONS IN A METAL

No more than one electron per quantum state

The classical, Einstein, and Debye theories of specific heats of solids apply with equal
degrees of success to both metals and nonmetals, which is strange because they ignore
the presence of free electrons in metals.

As discussed in Chap. 10, in a typical metal each atom contributes one electron to
the common “electron gas,” so in 1 kilomole of the metal there are N0 free electrons.
If these electrons behave like the molecules of an ideal gas, each would have �

3
2�kT of

kinetic energy on the average. The metal would then have

Ee � N0kT � RT

of internal energy per kilomole due to the electrons. The molar specific heat due to
the electrons should therefore be

cVe � � �
V

� R
3
�
2

�Ee
�
�T

3
�
2

3
�
2
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A lthough Einstein’s formula predicts that cV → 0 as T → 0, as observed, the precise manner
of this approach does not agree too well with the data. The inadequacy of Eq. (9.54) at

low temperatures led Peter Debye to look at the problem in a different way in 1912. In Ein-
stein’s model, each atom is regarded as vibrating independently of its neighbors at a fixed fre-
quency 
. Debye went to the opposite extreme and considered a solid as a continuous elastic
body. Instead of residing in the vibrations of individual atoms, the internal energy of a solid
according to the new model resides in elastic standing waves.

The elastic waves in a solid are of two kinds, longitudinal and transverse, and range in fre-
quency from 0 to a mximum 
m. (The interatomic spacing in a solid sets a lower limit to the
possible wavelengths and hence an upper limit to the frequencies.) Debye assumed that the total
number of different standing waves in a kilomole of a solid is equal to its 3N0 degrees of free-
dom. These waves, like em waves, have energies quantized in units of h
. A quantum of acoustic
energy in a solid is called a phonon, and it travels with the speed of sound since sound waves
are elastic in nature. The concept of phonons is quite general and has applications other than
in connection with specific heats.

Debye finally asserted that a phonon gas has the same statistical behavior as a photon gas or
a system of harmonic oscillators in thermal equilibrium, so that the average energy �� per stand-
ing wave is the same as in Eq. (9.52). The resulting formula for cV reproduces the observed
curves of cV versus T quite well at all temperatures.

Peter Debye, who was Dutch, did original work in many aspects of both physics and chem-
istry, at first in Germany and later at Cornell University. Although Heisenberg, a colleague for a
time, thought him lazy (“I could frequently see him walking around in his garden and watering
the roses even during duty hours of the Institute”), he published nearly 250 papers and received
the Nobel Prize in chemistry in 1936.

The Debye Theory
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and the total specific heat of the metal should be

cV � 3R � R � R

at high temperatures where a classical analysis is valid. Actually, of course, the Dulong-
Petit value of 3R holds at high temperatures, from which we conclude that the free
electrons do not in fact contribute to the specific heat. Why not?

If we reflect on the characters of the entities involved in the specific heat of a metal,
the answer begins to emerge. Both the harmonic oscillators of Einstein’s model and the
phonons of Debye’s model are bosons and obey Bose-Einstein statistics, which place
no upper limit on the occupancy of a particular quantum state. Electrons, however,
are fermions and obey Fermi-Dirac statistics, which means that no more than one elec-
tron can occupy each quantum state. Although both systems of bosons and systems of
fermions approach Maxwell-Boltzmann statistics with average energies �� � �

1
2

�kT per
degree of freedom at “high” temperatures, how high is high enough for classical be-
havior is not necessarily the same for the two kinds of systems in a metal.

According to Eq. (9.29), the distribution function that gives the average occupancy
of a state of energy � in a system of fermions is

fFD(�) � (9.29)

What we also need is an expression for g(�) d�, the number of quantum states avail-
able to electrons with energies between � and � � d�.

We can use exactly the same reasoning to find g(�) d� that we used to find the num-
ber of standing waves in a cavity with the wavelength 	 in Sec. 9.5. The correspon-
dence is exact because there are two possible spin states, ms � ��

1
2

� and ms � ��
1
2

� (“up”
and “down”), for electrons, just as there are two independent directions of polariza-
tion for otherwise identical standing waves.

We found earlier that the number of standing waves in a cubical cavity L on a side is

g ( j) dj � �j2 dj (9.33)

where j � 2L�	. In the case of an electron, 	 is its de Broglie wavelength of 	 � h�p.
Electrons in a metal have nonrelativistic velocities, so p � �2m�� and

j � � � dj � �	 d�

Using these expressions for j and dj in Eq. (9.33) gives

g (�) d� � ��� d�

As in the case of standing waves in a cavity the exact shape of the metal sample does
not matter, so we can substitute its volume V for L3 to give

g (�) d� � ��� d� (9.55)
8�2��Vm3�2

��
h3

Number of
electron states

8�2��L3m3�2

��
h3

2m
�

�

L
�
h

2L�2m��
��

h

2Lp
�

h

2L
�
	

1
��
e(���F)�kT � 1

Average occupancy
per state

9
�
2

3
�
2
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Fermi Energy

The final step is to calculate the value of �F, the Fermi energy. As mentioned in 
Sec. 9.4, we can do this by filling up the energy states in the metal sample at T � 0
with the N free electrons it contains in order of increasing energy starting from � � 0.
The highest state to be filled will then have the energy � � �F by definition. The num-
ber of electrons that can have the same energy � is equal to the number of states that
have this energy, since each state is limited to one electron. Hence

N � ��
F

0
g (�) d� � ��

F

0

��� d� � �F
3�2

and so

�F � � �
2�3

(9.56)

The quantity N�V is the density of free electrons.

Example 9.8

Find the Fermi energy in copper on the assumption that each copper atom contributes one free
electron to the electron gas. (This is a reasonable assumption since, from Table 7.4, a copper
atom has a single 4s electron outside closed inner shells.) The density of copper is 8.94 �
103 kg/m3 and its atomic mass is 63.5 u.

Solution

The electron density N�V in copper is equal to the number of copper atoms per unit volume.
Since 1 u � 1.66 � 10�27 kg,

� � �

� 8.48 � 1028 atoms 
m3 � 8.48 � 1028 electrons 
m3

The corresponding Fermi energy is, from (9.56),

�F � 
 �
2�3

� 1.13 � 10�18 J � 7.04 eV

At absolute zero, T � 0 K, there would be electrons with energies of up to 7.04 eV in copper
(corresponding to speeds of up to 1.6 � 106 m/s!). By contrast, all the molecules in an ideal
gas at 0 K would have zero energy. The electron gas in a metal is said to be degenerate.

9.10 ELECTRON-ENERGY DISTRIBUTION

Why the electrons in a metal do not contribute to its specific heat except at
very high and very low temperatures

(3)(8.48 � 1028 electrons/m3)
����

8�

(6.63 � 10�34 J � s)2

����
(2)(9.11 � 10�31 kg/electron)

8.94 � 103 kg 
m3

���
(63.5 u) � (1.66 � 10�27 kg/u)

mass 
m3

��
mass 
atom

atoms
�

m3

N
�
V

3N
�
8�V

h2

�
2m

Fermi energy

16�2��Vm3�2

��
3h3

8�2��Vm3�2

��
h3
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With the help of Eqs. (9.29) and (9.55) we have for the number of electrons in an
electron gas that have energies between � and � � d�

n(�) d� � g (�) f(�) d� � (9.57)

If we express the numerator of Eq. (9.57) in terms of the Fermi energy �F we get

n(�) d� � (9.58)

This formula is plotted in Fig. 9.11 for T � 0, 300, and 1200 K.
It is interesting to determine the average electron energy at 0 K. To do this, we first

find the total energy E0 at 0 K, which is

E0 � ��F

0
�n(�) d�

Since at T � 0 K all the electrons have energies less than or equal to the Fermi energy
�F, we may let

e(���
F
)�kT � e�
 � 0

and E0 � �F
�3�2 ��F

0
�3�2 d� � N�F

The average electron energy ��0 is this total energy divided by the number N of elec-
trons present, which gives

��0 � �F (9.59)
3
�
5

Average electron 
energy at T � 0

3
�
5

3N
�
2

(3N�2) �F
�3�2��� d�

���
e(���

F
)�kT � 1

Electron energy 
distribution

(8�2��Vm3�2�h3) ��� d�
���

e(���
F
)�kT � 1
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Figure 9.11 Distribution of electron energies in a metal at various temperatures.
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Since Fermi energies for metals are usually several electronvolts (Table 9.2), the
average electron energy in them at 0 K will also be of this order of magnitude. The
temperature of an ideal gas whose molecules have an average kinetic energy of 1 eV is
11,600 K. If free electrons behaved classically, a sample of copper would have to be at
a temperature of about 50,000 K for its electrons to have the same average energy they
actually have at 0 K!

The failure of the free electrons in a metal to contribute appreciably to its specific
heat follows directly from their energy distribution. When a metal is heated, only those
electrons near the very top of the energy distribution—those within about kT of the
Fermi energy—are excited to higher energy states. The less energetic electrons cannot
absorb more energy because the states above them are already filled. It is unlikely
that an electron with, say, an energy � that is 0.5 eV below �F can leapfrog the filled
states above it to the nearest vacant state when kT at room temperature is 0.025 eV
and even at 500 K is only 0.043 eV.

A detailed calculation shows that the specific heat of the electron gas in a metal is
given by

cVe � � �R (9.60)

At room temperature, kT��F ranges from 0.016 for cesium to 0.0021 for aluminum for
the metals listed in Table 9.2, so the coefficient of R is very much smaller than the clas-
sical figure of �

3

2
�. The dominance of the atomic specific heat cV in a metal over the elec-

tronic specific heat is pronounced over a wide temperature range. However, at very
low temperatures cVe becomes significant because cV is then approximately proportional
to T3 whereas cVe is proportional to T. At very high temperatures cV has leveled out at
about 3R while cVe has continued to increase, and the contribution of cVe to the total
specific heat is then detectable.

9.11 DYING STARS

What happens when a star runs out of fuel

Metals are not the only systems that contain degenerate fermion gases—many dead
and dying stars fall into this category also.

kT
�
�F

�2

�
2

Electron specific 
heat
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Table 9.2 Some Fermi Energies

Metal Fermi Energy, eV

Lithium Li 4.72
Sodium Na 3.12
Aluminum Al 11.8
Potassium K 2.14
Cesium Cs 1.53
Copper Cu 7.04
Zinc Zn 11.0
Silver Ag 5.51
Gold Au 5.54
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White Dwarfs

Perhaps 10 percent of the stars in our galaxy are believed to be white dwarfs. These
are stars in the final stages of their evolution with original masses that were less than
about 8 solar masses. After the nuclear reactions that provided it with energy run out
of fuel, such a star becomes unstable, swells to become a red giant, and eventually
throws off its outer layer. The remaining core then cools and contracts gravitationally
until its atoms collapse into nuclei and electrons packed closely together. A typical
white dwarf has a mass of two-thirds that of the sun but is only about the size of the
earth; a handful of its matter would weigh over a ton on the earth.

As a prospective white dwarf contracts, its volume V decreases and as a result the
Fermi energy �F of its electrons increases; see Eq. (9.56). When �F exceeds kT, the
electrons form a degenerate gas. A reasonable estimate for the Fermi energy in a typical
white dwarf is 0.5 MeV. The nuclei present are much more massive than the electrons,
and because �F is inversely proportional to m, they continue to behave classically.

With the star’s nuclear reactions at an end, the nuclei cool down and come together
under the influence of gravitation. The electrons, however, cannot cool down since
most of the low-energy states available to them are already filled; the situation corre-
sponds to Fig. 9.6b. The electron gas becomes hotter and hotter as the star shrinks.
Even though the total electron mass is only a small fraction of the star’s mass, in time
it exerts enough pressure to stop the gravitational contraction. Thus the size of a white
dwarf is determined by a balance between the inward gravitational pull of its atomic
nuclei and the pressure of its degenerate electron gas.

328 Chapter Nine

The Ring nebula in the constellation Lyra is a shell of gas moving outward from the
star at its center, which is in the process of becoming a white dwarf.
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In a white dwarf, only electrons with the highest energies can radiate, since only
such electrons have empty lower states to fall into. As the states lower than �F become
filled, the star becomes dimmer and dimmer and in a few billion years ceases to radi-
ate at all. It is now a black dwarf, a dead lump of matter, since the energies of its elec-
trons are forever locked up below the Fermi level.

The greater the mass of a shrinking star, the greater the electron pressure needed to
keep it in equilibrium. If the mass is more than about 1.4Msun, gravity is so over-
whelming that the electron gas can never counteract it. Such a star cannot become a
stable white dwarf.

Neutron Stars

A star too heavy—more than about 8 solar masses—to follow the evolutionary path
that leads to a white dwarf has a different fate. The large mass of such a star causes it
to collapse abruptly when out of fuel, and then to explode violently. The explosion
flings into space most of the star’s mass. An event of this kind, called a supernova, is
billions of times brighter than the original star ever was.

What is left after a supernova explosion may be a remnant whose mass is greater
than 1.4Msun. As this star contracts gravitationally, its electrons become more and more
energetic. When the Fermi energy reaches about 1.1 MeV, the average electron energy
is 0.8 MeV, which is the minimum energy needed for an electron to react with a pro-
ton to produce a neutron. (The neutron mass exceeds the combined mass of an elec-
tron and a proton by the mass equivalent of 0.8 MeV.) This point is reached when the
star’s density is perhaps 20 times that of a white dwarf. From then on neutrons are
produced until most of the electrons and protons are gone. The neutrons, which are
fermions, end up as a degenerate gas, and their pressure supports the star against further
gravitational shrinkage.

Statistical Mechanics 329

T he maximum white dwarf mass of 1.4Msun is called the Chandrasekhar limit after its
discoverer, Subrahmanyan Chandrasekhar, who calculated it in 1930 at the age of nineteen

on the ship bringing him from his native India to take up a fellowship at Cambridge. Two ob-
servations underlie the existence of the limit:

1 Both the internal energy of a dwarf and its gravitational potential energy vary in the same way
(1�R) with its radius.
2 Its internal energy is proportional to the mass M of the dwarf but its gravitational potential
energy is proportional to M2.

Because of (2), the inward gravitational pressure dominates for a sufficiently massive dwarf,
which causes a contraction that cannot be stopped by the pressure of its electron gas as R
decreases because of (1).

What becomes of dying stars with M 
 1.4Msun? The answer then seemed to be total collapse
into what today is called a black hole. (We know now that a neutron star can be somewhat
more massive than a white dwarf and still be stable.) The noted Cambridge astrophysicist Arthur
Eddington, one of Chandrasekhar’s heroes, publicly derided the idea of total collapse as ab-
surd, a humiliation that was one of the reasons Chandrasekhar later moved to the University
of Chicago where he had a distinguished career. His work on white dwarfs led to a Nobel Prize
in 1983.

The Chandrasekhar Limit
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Neutron stars are thought to be 10 to 15 km in radius with masses between 1.4
and �3Msun (Fig. 9.12). If the earth were this dense, it would fit into a large apart-
ment house. Stars called pulsars are believed to be neutron stars that are rotating
rapidly. Most stars have magnetic fields, and as a star contracts into a neutron star, its
surface field increases enormously. The magnetic field is produced by motions of the
electrons that remain in its interior, and since they cannot lose energy (the gas they
form is degenerate, with all the lowest states filled), the field should persist for a time
long compared with the age of the universe.

The magnetic field of a pulsar traps tails of ionized gas that radiate light, radio
waves, and x-rays. If the magnetic axis is not aligned with the rotational axis, a dis-
tant observer, such as an astronomer on the earth, will receive bursts of radiation as
the pulsar spins. Thus a pulsar is like a lighthouse whose flashes are due to a rotat-
ing beam of light.

330 Chapter Nine

Discovery of Neutron Stars

I n a paper published in 1934, only two years after the discovery of the neutron, the as-
tronomers Walter Baade and Fritz Zwicky proposed that, at the end of its active life, an ex-

ceptionally heavy star undergoes a cataclysmic explosion that appears in the sky as a brilliant
supernova. “We advance the view that a supernova represents the transition of an ordinary star
into a neutron star, consisting mainly of neutrons. Such a star may possess a very small radius
and an extremely high density [and would] represent the most stable configuration of matter
as such.”

Although several physicists developed the theory of neutron stars further in the next few
years, it was not until pulsars were detected in 1967 that their existence was confirmed. In that
year unusual radio signals with an extremely regular period of exactly 1.33730113 s were picked
up that came from a source in the direction of the constellation Vulpecula. They were found by
Jocelyn Bell (now Jocelyn Bell Burnell), then a graduate student at Cambridge University; her
thesis advisor received the Nobel Prize in physics for the discovery. At first only radio emissions
from pulsars were observed, but later flashes of visible light were detected from some pulsars
that were synchronized with the radio signals.

The power output of a pulsar is about 1026 W, which is comparable with the total power
output of the sun. So strong a source of energy cannot possibly be switched on and off in a
fraction of a second, which is the period of some pulsars, nor can it be the size of the sun.
Even if the sun were to suddenly stop radiating, it would take an interval of 2.3 s before
light stopped reaching us, because all parts of the sun that we see are not the same distance
away. Nor could a sun-sized pulsar spin around in less than a second per turn. The conclu-
sion is that a pulsar must have the mass of a star, in order to be able to emit so much energy,
but it must be very much smaller than a star, in order that its signals fluctuate so rapidly.
From these and other considerations it seems clear that pulsars are neutron stars in rapid
rotation.

Sun

Neutron
star

Earth White
dwarf

Figure 9.12 A comparison of a white dwarf and a neutron star with the sun and the earth. Both white
dwarfs and neutron stars are thought to have masses similar to that of the sun.
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Over 1000 pulsars have been discovered, all with periods between 0.0016 and 4 s.
The best known pulsar, which is at the center of the Crab nebula, has a period of
0.033 s that is increasing at a rate of 10�5 s per year as the pulsar loses angular
momentum.

Black Holes

An old star whose mass is less than 1.4Msun becomes a white dwarf and one whose
mass is between 1.4 and �3Msun becomes a neutron star. What about still heavier old
stars? Neither a degenerate electron gas nor a degenerate neutron gas can resist gravi-
tational collapse when M 
 �3Msun. Does such a star end up as a point in space? This
does not seem likely. One argument comes from the uncertainty principle, �x �p �
	�2. This principle prevents a hydrogen atom from collapsing beyond a certain size
under the inward pull of the proton’s electric field. The same principle ought to pre-
vent a massive old star from collapsing beyond a certain size under an inward gravi-
tational pull. Or perhaps the quarks of which neutrons and protons are composed
(Chap. 13) have special properties that stabilize such a star when it reaches a certain
density.

Whatever its final nature, as an old star of M 
 3Msun contracts it passes the Schwarz-
schild radius of Eq. (2.30) and from then on is a black hole (Sec. 2.9). We can receive
no further information from the star because its gravitational field is too intense to per-
mit anything, even photons, to escape past its event horizon.

Not only heavy stars end up as black holes. As time goes on, both white dwarfs and
neutron stars attract more and more cosmic dust and gas. When they have gathered
up enough additional mass, they too will become black holes. If the universe lasts long
enough, then everything in it may be in the form of black holes.
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The pulsar at the center of the Crab nebula flashes 30 times per second and is throught to
be a rotating neutron star. These photographs were taken at maximum and minimum emis-
sion. The nebula itself is shown in the photograph at the start of this chapter; it is now
about 10 light-years across and is still expanding.
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9.2 Maxwell-Boltzmann Statistics

1. At what temperature would one in a thousand of the atoms in a
gas of atomic hydrogen be in the n � 2 energy level?

2. The temperature in part of the sun’s atmosphere is 5000 K.
Find the relative numbers of hydrogen atoms in this region that
are in the n � 1, 2, 3, and 4 energy levels. Be sure to take into
account the multiplicity of each level.

3. The 32P1�2 first excited state in sodium is 2.093 eV above the
32S1�2 ground state. Find the ratio between the numbers of atoms
in each state in sodium vapor at 1200 K. (See Example 7.6.)

4. The frequency of vibration of the H2 molecule is 1.32 �

1014 Hz. (a) Find the relative populations of the � � 0, 1, 2, 3,
and 4 vibrational states at 5000 K. (b) Can the populations of
the � � 2 and � � 3 states ever be equal? If so, at what temper-
ature does this occur?

5. The moment of inertia of the H2 molecule is 4.64 � 10�48

kg � m2. (a) Find the relative populations of the J � 0, 1, 2, 3,
and 4 rotational states at 300 K. (b) Can the populations of the
J � 2 and J � 3 states ever be equal? If so, at what temperature
does this occur?

6. In a certain four-level laser (Sec. 4.9), the final state of the laser
transition is 0.03 eV above the ground state. What fraction of the
atoms are in this state at 300 K in the absence of external excita-
tion? What is the minimum fraction of the atoms that must be
excited in order for laser amplification to occur at this tempera-
ture? Why? How is the situation changed at 100 K? Would you
expect cooling a three-level laser to have the same effect?

9.3 Molecular Energies in an Ideal Gas

7. Find �� and �rms for an assembly of two molecules, one with a
speed of 1.00 m/s and the other with a speed of 3.00 m/s.

8. Show that the average kinetic energy per molecule at room tem-
perature (20°C) is much less than the energy needed to raise a
hydrogen atom from its ground state to its first excited state.

9. At what temperature will the average molecular kinetic energy
in gaseous hydrogen equal the binding energy of a hydrogen
atom?

10. Show that the de Broglie wavelength of an oxygen molecule in
thermal equilibrium in the atmosphere at 20°C is smaller than
its diameter of about 4 � 10�10 m.

11. Find the width due to the Doppler effect of the 656.3-nm spec-
tral line emitted by a gas of atomic hydrogen at 500 K.

12. Verify that the most probable speed of an ideal-gas molecule is 

�2kT�m�.

13. Verify that the average value of 1�� for an ideal-gas molecule is 

�2m���kT�. [Note: ��

0 �e�a�2
d� � 1�(2a)]

14. A flux of 1012 neutrons/m2 emerges each second from a port in
a nuclear reactor. If these neutrons have a Maxwell-Boltzmann
energy distribution corresponding to T � 300 K, calculate the
density of neutrons in the beam.

9.4 Quantum Statistics

15. At the same temperature, will a gas of classical molecules, a gas
of bosons, or a gas of fermions exert the greatest pressure? The
least pressure? Why?

16. What is the significance of the Fermi energy in a fermion
system at 0 K? At T � 0 K?

9.5 Rayleigh-Jeans Formula

17. How many independent standing waves with wavelengths
between 9.5 and 10.5 mm can occur in a cubical cavity 1 m
on a side? How many with wavelengths between 99.5 and
100.5 mm? (Hint: First show that g(�) d� � 8�L3 d���4.)

9.6 Planck Radiation Law

18. If a red star and a white star radiate energy at the same rate,
can they be the same size? If not, which must be the larger?

19. A thermograph measures the rate at which each small portion
of a person’s skin emits infrared radiation. To verify that a small
difference in skin temperature means a significant difference in
radiation rate, find the percentage difference between the total
radiation from skin at 34° and at 35°C.

20. Sunspots appear dark, although their temperatures are typically
5000 K, because the rest of the sun’s surface is even hotter,
about 5800 K. Compare the radiation rates of surfaces of the
same emissivity whose temperatures are respectively 5000 and
5800 K.

21. At what rate would solar energy arrive at the earth if the solar
surface had a temperature 10 percent lower than it is?

22. The sun’s mass is 2.0 � 1030 kg, its radius is 7.0 � 108 m,
and its surface temperature is 5.8 � 103 K. How many
years are needed for the sun to lose 1.0 percent of its mass
by radiation?

23. An object is at a temperature of 400°C. At what temperature
would it radiate energy twice as fast?

24. A copper sphere 5 cm in diameter whose emissivity is 0.3 is
heated in a furnace to 400°C. At what rate does it radiate?

25. At what rate does radiation escape from a hole 10 cm2 in area
in the wall of a furnace whose interior is at 700°C?

E X E R C I S E S

By the pricking of my thumbs / Something wicked this way comes. —William Shakespeare, Macbeth
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26. An object at 500°C is just hot enough to glow perceptibly; at
750°C it appears cherry-red in color. If a certain blackbody
radiates 1.00 kW when its temperature is 500°C, at what rate
will it radiate when its temperature is 750°C?

27. Find the surface area of a blackbody that radiates 1.00 kW
when its temperature is 500°C. If the blackbody is a sphere,
what is its radius?

28. The microprocessors used in computers produce heat at rates as
high as 30 W per square centimeter of surface area. At what
temperature would a blackbody be if it had such a radiance?
(Microprocessors are cooled to keep from being damaged by
the heat they give off.)

29. Considering the sun as a blackbody at 6000 K, estimate the
proportion of its total radiation that consists of yellow light
between 570 and 590 nm.

30. Find the peak wavelength in the spectrum of the radiation from
a blackbody at a temperature of 500°C. In what part of the em
spectrum is this wavelength?

31. The brightest part of the spectrum of the star Sirius is located
at a wavelength of about 290 nm. What is the surface tempera-
ture of Sirius?

32. The peak wavelength in the spectrum of the radiation from a
cavity is 3.00 �m. Find the total energy density in the cavity.

33. A gas cloud in our galaxy emits radiation at a rate of 1.0 �

1027 W. The radiation has its maximum intensity at a wave-
length of 10 �m. If the cloud is spherical and radiates like a
blackbody, find its surface temperature and its diameter.

34. (a) Find the energy density in the universe of the 2.7-K radia-
tion mentioned in Example 9.6. (b) Find the approximate num-
ber of photons per cubic meter in this radiation by assuming
that all the photons have the wavelength of 1.1 mm at which
the energy density is a maximum.

35. Find the specific heat at constant volume of 1.00 cm3 of radia-
tion in thermal equilibrium at 1000 K.

9.9 Free Electrons in a Metal

9.10 Electron-Energy Distribution

36. What is the connection between the fact that the free electrons
in a metal obey Fermi statistics and the fact that the photoelec-
tric effect is virtually temperature-independent?

37. Show that the median energy in a free-electron gas at T � 0 is
equal to �F�22�3 � 0.630�F.

38. The Fermi energy in copper is 7.04 eV. Compare the approxi-
mate average energy of the free electrons in copper at room
temperature (kT � 0.025 eV) with their average energy if they
followed Maxwell-Boltzmann statistics. 

39. The Fermi energy in silver is 5.51 eV. (a) What is the average
energy of the free electrons in silver at 0 K? (b) What tempera-
ture is necessary for the average molecular energy in an ideal
gas to have this value? (c) What is the speed of an electron with
this energy?

40. The Fermi energy in copper is 7.04 eV. (a) Approximately what
percentage of the free electrons in copper are in excited states at
room temperature? (b) At the melting point of copper, 1083°C?

41. Use Eq. (9.29) to show that, in a system of fermions at T � 0,
all states of � � �F are occupied and all states of � 
 �F are
unoccupied.

42. An electron gas at the temperature T has a Fermi energy of �F.
(a) At what energy � is there a 5.00 percent probability that a
state of that energy is occupied? (b) At what energy is there a
95.00 percent probability that a state of that energy is occu-
pied? Express the answers in terms of �F and kT.

43. Show that, if the average occupancy of a state of energy �F �

�� is f1 at any temperature, then the average occupancy of a
state of energy �F � �� is f2 � 1 � f1. (This is the reason for
the symmetry of the curves in Fig. 9.10 about �F.)

44. The density of aluminum is 2.70 g/cm3 and its atomic mass is
26.97 u. The electronic structure of aluminum is given in 
Table 7.4 (the energy difference between 3s and 3p electrons is
very small), and the effective mass of an electron in aluminum
is 0.97 me Calculate the Fermi energy in aluminum. (Effective
mass is discussed at the end of Sec. 10.8.)

45. The density of zinc is 7.13 g/cm3 and its atomic mass is 
65.4 u. The electronic structure of zinc is given in Table 7.4,
and the effective mass of an electron in zinc is 0.85 me. 
Calculate the Fermi energy in zinc.

46. Find the number of electrons each lead atom contributes to the
electron gas in solid lead by comparing the density of free elec-
trons obtained from Eq. (9.56) with the number of lead atoms
per unit volume. The density of lead is 1.1 � 104 kg/m3 and
the Fermi energy in lead is 9.4 eV.

47. Find the number of electron states per electronvolt at � � �F�2
in a 1.00-g sample of copper at 0 K. Are we justified in consid-
ering the electron energy distribution as continuous in a metal?

48. The specific heat of copper at 20°C is 0.0920 kcal /kg � °C.
(a) Express this in joules per kilomole per kelvin (J / kmol � K).
(b) What proportion of the specific heat can be attributed to the
electron gas, assuming one free electron per copper atom?

49. The Bose-Einstein and Fermi-Dirac distribution functions both
reduce to the Maxwell-Boltzmann function when e�e��kT 

 1.
For energies in the neighborhood of kT, this approximation
holds if e� 

 1. Helium atoms have spin 0 and so obey Bose-
Einstein statistics. Verify that f(�) � 1�e�e��kT � Ae ���kT is
valid for He at STP (20°C and atmospheric pressure, when the
volume of 1 kmol of any gas is � 22.4 m3) by showing that
A �� 1 under these circumstances. To do this, use Eq. (9.55)
for g(�) d� with a coeffficient of 4 instead of 8 since a He atom
does not have the two spin states of an electron, and employing
the approximation, find A from the normalization condition 
�


0 n(�) d� � N, where N is the total number of atoms in the
sample. (A kilomole of He contains Avogadro’s number N0 of
atoms, the atomic mass of He is 4.00 u, and �


0 �x�e�ax

dx � ���a��2a.)

50. Helium is a liquid of density 145 kg/m3 at atmospheric
pressure and temperatures under 4.2 K. Use the method of Ex-
ercise 49 to show that A 
 1 for liquid helium, so that it can-
not be satisfactorily described by Maxwell-Boltzmann statistics.
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51. The Fermi-Dirac distribution function for the free electrons 
in a metal cannot be approximated by the Maxwell-Boltzmann
function at STP (see Exercise 49) for energies in the
neighborhood of kT. Verify this by using the method of 
Exercise 49 to show that A 
 1 in copper if f(�) � Ae��� kT. 
As calculated in Sec. 9.9 N�V � 8.48 � 1028 electrons/m3 for
copper. Note that Eq. (9.55) must be used unchanged here.

9.11 Dying Stars

52. The sun has a mass of 2.0 � 1030 kg and a radius of 7.0 �

108 m. Assume it consists of completely ionized hydrogen at a
temperature of 107 K. (a) Find the Fermi energies of the proton
gas and of the electron gas in the sun. (b) Compare these ener-
gies with kT to see whether each gas is degenerate (kT �� �F,
so that few particles have energies over �F) or nondegenerate
(kT 

 �F, so that few particles have energies below �F and the
gas behaves classically).

53. Consider a white dwarf star whose mass is half that of the sun
and whose radius is 0.01 that of the sun. Assume it consists of
completely ionized carbon atoms (mass 12 u), so that there are
six electrons per nucleus, and its interior temperature is 107 K. 
(a) Find the Fermi energies of the carbon nucleus gas and of the
electron gas. (b) Compare these energies with kT to see whether
each gas is degenerate or nondegenerate, as in Exercise 52.

54. The gravitational potential energy of a uniform-density
sphere of mass M and radius R is Eg � ��

3

5
� GM2/R. Consider

a white dwarf star that contains N electrons whose Fermi
energy is �F. Since kT �� �F, the average electron energy is,
from Eq.(9.51), about �

3

5
� �F and the total electron energy is

Ee � �
3

5
� N�F. The energies of the nuclei can be neglected

compared with Ee. Hence the total energy of the star is E �

Eg � Ee. (a) Find the equilibrium radius of the star by letting
dE�dR � 0 and solving for R. (b) Evaluate R for a star whose
mass is half that of the sun and consists of completely
ionized carbon atoms, as in Exercise 53.
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Wood ant carrying a microchip that contains several million circuit elements.
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Boron atom

Oxygen atom

(a)  (b)

Figure 10.1 Two-dimensional representation of B2O3. (a) Amorphous B2O3 exhibits only short-range
order. (b) Crystalline B2O3 exhibits long-range order as well.
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A
solid consists of atoms, ions, or molecules packed closely together, and the
forces that hold them in place give rise to the distinctive properties of the var-
ious kinds of solid. The covalent bonds that can link a fixed number of atoms

to form a certain molecule can also link an unlimited number of them to form a solid.
In addition, ionic, van der Waals, and metallic bonds provide the cohesive forces in
solids whose structural elements are respectively ions, molecules, and metal atoms. All
these bonds involve electric forces, with the chief differences among them being in the
ways in which the outer electrons of the structural elements are distributed. Although
very little of the matter in the universe is in the solid state, solids constitute much of
the physical world around us, and a large part of modern technology is based on the
special characteristics of various solid materials.

10.1 CRYSTALLINE AND AMORPHOUS SOLIDS

Long-range and short-range order

Most solids are crystalline, with the atoms, ions, or molecules of which they are
composed falling into regular, repeated three-dimensional patterns. The presence of
long-range order is thus the defining property of a crystal, although relatively few
samples of crystalline solids consist of single crystals. Most are polycrystalline and are
composed of a great many small crystals (sometimes called crystallites).

Other solids lack the definite arrangements of their member particles so conspicu-
ous in crystals. They may be regarded as supercooled liquids whose stiffness is due to
an exceptionally high viscosity. Glass, pitch, and many plastics are examples of such
amorphous (“without form”) solids.

Amorphous solids do exhibit short-range order in their structures, however. The dis-
tinction between the two kinds of order is nicely exhibited in boron trioxide (B2O3),
which can occur in both crystalline and amorphous forms. In each case every boron atom
is surrounded by three oxygen atoms, which represents a short-range order. In a B2O3

crystal a long-range order is also present, as shown in a two-dimensional representation
in Fig. 10.1. Amorphous B2O3, a vitreous or “glassy” substance, lacks this additional reg-
ularity. Crystallization from the vitreous state is so sluggish that it ordinarily does not oc-
cur, but it is not unknown. Glass may devitrify when heated until it has not quite be-
gun to soften, and extremely old glass specimens are sometimes found to have crystallized.
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(a)  (b)

(c)  (d)

Figure 10.2 Point defects in a crystal. (a) Vacancy. (b) Interstitial. (c) Substitutional impurity. 
(d) Interstitial impurity.

The analogy between an amorphous solid and a liquid helps in understanding both
states of matter. The density of a given liquid is usually close to that of the corre-
sponding solid, for instance, which suggests that the degree of packing is similar. This
inference is supported by the compressibilities of these states. Furthermore, x-ray dif-
fraction indicates that many liquids have definite short-range structures at any instant,
quite similar to those of amorphous solids except that the groupings of liquid mole-
cules are continually shifting. A conspicuous example of short-range order in a liquid
occurs in water just above the melting point, where the result is a lower density than
at higher temperatures because H2O molecules are less tightly packed when linked in
crystals than when free to move.

The bonds in an amorphous solid vary in strength because of the lack of long-range
order. When an amorphous solid is heated, the weakest bonds break at lower tem-
peratures than the others, and the solid softens gradually. In a crystalline solid the
bonds break simultaneously, and melting has a sudden onset. Metallic “glasses” have
been made from mixtures of metals whose atoms differ greatly in size, which prevents
them from forming the ordered structures of crystals when cooled from a molten state.
One such metallic glass has half the density of steel but twice its strength, and is hard
but can be deformed without breaking. Its gradual softening when heated make the
material exceptionally easy to shape.

Crystal Defects

In a perfect crystal each atom has a definite equilibrium location in a regular array.
Actual crystals are never perfect. Defects such as missing atoms, atoms out of place,
irregularities in the spacing of rows of atoms and the presence of impurities have a
considerable bearing on the physical properties of a crystal. Thus the behavior of a
solid under stress is largely determined by the nature and concentration of defects in
its structure, as is the electrical behavior of a semiconductor.

The simplest category of crystal imperfection is the point defect. Figure 10.2 shows
the basic kinds of point defect. Both vacancies and interstitials, which require about 1 to
2 eV to be created, occur in all crystals as a result of thermal excitation, and their num-
ber accordingly increases rapidly with temperature. Of much importance is the produc-
tion of such defects by particle radiation. In a nuclear reactor, for instance, energetic
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Figure 10.3 A crystal under stress becomes permanently deformed when dislocations in its structure
shift their positions. (a) Initial configuration of a crystal with an edge dislocation. (b) The dislocation
moves to the right as the atoms in the layer under it successively shift their bonds with those of the
upper layer one line at a time. (c) The crystal has taken on a permanent deformation. The forces needed
for this step-by-step process are much smaller than those needed to slide one entire layer of atoms past
another layer.

neutrons readily knock atoms out of their normal locations. The result is a change in the
properties of the bombarded material; most metals, for instance, become more brittle.

The effects of impurity atoms on the electrical properties of semiconductors, which
underlie the operation of such devices as transistors, are discussed later in this chapter.

A dislocation is a type of crystal defect in which a line of atoms is not in its proper
position. Dislocations are of two basic kinds. Figure 10.3 shows an edge dislocation,
which we can visualize as the result of removing part of a layer (here vertical) of atoms.
Edge dislocations enable a solid to be permanently deformed without breaking, a prop-
erty called ductility. Metals are the most ductile solids. In the figure the bonds between
atoms are represented by lines. The other kind of dislocation is the screw dislocation.
We can visualize the formation of a screw dislocation by imagining that a cut is made
partway into a perfect crystal and one side of the cut is then displaced relative to the
other, as in Fig. 10.4. The atomic layers spiral around the dislocation, which accounts
for its name. Actual dislocations in crystals are usually combinations of the edge and
screw varieties.

Dislocations multiply when a solid is deformed. When the dislocations become so
numerous and tangled together that they impede one another’s motion, the material is
then less easy to deform. This effect is called work hardening. Strongly heating
(annealing) a work-hardened solid tends to return its disordered lattice to regularity
and it becomes more ductile as a result. Steel bars and sheets formed by cold rolling
are much harder than those formed by hot rolling.

10.2 IONIC CRYSTALS

The attraction of opposites can produce a stable union

Ionic bonds come into being when atoms that have low ionization energies, and hence
lose electrons readily, interact with other atoms that tend to acquire excess electrons.
The former atoms give up electrons to the latter, and they thereupon become positive
and negative ions respectively (Fig. 8.2). In an ionic crystal these ions assemble them-
selves in an equilibrium configuration in which the attractive forces between positive
and negative ions balance the repulsive forces between the ions.

As in the case of molecules, crystals of all types are prevented from collapsing under
the influence of the cohesive forces present by the action of the exclusion principle,
which requires the occupancy of higher energy states when electron shells of different
atoms overlap and mesh together.

In general, in an ionic crystal each ion is surrounded by as many ions of the opposite
sign as can fit closely, which leads to maximum stability. The relative sizes of the ions
involved therefore govern the type of structure that occurs. Two common types of
structure found in ionic crystals are shown in Figs. 10.5 and 10.6.

Ionic bonds between the atoms of two elements can form when one element has a
low ionization energy, so that its atoms tend to become positive ions, and the other
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Figure 10.4 A screw dislocation.

Dislocation
line

Force

Force

(b)

(a)

(c)
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element has a high electron affinity. Electron affinity is the energy released when an
electron is added to an atom of a given element; the greater the electron affinity, the
more such atoms tend to become negative ions. Sodium, with an ionization energy of
5.14 eV, tends to form Na� ions, and chlorine, with an electron affinity of 3.61 eV,
tends to form Cl� ions. The condition for a stable crystal of NaCl is simply that the
total energy of a system of Na� and Cl� ions be less than the total energy of a system
of Na and Cl atoms.

The cohesive energy of an ionic crystal is the energy per ion needed to break the
crystal up into individual atoms. Part of the cohesive energy is the electric potential
energy Ucoulomb of the ions. Let us consider a Na� ion in NaCl. From Fig. 10.5 its
nearest neighbors are six Cl� ions, each one the distance r away. The potential energy

Cl–

Na+0.562 nm

Figure 10.5 The face-centered cubic structure of
NaCl. The coordination number (the number of
nearest neighbors about each ion) is 6.

Electron micrograph of sodium chloride crystals. The cubic struc-
ture of the crystals is often disrupted by dislocations.

0.411 nm

Cs+

Cl–

Figure 10.6 The body-centered cubic structure
of CsCl. The coordination number is 8.
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of the Na� ion due to these six Cl� ions is therefore

U1 � �

The next nearest neighbors are 12 Na� ions, each one the distance �2� r away since
the diagonal of a square r long on a side is �2� r. The potential energy of the Na� ion
due to the 12 Na� ions is

U2 � �

When the summation is continued over all the � and � ions in a crystal of infinite
size, the result is

Ucoulomb � � �6 � � . . .� � �1.748

or, in general,

Coulomb energy Ucoulomb � �� (10.1)

This result holds for the potential energy of a Cl� ion as well, of course.
The quantity � is called the Madelung constant of the crystal, and it has the same

value for all crystals of the same structure. Similar calculations for other crystal varieties
yield different Madelung constants. Crystals whose structures are like that of cesium
chloride (Fig. 10.6), for instance, have � � 1.763. Simple crystal structures have
Madelung constants that lie between 1.6 and 1.8.

The potential energy contribution of the repulsive forces due to the action of the
exclusion principle has the approximate form

Repulsive energy Urepulsive � (10.2)

The sign of Urepulsive is positive, which corresponds to a repulsion. The dependence
on r�n implies a short-range force that increases as the interionic distance r decreases.
The total potential energy of each ion due to its interactions with all the other ions is
therefore

Utotal � Ucoulomb � Urepulsive � � � (10.3)

How can we find the value of B? At the equilibrium separation r0 of the ions, U is
a minimum by definition, and so dU�dr � 0 when r � r0. Hence
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�
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B � r0
n�1 (10.4)

The total potential energy at the equilibrium separation is therefore given by

U0 � � �1 � � (10.5)

We must add this amount of energy per ion pair to separate an ionic crystal into
individual ions (Fig. 10.7). For the cohesive energy, which corresponds to separating
the crystal into atoms, we must take into account the energy involved in shifting an
electron from a Na atom to a Cl atom to give a Na�-Cl� ion pair.

The exponent n can be found from the observed compressibilities of ionic crystals.
The average result is n � 9, which means that the repulsive force varies sharply with r.
The ions are “hard” rather than “soft” and strongly resist being packed too tightly. At
the equilibrium ion spacing, the mutual repulsion due to the exclusion principle (as

1
�
n

�e2

�
4��0r0

Total
potential
energy

�e2

�
4��0n

r0

r

U0

U

Utotal

Urepulsive

Ucoulomb

Figure 10.7 How the ionic potential energies in an ionic crystal vary with ionic separation r. The
minimum value U0 of Utotal occurs at an equilibrium separation of r0.
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distinct from the electric repulsion between like ions) decreases the potential energy by
about 11 percent. A really precise knowledge of n is not essential; if n � 10 instead of
n � 9, U0 would change by only 1 percent.

Example 10.1

In an NaCl crystal, the equilibrium distance r0 between ions is 0.281 nm. Find the cohesive
energy in NaCl.

Solution

Since � � 1.748 and n � 9, the potential energy per ion pair is

U0 � � �1 � � � � �1 � �
� �1.27 	 10�18 J � �7.96 eV

Half this figure, �3.98 eV, represents the contribution per ion to the cohesive energy of the
crystal.

Now we need the electron transfer energy, which is the sum of the �5.14-eV ionization
energy of Na and the �3.61-eV electron affinity of Cl, or �1.53 eV. Each atom therefore con-
tributes �0.77 eV to the cohesive energy from this source. The total cohesive energy per atom
is thus

Ecohesive � (�3.98 � 0.77) eV � �3.21 eV

which is not far from the experimental value of �3.28 eV.

Most ionic solids are hard, owing to the strength of the bonds between their con-
stituent ions, and have high melting points. They are usually brittle as well, since the
slipping of atoms past one another that accounts for the ductility of metals is prevented
by the ordering of positive and negative ions imposed by the nature of the bonds. Polar
liquids such as water are able to dissolve many ionic crystals, but covalent liquids such
as gasoline generally cannot. Because the outer electrons of their ions are tightly bound,
ionic crystals are good electrical insulators and are transparent to visible light. How-
ever, such crystals strongly absorb infrared radiation at the frequencies at which the
ions vibrate about their equilibrium positions.

10.3 COVALENT CRYSTALS

Shared electrons lead to the strongest bonds

The cohesive forces in covalent crystals arise from the sharing of electrons by adjacent
atoms. Each atom that participates in a covalent bond contributes an electron to the
bond. Figure 10.8 shows the tetrahedral structure of a diamond crystal, each of whose
carbon atoms is linked by covalent bonds to four other carbon atoms.

Another crystalline form of carbon is graphite. Graphite consists of layers of car-
bon atoms in a hexagonal network in which each atom is joined to three others by
covalent bonds 120° apart, as in Fig. 10.9. One electron per atom participates in

1
�
9

(9 	 109 N 
 m2/C2)(1.748)(1.60 	 10�19 C)2

�����
2.81 	 10�10 m

1
�
n

�e2

�
4��0r0
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Uncut diamonds. The strength of the covalent bonds between
adjacent carbon atoms gives diamonds their hardness.

The Solid State 343

each bond. This leaves one outer electron in each carbon atom free to circulate
through the network, thereby accounting for graphite’s near-metallic luster and elec-
trical conductivity. Although each layer is quite strong, weak van der Waals forces
(Sec. 10.4) bond the layers together. As a result the layers can slide past each other
readily and are easily flaked apart, which is why graphite is so useful as a lubricant
and in pencils.

Under ordinary conditions graphite is more stable than diamond, so crystallizing
carbon normally produces only graphite. Because graphite is less dense than diamond
(2.25 g/cm3 versus 3.51 g/cm3), high pressures favor the formation of diamond. Natural
diamonds originated deep in the earth where pressures are enormous. To synthesize
diamonds, graphite is dissolved in molten cobalt or nickel and the mixture is
compressed at about 1600 K to about 60,000 bar. The resulting diamonds are less than
1 mm across and are widely used industrially for cutting and grinding tools.

0.154 nm

Figure 10.8 The tetrahedral structure of diamond.
The coordination number is 4.

Figure 10.9 Graphite consists of layers of car-
bon atoms in hexagonal arrays, with each
atom bonded to three others. The layers are
held together by weak van der Waals forces.
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Purely covalent crystals are relatively few in number. In addition to diamond, some
examples are silicon, germanium, and silicon carbide, all of which have the same tetra-
hedral structure as diamond; in SiC each atom is surrounded by four atoms of the
other kind. Cohesive energies are usually greater in covalent crystals than in ionic ones.
As a result covalent crystals are hard (diamond is the hardest substance known, and
SiC is the industrial abrasive carborundum), have high melting points, and are insol-
uble in all ordinary liquids. The optical and electrical properties of covalent solids are
discussed later.

A n unexpected form of carbon was accidentally discovered in 1985 at Rice University in
Texas. The commonest version consists of 60 carbon atoms arranged in a cage structure of

12 pentagons and 20 hexagons whose geometry is like that of a soccer ball (Fig. 10.10). This
extraordinary molecule was called “buckminsterfullerene” in honor of the American architect R.
Buckminster Fuller, whose geodesic domes it resembles; the name is usually shortened to
buckyball.

Buckyballs, which are stable and chemically unreactive, can be made in the laboratory from
graphite and are present in small quantities in ordinary soot and in a carbon-rich rock found in
Russia. The original C60 buckyball is not the only form of fullerene known: C28, C32, C50, C70, and
still larger ones have been made. Fullerene molecules are held together to form solids by van der
Waals bonds like those that hold together the layers of C atoms in graphite. Since their discovery,
the fullerenes and their offshoots have shown some remarkable properties. For instance, the com-
bination of C60 with potassium to form K3C60 yields a superconductor at low temperatures.

Carbon nanotubes, cousins of buckyballs, consist of tiny cylinders of carbon atoms arranged
in hexagons, like rolled-up chicken wire. Depending on whether their rows of hexagons are
straight or wind around in a helix, such nanotubes act either as electrical conductors or as
semiconductors and their use is being explored in such electronic applications as transistors and
flat-panel displays. If carbon nanotubes can be made long enough, they will form exceedingly
strong fibers, ten times stronger than steel while six times lighter, that are flexible as well. Fibers
like this would be ideal in composite materials to reinforce epoxy resins. Nanotubes also have
promise for storing the hydrogen needed for the fuel cells of future electric cars, which would
make heavy steel containers unnecessary.

344 Chapter Ten

Figure 10.10 In a buckyball, carbon atoms form a closed cagelike structure in which each atom is bonded
to three others. Shown here is the C60 buckyball that contains 60 carbon atoms. The lines represent
carbon-carbon bonds; their pattern of hexagons and pentagons closely resembles the pattern made by
the seams of a soccer ball. Other buckyballs have different numbers of carbon atoms.

Buckyballs and Nanotubes
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Figure 10.12 Polar molecules at-
tract polarizable molecules.
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Figure 10.11 (a) The water mol-
ecule is polar because the end
where the H atoms are attached
behaves as if positively charged
and the opposite end behaves as
if negatively charged. (b) Polar
molecules attract each other.

10.4 VAN DER WAALS BOND

Weak but everywhere

All atoms and molecules—even inert-gas atoms such as those of helium and argon—
exhibit weak, short-range attractions for one another due to van der Waals forces.
These forces were proposed over a century ago by the Dutch physicist Johannes van
der Waals to explain departures of real gases from the ideal-gas law. The explanation
of the actual mechanism of the forces, of course, is more recent.

Van der Waals forces are responsible for the condensation of gases into liquids
and the freezing of liquids into solids in the absence of ionic, covalent, or metallic
bonding mechanisms. Such familiar aspects of the behavior of matter in bulk as
friction, surface tension, viscosity, adhesion, cohesion, and so on, also arise from
these forces. As we shall find, the van der Waals attraction between two molecules
the distance r apart is proportional to r�7, so that it is significant only for molecules
very close together.

We begin by noting that many molecules, called polar molecules, have permanent
electric dipole moments. An example is the H2O molecule, in which the concentration
of electrons around the oxygen atom makes that end of the molecule more negative
than the end where the hydrogen atoms are. Such molecules tend to clump together
with ends of opposite sign adjacent, as in Fig. 10.11.

A polar molecule can also attract molecules which lack a permanent dipole moment.
The process is illustrated in Fig. 10.12. The electric field of the polar molecule causes
a separation of charge in the other molecule, with the induced moment the same in
direction as that of the polar molecule. The result is an attractive force. The effect is
the same as that involved in the attraction of an unmagnetized piece of iron by a
magnet.

Let us see what the characteristics of the attractive force between a polar and a non-
polar molecule depend on. The electric field E a distance r from a dipole of moment
p is given by

Dipole electric field E � � � r	 (10.6)

We recall from vector analysis that p � r � pr cos�, where � is the angle between p and
r. The field E induces in the other, normally nonpolar molecule an electric dipole mo-
ment p� proportional to E in magnitude and ideally in the same direction. Hence

p� � �E (10.7)

where � is a constant called the polarizability of the molecule. The energy of the
induced dipole in the electric field E is

U � �p� � E � ��E � E

� � � � cos2� � cos2� � cos2��
� � (1 � 3 cos2� ) (10.8)
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The potential energy of the two molecules that arises from their interaction is neg-
ative, signifying that the force between them is attractive, and is proportional to r�6.
The force itself is equal to �dU�dr and so is proportional to r�7, which means that it
drops rapidly with increasing separation. Doubling the distance between two molecules
reduces the attractive force between them to only 0.8 percent of its original value.

More remarkably, two nonpolar molecules can attract each other by the above mech-
anism. The electron distribution in a nonpolar molecule is symmetric on the average.
However, the electrons themselves are in constant motion and at any given instant one
part or another of the molecule has an excess of them. Instead of the fixed charge asym-
metry of a polar molecule, a nonpolar molecule has a constantly shifting asymmetry.
When two nonpolar molecules are close enough, their fluctuating charge distributions
tend to shift together with adjacent ends always having opposite sign (Fig. 10.13),
which leads to an attractive force.

Van der Waals forces occur not only between all molecules but also between all
atoms, including those of the rare gases which do not otherwise interact. Without such
forces these gases would not condense into liquids or solids. The values of p2 (or p

2,
the average of p2, which applies for molecules with no permanent dipole moment) and
the polarizability � are comparable for most molecules. This is part of the reason why
the densities and heats of vaporization of liquids, properties that depend on the strength
of intermolecular forces, have a rather narrow range.

Van der Waals forces are much weaker than those found in ionic and covalent bonds,
and as a result molecular crystals generally have low melting and boiling points and
little mechanical strength. Cohesive energies are low, only 0.08 eV
atom in solid argon
(melting point �189�C), 0.01 eV
molecule in solid hydrogen (mp �259�C), and
0.1 eV
molecule in solid methane, CH4 (mp �183�C).

Hydrogen Bonds

An especially strong type of van der Waals bond called a hydrogen bond occurs between
certain molecules containing hydrogen atoms. The electron distribution in such a
molecule is severely distorted by the affinity of a heavier atom for electrons. Each
hydrogen atom in effect donates most of its negative charge to the other atom, to leave
behind a poorly shielded proton. The result is a molecule with a localized positive
charge which can link up with the concentration of negative charge elsewhere in another
molecule of the same kind. The key factor here is the small effective size of the poorly
shielded proton, since electric forces vary as 1�r2. Hydrogen bonds are typically about
a tenth as strong as covalent bonds.

Water molecules are exceptionally prone to form hydrogen bonds because the elec-
trons around the O atom in H2O are not symmetrically distributed but are more
likely to be found in certain regions of high probability density. These regions proj-
ect outward as though toward the vertices of a tetrahedron, as shown in Fig. 10.14.
Hydrogen atoms are at two of these vertices, which accordingly exhibit localized pos-
itive charges, while the other two vertices exhibit somewhat more diffuse negative
charges.

Each H2O molecule can therefore form hydrogen bonds with four other H2O
molecules. In two of these bonds the central molecule provides the bridging protons,
and in the other two the attached molecules provide them. In the liquid state, the
hydrogen bonds between adjacent H2O molecules are continually being broken and
re-formed owing to thermal agitation, but even so at any instant the molecules are
combined in definite clusters. In the solid state, these clusters are large and stable and
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Figure 10.13 On the average,
nonpolar molecules have sym-
metrical charge distributions, but
at any moment the distributions
are asymmetric. The fluctuations
in the charge distributions of
nearby molecules are coordinated
as shown. This situation leads to
an attractive force between them
whose magnitude varies as 1�r7,
where r is their distance apart. 
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Figure 10.14 In an H2O molecule, the four pairs of valence elec-
trons around the oxygen atom (six electrons contributed by the
O atom and one each by the H atoms) preferentially occupy four
regions that form a tetrahedral pattern. Each H2O molecule can
form hydrogen bonds with four other H2O molecules.

constitute ice crystals (Fig. 10.15). With only four nearest neighbors around each
molecule, instead of as many as twelve in other solids, ice crystals have extremely open
structures, which is why ice has a relatively low density.

Hydrogen bonds occur widely in biological materials. The peptide bonds that join
amino acids to form proteins are hydrogen bonds, for example, as are the bonds that
hold together the two strands of the double helix of DNA. The bonds in DNA are
strong enough for it to be a reliable store of genetic information but weak enough to
permit its strands to be unzipped temporarily for the information to be transcribed
ultimately into proteins and also permanently for DNA replication.

H

O

H

Figure 10.15 The structure of an ice crystal, showing the open
hexagonal arrangement of the H2O molecules. There is less or-
der in liquid water, which allows the molecules to be closer to-
gether on the average than they are in ice. Thus the density of
ice is less than that of water, and ice floats.

The water molecules in a snowflake are held together by hydrogen
bonds.
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10.5   METALLIC BOND

A gas of free electrons is responsible for the characteristic properties
of a metal

The valence (outer) electrons of metal atoms are only weakly bound, as Fig. 7.10 shows.
When such atoms interact to become a solid, their valence electrons form a “gas” of
electrons that move with relative freedom through the resulting assembly of metal ions.
The electron gas acts to hold the ions together and also provides the high electric and
thermal conductivities, opacity, surface luster, and other characteristic properties of
metals. Because the free electrons do not belong to particular atom-atom bonds, different
metals can be alloyed together in more-or-less arbitrary proportions if their atoms are
similar in size. In contrast, the components of ionic solids and of covalent solids such
as SiC combine only in specific proportions.

As in any other solid, metal atoms cohere because their total energy is lower when
they are bound together than when they are separate atoms. This energy reduction
occurs in a metal crystal because each valence electron is on the average closer to one
ion or another than it would be if it belonged to an isolated atom. Hence the electron’s
potential energy is less in the crystal than in the atom.

Another factor is involved here: although the potential energy of the free electrons
is reduced in a metal crystal, their kinetic energy is increased. The valence energy levels
of the metal atoms are all slightly altered by their interactions to give as many differ-
ent energy levels as the total number of atoms present. The levels are so closely spaced
as to form an essentially continuous energy band. As discussed in Chap. 9, the free
electrons in this band have a Fermi-Dirac energy distribution in which, at 0 K, their
kinetic energies range from 0 to a maximum of �F, the Fermi energy. The Fermi energy
in copper, for example, is 9.04 eV, and the average KE of the free electrons in metallic
copper at 0 K is 4.22 eV.

H ydrogen is in group 1 of the periodic table, all the other elements of which are metals. Hy-
drogen is the exception, which is not surprising when it is in the gaseous state, but it does not

behave as a metal (for instance by being a good electrical conductor) even when it has been cooled
to the liquid or solid states. The reason is that both liquid and solid hydrogen at atmospheric pres-
sure consist of hydrogen molecules, H2, and these molecules hold their electrons so tightly that none
can break loose and move about freely as in the case of the atomic electrons of metals.

However, extremely high pressures—several million times atmospheric pressure—turn
hydrogen into a conducting liquid. What the pressure does is force the H2 molecules so close
together that their electron wave functions overlap, which allows electrons to migrate from one
molecule to the next. Pressures inside the giant planet Jupiter, which consists largely of hydro-
gen, are sufficient for Jupiter apparently to have a hydrogen core that is in the form of a liquid
metal. Electric currents in Jupiter’s core produce its magnetic field; this field is about 20 times
stronger than the earth’s field, which is due to currents in its molten iron core.

Conceivably someday solid metallic hydrogen could be created, perhaps combined with other
substances to help stabilize it, that would survive ordinary temperatures and pressures. The possi-
ble properties of such metallic hydrogen include superconductivity and light weight combined with
mechanical strength. The energy that would be released by allowing solid hydrogen to turn into a
gas could be used to propel spacecraft—it might give five times as much thrust per kilogram as cur-
rent rocket fuels. Because solid hydrogen would be much denser than ordinary hydrogen, in the
form of its isotopes deuterium and tritium it would make an extremely efficient fuel for fusion re-
actors. All in all, wonderful prospects, but how realistic they are remains to be seen.

Metallic Hydrogen
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Table 10.1 Types of Crystalline Solids. The cohesive energy is the work needed to remove an atom (or molecule) from the crystal and so
indicates the strength of the bonds holding it in place.

Type lonic Covalent Molecular Metallic

Lattice

Bond

Properties

Example

Negative ion

Positive ion

Metal ion

Electron gas

Shared electrons
Instantaneous charge
separation in molecule

Electric attraction

Hard; high melting points; may be
soluble in polar liquids such as
water; electrical insulators (but
conductors in solution) 

Sodium chloride, NaCl 
Ecohesive � 3.28 eV/atom

Shared electrons

Very hard; high melting points;
insoluble in nearly all liquids; semi-
conductors (except diamond, 
which is an insulator)

Diamond, C 
Ecohesive � 7.4 eV/atom

Van der Waals forces

Soft; low melting and boiling points; soluble
in covalent liquids; electrical insulators

Methane, CH4

Ecohesive � 0.1 eV/molecule

Electron gas

Ductile; metallic luster; high electrical and
thermal conductivity

Sodium, Na 
Ecohesive � 1.1 eV/atom
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Metallic bonding occurs when the reduction in electron potential energy outbal-
ances the increase in electron KE that accompanies it. The more valence electrons per
atom, the higher the average KE of the free electrons, but without a commensurate
drop in their potential energy. For this reason nearly all the metallic elements are found
in the first three groups of the periodic table.

Ohm’s Law

When the potential difference across the ends of a metal conductor is V, the resulting
current I is, within wide limits, directly proportional to V. This empirical observation,
called Ohm’s law, is usually expressed as

Ohm’s law I � (10.9)

Here R, the resistance of the conductor, depends on its dimensions, composition, and
temperature, but is independent of V. Ohm’s law follows from the free-electron model
of a metal.

We begin by assuming that the free electrons in a metal, like the molecules in a gas,
move in random directions and undergo frequent collisions. The collisions here, how-
ever, are not billiard-ball collisions with other electrons but represent the scattering of
electron waves by irregularities in the crystal structure, both defects such as impurity
atoms and also atoms temporarily out of place as they vibrate. As we will see later, the
atoms of a perfect crystal lattice do not scatter free electron waves except under cer-
tain specific circumstances.

If � is the mean free path between the collisions of a free electron, the average time
� between collisions is

Collision time � � (10.10)

The quantity �F is the electron velocity that corresponds to the Fermi energy �F, since
only electrons at or near the top of their energy distribution can be accelerated
(see Sec. 9.10). This average time is virtually independent of an applied electric field
E because �F is extremely high compared with the velocity change such a field produces.
In copper, for instance, �F � 7.04 eV and so

�F � � 
��� � 1.57 	 106 m/s

The superimposed drift velocity �d due to an applied electric field, however, is usually
less than 1 mm/s.

Example 10.2

Find the drift velocity �d of the free electrons in a copper wire whose cross-sectional area is
A � 1.0 mm2 when the wire carries a current of 1.0 A. Assume that each copper atom contributes
one electron to the electron gas.

(2)(7.04 eV)(1.60 	 10�19 J /eV)
����

9.11 	 10�31 kg

2�F
�
m

�
�
�F

V
�
R
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Solution

The wire contains n free electrons per unit volume. Each electron has the charge e and in the
time t it travels the distance �dt along the wire, as in Fig. 10.16. The number of free electrons
in the volume A�dt is nA�dt, and all of them pass through any cross section of the wire in the
time t. Thus the charge that passes through this cross section in t is Q � nAe�dt, and the
corresponding current is

I � � nAe�d

The drift velocity of the electrons is therefore

�d �

From Example 9.8 we know that, in copper, n � N�V � 8.5 	 1028 electrons /m3, and here
I � 1.0 A and A � 1.0 mm2 � 1.0 	 10�6 m2. Hence

�d � � 7.4 	 10�4 m/s

But if the free electrons have so small a drift velocity, why does an electric appliance go on as
soon as its switch is closed and not minutes or hours later? The answer is that applying a potential
difference across a circuit very rapidly creates an electric field in the circuit, and as a result all
the free electrons begin their drift almost simultaneously.

A potential difference V across the ends of a conductor of length L produces an elec-
tric field of magnitude E � V�L in the conductor. This field exerts a force of eE on a
free electron in the conductor, whose acceleration is

a � � (10.11)

When the electron undergoes a collision, it rebounds in an arbitrary direction and, on
the average, no longer has a component of velocity parallel to E. Imposing the field E
on the free electron gas in a metal superimposes a general drift on the faster but ran-
dom motions of the electron (Fig. 10.17). We can therefore ignore the electron’s mo-
tion at the Fermi velocity �F in calculating the drift velocity �d.

eE
�
m

F
�
m

1.0 A
������
(8.5 	 1028 m�3)(1.0 	 10�6 m2)(1.6 	 10�19 C)

I
�
nAe

Q
�
t

Area = A Volume = Avdt

vd

vdt

Figure 10.16 The number of free electrons in a wire that drift past a cross-section of the wire in the
time t is nV � nA�dt, where n is the number of free electrons/m3 in the wire.
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After each collision, the electron is accelerated for some time interval �t before the
next collision, and at the end of the interval has traveled �

1
2

�a �t2. When the electron
has made many collisions, its average displacement will be X� � �

1
2

�a ��t�2�, where ��t�2� is
the average of the squared time intervals. Because of the way �t varies, ��t�2� � 2�2.
Hence X� � a�2 and the drift velocity is X��� � a�, so that

Drift velocity �d � a� � � � � � � (10.12)

In Example 10.2 we found that the current I in a conductor of cross-sectional area
A in which the free electron density is n is given by

I � nAe�d (10.13)

Using the value of �d from Eq. (10.12) gives

I �

Since the electric field in the conductor is E � V�L,

I � � � � � V (10.14)

This formula becomes Ohm’s law if we set

R � � � (10.15)

The quantity in parentheses is known as the resistivity � of the metal and is a con-
stant for a given sample at a given temperature:

Resistivity � � (10.16)
m�F
�
ne2�

L
�
A

m�F
�
ne2�

Resistance of metal
conductor

A
�
L

ne2�
�
m�F

nAe2E�
�

m�F

eE�
�
m�F

�
�
�F

eE
�
m

E

Figure 10.17 An electric field produces a general drift superimposed on the random motion of a free
electron. The electron’s path between collisions is actually slightly curved because of the acceleration
due to the field.
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Example 10.3

The resistivity of copper at 20�C is � � 1.72 	 10�8 � 
 m. Estimate the mean free path �
between collisions of the free electrons in copper at 20�C.

Solution

In Example 9.8 we found that the free electron density in copper is n � 8.48 	 1028 m�3, and
earlier in this section we saw that the Fermi velocity there is �F � 1.57 	 106 m/s. Solving
Eq. (10.16) for � gives

� � �

� 3.83 	 10�8 m � 38.3 nm

The ions in solid copper are 0.26 nm apart, so a free electron travels past nearly 150 of them,
on the average, before being scattered.

The scattering of free electron waves in a metal that leads to its electric resistance
is caused both by structural defects and by ions out of place as they vibrate. Imper-
fections of the former kind do not depend on temperature but on the purity of the
metal and on its history. The resistivities of cold-worked metals (such as “hard drawn”
wires) are lowered by annealing because the number of defects is thereby decreased.
On the other hand, lattice vibrations increase in amplitude with increasing tempera-
ture, and their contribution to resistivity accordingly goes up with temperature. Thus
the resistivity of a metal is the sum � � �i � �t, where �i depends on the concentra-
tion of defects and �t depends on temperature.

Figure 10.18 shows how the resistivities of two sodium samples vary with temper-
ature. The top curve corresponds to the sample with the higher concentration of de-
fects, which accounts for its upward displacement. In very pure and almost defect-free
samples, �i is small, and at low temperatures, �t is also small. When both these
conditions hold in copper, for example, the mean free path may be 105 times the value
found in Example 10.3.

(9.11 	 10�31 kg)(1.57 	 106 m/s)
������
(8.48 	 1028 m�3)(1.60 	 10�19 C)2(1.72 	 10�8 � 
 m)

m�F
�
ne2�

5 × 10–3

4 × 10–3
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Figure 10.18 Resistivities of two sodium samples at low temperatures relative to their resistivities at
290 K. The upper curve corresponds to the sample with the higher concentration of impurities.
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T he free-electron model of metallic conduction was proposed by Paul Drude in 1900, only
three years after the discovery of the electron by J. J. Thomson, and was later elaborated

by Hendrik Lorentz. Fermi-Dirac statistics were unknown then, and Drude and Lorentz assumed
that the free electrons were in thermal equilibrium with a Maxwell-Boltzmann velocity distri-
bution. This meant that the �F in Eq. (10.16) was replaced by the rms electron velocity �rms. In
addition, Drude and Lorentz assumed that the free electrons collide with the metal ions, not
with the much farther apart lattice defects. The net result was resistivity values on the order of
10 times greater than the measured ones.

The theory was nevertheless considered to be on the right track, both because it gave the
correct form of Ohm’s law and also because it accounted for the Weidemann-Franz law. This
empirical law states that the ratio K�� (where � � 1��) between thermal and electric conduc-
tivities is the same for all metals and is a function only of temperature. If there is a temperature
difference �T between the sides of a slab of material �x thick whose cross-sectional area is A,
the rate �Q��t at which heat passes through the slab is given by

� �KA

where K is the thermal conductivity. According to the kinetic theory of a classical gas applied to
the electron gas in the Drude-Lorentz model,

K �

From Eq. (10.16) with �F replaced by � rms,

� � �

Hence the ratio between the thermal and electric resistivities of a metal is 

� � � � � �

According to Eq. (9.15), �2
rms � 3kT�m, which gives

� � 1.11 	 10�8 W 
 �/K2

This ratio does not contain the electron density n or the mean free path �, so K��T ought to
have the same constant value for all metals, which is the Weidemann-Franz law. To be sure, the
above value of K��T is incorrect because it is based on a Maxwell-Boltzmann distribution of
electron velocities. When Fermi-Dirac statistics are used, the result is

� � 2.45 	 10�8 W 
 �/K2

which agrees quite well with experimental findings.

10.6   BAND THEORY OF SOLIDS

The energy band structure of a solid determines whether it is a conductor,
an insulator, or a semiconductor

No property of solids varies as widely as their ability to conduct electric current. Cop-
per, a good conductor, has a resistivity of � � 1.7 	 10�8 � 
 m at room temperature,
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whereas for quartz, a good insulator, � � 7.5 � 1017 � � m, more than 25 powers of
ten greater. The existence of electron energy bands in solids makes it possible to un-
derstand this remarkable span.

There are two ways to consider how energy bands arise. The simplest is to look
at what happens to the energy levels of isolated atoms as they are brought closer and
closer together to form a solid. We will begin in this way and then examine the
significance of energy bands. Later we will consider the origin of energy bands in
terms of the restrictions the periodicity of a crystal lattice imposes on the motion of
electrons.

The atoms in every solid, not just in metals, are so near one another that their
valence electron wave functions overlap. In Sec. 8.3 we saw the result when two
H atoms are brought together. The original 1s wave functions can combine to form
symmetric or antisymmetric joint wave functions, as in Figs. 8.5 and 8.6, whose en-
ergies are different. The splitting of the 1s energy level in an isolated H atom into
two levels, marked EA

total and ES
total, is shown as a function of internuclear distance

in Fig. 8.7.
The greater the number of interacting atoms, the greater the number of levels pro-

duced by the mixing of their respective valence wave functions (Fig. 10.19). In a solid,
because the splitting is into as many levels as there are atoms present (nearly 1023 in
a cubic centimeter of copper, for instance), the levels are so close together that they
form an energy band that consists of a virtually continuous spread of permitted ener-
gies. The energy bands of a solid, the gaps between them, and the extent to which they
are filled by electrons not only govern the electrical behavior of the solid but also have
important bearing on others of its properties.

Conductors

Figure 10.20 shows the energy levels and bands in sodium. The 3s level is the first oc-
cupied level to broaden into a band. The lower 2p level does not begin to spread out
until a much smaller internuclear distance because the 2p wave functions are closer to
the nucleus than are the 3s wave functions. The average energy in the 3s band drops
at first, which signifies attractive forces between the atoms. The actual internuclear dis-
tance in solid sodium corresponds to the minimum average 3s electron energy.

Felix Bloch (1905–1983) was
born in Zurich, Switzerland, and
did his undergraduate work in
engineering there. He went to
Leipzig in Germany for his Ph.D.
in physics, remaining there until
the rise of Hitler. In 1934 Bloch
joined the faculty of Stanford
University where he stayed until
his retirement except for the war
years, which he spent at Los

Alamos helping develop the atomic bomb, and for 1954 to
1955, when he was the first director of CERN, the European
center for nuclear and elementary-particle research in Geneva.

In 1928 in his doctoral thesis Bloch showed how allowed
and forbidden bands arise by solving Schrödinger’s equation
for an electron moving in the periodic potential of a crystal.
This important step in the development of the theory of solids
supplemented earlier work by Walter Heitler and Fritz
London, who showed how energy levels broaden into bands
when atoms are brought together to form a solid. Later Bloch
studied the magnetic behavior of atomic nuclei in solids
and liquids, which led to the extremely sensitive nuclear
magnetic resonance method of analysis. Bloch received the
Nobel Prize in physics in 1952 together with Edward Purcell
of Harvard, who had also done important work in nuclear
magnetism.
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An electron in a solid can only have energies that fall within its energy bands. The
various outer energy bands in a solid may overlap, as in Fig. 10.21a, in which case its
valence electrons have available a continuous distribution of permitted energies. In
other solids the bands may not overlap, as in Fig. 10.21b, and the intervals between
them represent energies their electrons cannot have. Such intervals are called forbidden
bands or band gaps.

Figure 9.11 shows the distribution of electron energies in a band at various tem-
peratures. At 0 K all levels in the band are filled by electrons up to the Fermi energy
�F, and those above �F are empty. At temperatures above 0 K, electrons with energies
below �F can move into higher states, in which case �F represents a level with a 50 per-
cent likelihood of being occupied.

A sodium atom has a single 3s valence electron. Each s (l � 0) atomic level can
hold 2(2l � 1) � 2 electrons, so each s band formed by N atoms can hold 2N electrons.
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Figure 10.19 The 3s level is the highest occupied level in a ground-state sodium atom. (a) When two
sodium atoms come close together, their 3s levels, initially equal, become two separate levels because
of the overlap of the corresponding electron wave functions. (b) The number of new levels equals the
number of interacting atoms, here 5. (c) When the number of interacting atoms is very large, as in
solid sodium, the result is an energy band of very closely spaced levels.
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Thus the 3s band in solid sodium is only half filled by electrons (Fig. 10.22) and the
Fermi energy �F lies in the middle of the band.

When a potential difference is applied across a piece of solid sodium, 3s electrons
can pick up additional energy while remaining in their original band. The additional
energy is in the form of KE, and the drift of the electrons constitutes an electric current.
Sodium is therefore a good conductor, as are other solids with partly filled energy bands.

Magnesium atoms have filled 3s shells. If the 3s level simply spreads into a 3s band
in solid magnesium, as in Fig. 10.21b, there would be a forbidden band above it and
the 3s electrons could not easily pick up enough energy to jump the forbidden band
to the empty band above it. Nevertheless magnesium is a metal. What actually happens
is that the 3p and 3s bands overlap as magnesium atoms become close together to give
the structure shown in Fig. 10.21a. A p (l � 1) atomic level can hold 2(2l � 1) �
2(2 � 1) � 6 electrons, so a p band formed by N atoms can hold 6N electrons. Together

Figure 10.20 The energy levels of sodium atoms become bands as their internuclear distance decreases.
The observed internuclear distance in solid sodium is 0.367 nm.

Figure 10.22 The 3s energy band
in solid sodium is half filled with
electrons. The Fermi energy �F is
in the middle of the band.

Overlapping
energy bands

Forbidden
band

(b)

(a)

Figure 10.21 (a) The energy bands
in some solids may overlap to give
a continuous band. (b) A forbidden
band separate nonover-lapping en-
ergy bands in other solids.
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with the 2N electrons the 3s band can hold, the 3s � 3p band in magnesium can hold
8N electrons in all. With only 2N electrons in the band, it is only one-quarter filled
and so magnesium is a conductor.

Insulators

In a carbon atom the 2p shell contains only two electrons. Because a p shell can hold
six electrons, we might think that carbon is a conductor, just as sodium is. What ac-
tually happens is that, although the 2s and 2p bands that form when carbon atoms
come together overlap at first (as the 3s and 3p bands in sodium do), at smaller sep-
arations the combined band splits into two bands (Fig. 10.23), each able to contain
4N electrons. Because a carbon atom has two 2s and two 2p electrons, in diamond
there are 4N valence electrons that completely fill the lower (or valence) band, as in
Fig. 10.24. The empty conduction band above the valence band is separated from it
by a forbidden band 6 eV wide. Here the Fermi energy �F is at the top of the valence
band. At least 6 eV of additional energy must be provided to an electron in diamond
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4N levels

Conduction
band

8N levels

6N levels

2N levels

4N levels4N levels

Valence band

Carbon Silicon
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6 eV

1 eV

2p (carbon)

3p (silicon)

2s (carbon)

3s (silicon)

Internuclear distance

Figure 10.23 Origin of the energy bands of carbon and silicon. The 2s and 2p levels of carbon atoms
and the 3s and 3p levels of silicon atoms spread into bands that first overlap with decreasing atomic
separation and then split into two diverging bands. The lower band is occupied by valence electrons
and the upper conduction band is empty. The energy gap between the bands depends on the inter-
nuclear separation and is greater for carbon than for silicon.

Conduction band

Forbidden band

Valence band

6 eV

eF

Figure 10.24 Energy bands in diamond. The Fermi energy is at the top of the filled lower band. Be-
cause an electron in the valence band needs at least 6 eV to reach the empty conduction band, dia-
mond is an insulator.
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if it is to climb to the conduction band where it can move about freely. With kT �
0.025 eV at room temperature, valence electrons in diamond do not have enough ther-
mal energy to jump the 6 eV gap.

Nor can an energy increment of 6 eV be given to a valence electron in diamond by an
electric field, because such an electron undergoes frequent collisions with crystal imper-
fections during which it loses most of the energy it gains from the field. An electric field
of over 108 V�m is needed for an electron to gain 6 eV in a typical mean free path of 
5 � 10�8 m. This is billions of times stronger than the field needed for a current to flow
in a metal. Diamond is therefore a very poor conductor and is classed as an insulator.

Semiconductors

Silicon has a crystal structure like that of diamond and, as in diamond, a gap sepa-
rates the top of its filled valence band from an empty conduction band above it (see
Fig. 10.23). The forbidden band in silicon, however, is only about 1 eV wide. At low
temperatures silicon is little better than diamond as a conductor, but at room temper-
ature a small number of its valence electrons have enough thermal energy to jump the
forbidden band and enter the conduction band (Fig. 10.25). These electrons, though
few, are still enough to allow a small amount of current to flow when an electric field
is applied. Thus silicon has a resistivity intermediate between those of conductors and
those of insulators, and it and other solids with similar band structures are classed as
semiconductors.

Impurity Semiconductors

Small amounts of impurity can drastically change the conductivity of a semiconductor.
Suppose we incorporate a few arsenic atoms in a silicon crystal. Arsenic atoms have
five electrons in their outer shells, silicon atoms have four. (These shells have the con-
figurations 4s24p3 and 3s23p2 respectively.) When an arsenic atom replaces a silicon
atom in a silicon crystal, four of its electrons participate in covalent bonds with its
nearest neighbors. The fifth electron needs very little energy—only about 0.05 eV in
silicon, about 0.01 eV in germanium—to be detached and move about freely in the
crystal.

As shown in Fig. 10.26, arsenic as an impurity in silicon provides energy levels just
below the conduction band. Such levels are called donor levels, and the substance is
called an n-type semiconductor because electric current in it is carried by negative
charges (Fig. 10.27). The presence of donor levels below the conduction band raises
the Fermi energy above the middle of the forbidden band between the valence and
conduction bands.

Conduction band

Valence band

eF

Figure 10.25 The valence and conduction bands in a semiconductor are separated by a smaller gap
than in the case of an insulator. Here a small number of electrons near the top of the valence band
can acquire enough thermal energy to jump the gap and enter the conduction band. The Fermi en-
ergy is therefore in the middle of the gap.
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If we instead incorporate gallium atoms in a silicon crystal, a different effect occurs.
Gallium atoms have only three electrons in their outer shells, whose configuration is
4s24p, and their presence leaves vacancies called holes in the electron structure of the
crystal. An electron needs relatively little energy to enter a hole, but as it does so, it
leaves a new hole in its former location. When an electric field is applied across a
silicon crystal containing a trace of gallium, electrons move toward the anode by
successively filling holes (Fig. 10.28). The flow of current here is conveniently described
with reference to the holes, whose behavior is like that of positive charges since they
move toward the negative electrode. A substance of this kind is called a p-type
semiconductor.

In the energy-band diagram of Fig. 10.29 we see that gallium as an impurity in
silicon provides energy levels, called acceptor levels, just above the valence band. Any
electrons that occupy these levels leave behind them vacancies in the valence band that
permit electric current to flow. The Fermi energy in a p-type semiconductor lies below
the middle of the forbidden band.

Adding an impurity to a semiconductor is called doping. Phosphorus, antimony, and
bismuth as well as arsenic have atoms with five valence electrons and so can be used
as donor impurities in doping silicon and germanium to yield an n-type semiconductor.
Similarly, indium and thallium as well as gallium have atoms with three valence elec-
trons and so can be used as acceptor impurities. A minute amount of impurity can pro-
duce a dramatic change in the conductivity of a semiconductor. As an example, 1 part

T he optical properties of solids are closely related to their energy-band structures. Photons
of visible light have energies from about 1 to 3 eV. A free electron in a metal can readily

absorb such an amount of energy without leaving its valence band, and metals are accordingly
opaque. The characteristic luster of a metal is due to the reradiation of light absorbed by its free
electrons. If the metal surface is smooth, the reradiated light appears as a reflection of the original
incident light.

For a valence electron in an insulator to absorb a photon, on the other hand, the photon
energy must be over 3 eV if the electron is to jump across the forbidden band to the conduc-
tion band. Insulators therefore cannot absorb photons of visible light and are transparent. Of
course, most samples of insulating materials do not appear transparent, but this is due to the
scattering of light by irregularities in their structures. Insulators are opaque to ultraviolet light,
whose higher frequencies mean high enough photon energies to allow electrons to cross the
forbidden band.

Because the forbidden bands in semiconductors are about the same in width as the photon
energies of visible light, they are usually opaque to visible light. However, they are transparent
to infrared light whose lower frequencies mean photon energies too low to be absorbed. For this
reason infrared lenses can be made from the semiconductor germanium, whose appearance in
visible light is that of an opaque solid.

Optical Properties of Solids
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+ Extra
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Extra
electron

–

+

Extra
electron
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Figure 10.27 Current in an n-type
semiconductor is carried by sur-
plus electrons that do not fit into
the electron structure of a pure
crystal.

Conduction band

Valence band

Forbidden bandeF
Donor

impurity
levels

Figure 10.26 A trace of arsenic in a silicon crystal  provides donor levels in the normally forbidden
band, producing an n-type semiconductor.
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of a donor impurity per 109 parts of germanium increases its conductivity by a factor
of nearly 103. Silicon and germanium are not the only semiconducting materials with
practical applications: another important class of semiconductors consists of compounds
of trivalent and pentavalent elements, such as GaAs, GaP, InSb, and InP.

10.7   SEMICONDUCTOR DEVICES

The properties of the p-n junction are responsible for the microelectronics
industry

The operation of most semiconductor devices is based upon the nature of junctions
between p- and n-type materials. Such junctions can be made in several ways. A method
especially adapted to the production of integrated circuits involves diffusing impuri-
ties in vapor form into a semiconductor wafer in regions defined by masks. A series of
diffusion steps using donor and acceptor impurities is part of the procedure for
manufacturing circuits that can contain millions of resistors, capacitors, diodes, and
transistors on a chip a few millimeters across. The limiting factor in this method is the
wavelength of the light that is shined through masks to expose and thereby harden the

The IBM PowerPC 601 microprocessor chip is 10.95 mm square
and contains 2.8 million transistors. The functions of the various
parts of the chip are indicated.

–

+

–

+

Missing
electron

–

+

Missing
electron

Missing
electron

Figure 10.28 Current in a p-type
semiconductor is carried by the
motion of “holes,” which are sites
of missing electrons. Holes move
toward the negative electrode as a
succession of electrons move into
them.

Conduction band

Valence band

Forbidden bandeF

Acceptor
impurity

levels

Figure 10.29 A trace of gallium in a silicon crystal provides acceptor levels in the normally forbidden
band, producing a p-type semiconductor.
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photoresist compound on the wafer surface. (The unexposed photoresist is then washed
away to leave areas open to the next diffusion step.) The shortest wavelength that can
be used with conventional optical systems is 193 nm (which is in the ultraviolet)
because no suitable material transparent to shorter wavelengths is known that can be
made into lenses. Features as small as 130 nm might possibly be created with 193-nm
light, but the demands of the electronics industry for ever-more components per chip
will soon have to be met with some other technology. X-rays, electron and ion beams
are being studied for this purpose, with an immediate goal of chips with 200 million
circuit elements each 100 nm across.

Junction Diode

A characteristic property of a p-n junction is that electric current can pass through it
much more readily in one direction than in the other. In the diode shown in Fig. 10.30,
the left-hand end is a p-type region in which conduction involves the motion of holes,
and the right-hand end is an n-type region in which conduction occurs by means of
the motion of electrons. Three situations can occur:

1 No bias This is illustrated in Fig. 10.30a. Electron-hole pairs are created sponta-
neously by thermal excitation in the valence band of the p-region. Some of the elec-
trons have enough energy to jump the gap to the conduction band and then migrate
to the n region. There they lose energy in collisions. At the same time, some electrons
in the n region are sufficiently energetic to climb the energy hill and enter the p region,
where they recombine with holes there. At thermal equilibrium the two processes occur
at the same low rate, so there is no net current. The Fermi energy is the same in both
p and n regions; if it were not, electrons would flow to the region with vacant states
of lower energy until �F is the same.
2 Reverse bias As in Fig. 10.30b, an external voltage V is applied across the diode
with the p end negative and the n end positive. The energy difference across the junc-
tion is greater by Ve than in part a, which impedes the recombination current ir: the
holes in the p region migrate to the left and are filled at the negative terminal, while
the electrons in the n region migrate to the right and leave the diode at the positive
terminal. New electron-hole pairs are still being created as before by thermal excita-
tion, but because they are relatively few in number the resulting net current ig � ir
is very small even when the applied voltage V is high. (We note that the conven-
tional current I, which flows from � to �, is opposite in direction to the electron
current i.)
3 Forward bias As in Fig. 10.30c, the external voltage is applied with the p end of
the diode positive and the n end negative. The energy difference across the junction is
now less by Ve than in part a, which increases the recombination current ir since the
electrons have a smaller energy hill to climb. Under these circumstances new holes are
created continuously by the removal of electrons at the positive terminal while new
electrons are added at the negative terminal. The holes migrate to the right and the
electrons to the left under the influence of the applied potential. The holes and elec-
trons meet in the vicinity of the p-n junction and recombine there.

Thus current can flow readily in one direction through a p-n junction but hardly at
all in the other direction, which makes such a junction an ideal rectifier in an electric
circuit. The greater the applied voltage, the greater the current in the forward direc-
tion. Figure 10.31 shows how I varies with V for a p-n junction rectifier.
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Figure 10.30 Operation of a semi-
conductor diode.

(a) When there is no applied
voltage, the thermal electron
current to the right equals the
recombination electron cur-
rent to the left and there is no
net current. Both these cur-
rents are small. 

(b) When an external voltage is
applied so that the p end of
the diode is negative, the re-
combination electron current
is less than the thermal elec-
tron current. The result is a
very small net electron cur-
rent to the right.

(c) When an external voltage is
applied so that the p end of
the diode is positive, the re-
combination current can be
much larger than the thermal
electron current to give a large
net electron current to the left.
The conventional current is in
the opposite direction to the
electron current.
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Figure 10.31 Voltage-current characteristic of a p-n semiconductor diode.
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E nergy is needed to create an electron-hole pair, and this energy is released when an elec-
tron and a hole recombine. In silicon and germanium the recombination energy is absorbed

by the crystal as heat, but in certain other semiconductors, for instance gallium arsenide, a pho-
ton is emitted when recombination occurs. This is the basis of the light-emitting diode (LED).
Forward bias is used in an LED, so the electrons and holes both move toward the p-n junction,
as in Fig. 10.30c, where they recombine to create photons.

A fairly small current is used in an LED and the photons are produced by spontaneous
emission. When the current is high, spontaneous emission may not keep up with the rate of ar-
rival of electrons and holes in the depletion region, and the result is a substantial population
inversion there. This is the condition for laser action to occur, with spontaneously emitted pho-
tons causing avalanches of additional photons by stimulated emission. In a semiconductor laser
opposite ends of the p-n junction are made parallel and partly reflecting. The coherent light
produced by the stimulated emission is intensified as it moves back and forth in the thin depletion
region, and emerges through the ends (Fig. 10.32).

The process that occurs in an LED is reversed in a silicon solar cell. Here photons arriving
at or near the depletion region of a p-n junction after passing through a thin (�1 	m) outer
layer of silicon produce electron-hole pairs if sufficiently energetic. The electrons are raised to
the conduction band, leaving holes in the valence band. The potential difference across the
depletion region provides an electric field that pulls the electrons to the n region and the holes
to the p region. The newly freed electrons can then flow from the n region through an external

The Hubble Space Telescope being launched from the Space Shut-
tle Discovery. One of the two arrays of solar cells that power the
telescope has been deployed.

This light-emitting diode has a spherical glass lens mounted on it.
The diode is made of gallium arsenide doped with phosphorus and
produces monochromatic red light of wavelength 620 nm for use
with a fiber-optic telephone transmission line.

Photodiodes

bei48482_ch10.qxd  1/22/02  10:12 PM  Page 364



The Solid State 365

circuit to the p region where they recombine with the newly created holes. In this way the en-
ergy of incident photons can be converted to electric energy. Diodes of this kind are widely used
to detect photons in such devices as light meters in cameras as well as to produce electric energy
from solar radiation.

p region

n region

I

Figure 10.32 A semiconductor laser. Each dimension is less than a millimeter and its light output, as
in all lasers, is coherent. The junction between the p and n regions from which the light emerges is
only a few micrometers thick.

The only charge carriers shown in Fig. 10.30 were the electrons. Actually, of course,
what was said also applies to the holes, which act as positive charges and behave in
exactly the opposite way to add their current to the conventional current.

When a p material joins an n material, a depletion region occurs between them
instead of a sharp interface, as shown in the lower part of Fig. 10.30a. In this region
electrons from the donor levels of the n material fill the holes of the acceptor levels of
the p material, so that few charge carriers of either kind are present there. The width
of the depletion region depends on exactly how the diode is produced, and is typically
about 10�6 m.

Tunnel Diode

The p and n parts of a diode can be heavily doped to give the energy band structure
of Fig. 10.33a. The depletion region is very narrow, �10�8 m, and the bottom of the
n conduction band overlaps the top of the p valence band. The large concentration of
impurities causes the donor levels to merge into the bottom of the n conduction band,
which moves the Fermi energy there upward into the band. Similarly the acceptor
levels merge into the top of the p valence band, which lowers the Fermi energy below
the top of the band.

Because the depletion region is so narrow, only a few electron wavelengths across,
electrons can “tunnel” through the forbidden band there by the mechanism described
in Sec. 5.9. For this reason such a diode is called a tunnel diode. When no external
voltage is applied to the diode, electrons tunnel in both directions across the gap in
equal numbers and the Fermi energy is constant across the diode.

Figure 10.33b shows what happens when a small forward voltage is applied to
the diode. Now the filled lower part of the n conduction band is opposite the empty
upper part of the p valence band, and the tunneling is from n to p only. This gives
an electron current to the left, which corresponds to a conventional current to the
right.

When the external voltage is increased further, the two bands no longer overlap, as
in Fig. 10.33c. The tunnel current therefore ceases. From now on the diode behaves
exactly like the ordinary junction diode of Fig. 10.30. Figure 10.34 shows the voltage-
current characteristic curve of a tunnel diode.
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Figure 10.35 Voltage-current characteristic of a Zener diode.

Figure 10.34 Voltage-current
characteristic of a tunnel diode.
The points a, b, and c correspond
to parts  a, b, and c of Fig. 10.33.
The dashed line indicates the be-
havior of an ordinary junction
diode, as in Fig. 10.30.
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Figure 10.33 Operation of a tunnel diode. (a) No bias. Electrons tunnel both ways between the p
and n regions. (b) Small forward bias. Electrons tunnel from the n to the p region only. (c) Larger
forward bias. Now the valence band of the p region does not overlap the conduction band of the
n region and so no tunneling can occur. At higher voltages the diode behaves like the ordinary
diode of Fig. 10.30.

The importance of the tunnel diode lies in the rapidity with which a voltage change
between a and b or between b and c in Fig. 10.34 can alter the current. In ordinary
diodes and transistors, the response time depends on the diffusion speed of the charge
carriers, which is low. Hence such devices operate slowly. Tunnel diodes, on the other
hand, respond quickly to appropriate voltage changes and can be used in high-
frequency oscillators and as fast switches in computers.

Zener Diode

Although the reverse current in many semiconductor diodes remains virtually constant
even at high voltages, as in Fig. 10.31, in certain diodes the reverse current increases
abruptly when a particular voltage is reached, as in Fig. 10.35. Such diodes are called
Zener diodes and are widely used in voltage-regulation circuits.
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Two mechanisms contribute to the sharp rise in current. One, called avalanche mul-
tiplication, occurs when an electron near the junction is sufficiently accelerated by the
electric field to ionize atoms it collides with, thereby creating fresh electron-hole pairs.
The new electrons in their turn continue the process to produce a flood of charge
carriers in the diode.

The other mechanism, called Zener breakdown, involves the tunneling of valence-
band electrons on the p side of the junction to the conduction band on the n side even
though these electrons do not have enough energy to first enter the conduction band
on the p side. (Such tunneling is in the opposite direction to that occurring in a tunnel
diode.) Zener breakdown can occur in heavily doped diodes at voltages of 6 V or less.
In lightly doped diodes the necessary voltage is higher, and avalanche multiplication
is then the chief process involved.

Junction Transistor

A transistor is a semiconductor device that can amplify a weak signal into a strong
one when appropriately connected. Figure 10.36 shows an n-p-n junction transistor,
which consists of a thin p-type region called the base that is sandwiched between two
n-type regions called the emitter and the collector. (A p-n-p transistor behaves in a
similar manner, except that the current then is carried by holes rather than by elec-
trons.) The energy-band structure of an n-p-n transistor is given in Fig. 10.37.

The transistor is given a forward bias across the emitter-base junction and a reverse
bias across the base-collector junction. The emitter is more heavily doped than the
base, so nearly all the current across the emitter-base junction consists of electrons
moving from left to right. Because the base is very thin (1 	m or so) and the concen-
tration of holes there is low, most of the electrons entering the base diffuse through it
to the base-collector junction where the high positive potential attracts them into the
collector. Changes in the input-circuit current are thus mirrored by changes in the
output-circuit current, which is only a few percent smaller.

The ability of the transistor of Fig. 10.36 to produce amplification comes about because
the reverse bias across the base-collector junction permits a much higher voltage in the
output circuit than that in the input circuit. Since electric power � (current)(voltage),
the power of the output signal can greatly exceed the power of the input signal.

Field-Effect Transistor

Although its advent revolutionized electronics, the low input impedance of the
junction transistor is a handicap in certain applications. In addition, it is difficult

Input
signal

Emitter Collector
Base

– + – +

Output
load

n np

Figure 10.36 A simple junction-transistor amplifier.
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to incorporate large numbers of them in an integrated circuit and they consume rel-
atively large amounts of power. The field-effect transistor (FET) lacks these dis-
advantages and is widely used today although slower in operation than junction
transistors.

As in Fig. 10.38, an n-channel FET consists of a block of n-type material with con-
tacts at each end together with a strip of p-type material on one side that is called the
gate. When connected as shown, electrons move from the source terminal to the
drain terminal through the n-type channel. The p-n junction is given a reverse bias,
and as a result both the n and p materials near the junction are depleted of charge
carriers (see Fig. 10.30b). The higher the reverse potential on the gate, the larger the

(b)

eF

eF

V1eeF

V2e

(a)

Emitter CollectorBase
Conduction band

Forbidden band

Valence band

Lightly doped
n region

Heavily doped
n region

Lightly
doped p
region

eF

Figure 10.37 (a) Isolated n-p-n transistor. (b) Transistor connected as in Fig. 10.36. The forward bias
V1 between emitter and base is small; the reverse bias V2 between base and collector is large. Because
the base is very thin, electrons can pass through it from emitter to collector without recombining with
holes there. Once the electrons are in the collector, they undergo collisions in which they lose energy,
and afterward cannot return to the base because the potential hill V2e is too high.
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Figure 10.38 A field-effect transistor.
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Positive ions
U
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Figure 10.39 The potential  energy of an electron in a periodic array of positive ions.

depleted region in the channel and the fewer the electrons available to carry the cur-
rent. Thus the gate voltage controls the channel current. Very little current passes
through the gate circuit owing to the reverse bias, and the result is an extremely high
input impedance.

Even higher input impedances (up to 1015 
) together with greater ease of manu-
facture are characteristic of the metal-oxide-semiconductor FET (MOSFET), a FET in
which the semiconductor gate is replaced by a metal film separated from the channel
by an insulating layer of silicon dioxide. The metal film is thus capacitively coupled to
the channel, and its potential controls the drain current through the number of induced
charges in the channel. A MOSFET occupies only a few percent of the area needed for
a junction transistor.

10.8   ENERGY BANDS: ALTERNATIVE ANALYSIS

How the periodicity of a crystal lattice leads to allowed and
forbidden bands

A very different approach can be taken to the origin of energy bands from that de-
scribed in Sec. 10.6. There we saw that bringing together isolated atoms to form a solid
has the effect of broadening their energy levels into bands of allowed electron energies.
Alternatively we can start with the idea that an electron in a crystal moves in a region
of periodically varying potential (Fig. 10.39) rather than one of constant potential. As
a result diffraction effects occur that limit the electron to certain ranges of momenta
that correspond to allowed energy bands. In this way of thinking, the interactions
among the atoms influence the behavior of their valence electrons indirectly through
the crystal lattice these interactions bring about, rather than directly through the atomic
interactions themselves. An intuitive approach will be used here to bring out more
clearly the physics of the situation, instead of a formal treatment based on Schrödinger’s
equation.

The de Broglie wavelength of a free electron of momentum p is

Free electron � � (10.17)

Unbound low-energy electrons can travel freely through a crystal since their wave-
lengths are long relative to the lattice spacing a. More energetic electrons, such as those
with the Fermi energy in a metal, have wavelengths comparable with a, and such elec-
trons are diffracted in precisely the same way as x-rays (Sec. 2.6) or electrons in a beam

h
�
p
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(Sec. 3.5) directed at the crystal from the outside. [When � is near a, 2a, 3a, . . . in
length, Eq. (10.17) no longer holds, as discussed later.] An electron of wavelength �
undergoes Bragg reflection from one of the atomic planes in a crystal when it approaches
the plane at an angle 
, where from Eq. (2.13)

n� � 2a sin
 n � 1, 2, 3, . . . (10.18)

It is customary to treat the situation of electron waves in a crystal by replacing �
by the wave number k introduced in Sec. 3.3, where

Wave number k � � (10.19)

The wave number is equal to the number of radians per meter in the wave train it de-
scribes, and is proportional to the momentum p of the electron. Since the wave train
moves in the same direction as the particle, we can describe the wave train by means
of a vector k. Bragg’s formula in terms of k is

Bragg reflection k � n � 1, 2, 3, . . . (10.20)

Figure 10.40 shows Bragg reflection in a two-dimensional square lattice. Evidently
we can express the Bragg condition by saying that reflection from the vertical rows of
ions occurs when the component of k in the x direction, kx, is equal to n ��a. Simi-
larly, reflection from the horizontal rows occurs when ky � n ��a.

Let us consider first electrons whose wave numbers are sufficiently small for them
to avoid reflection. If k is less than ��a, the electron can move freely through the lattice
in any direction. When k � ��a, they are prevented from moving in the x or y direc-
tions by reflection. The more k exceeds ��a, the more limited the possible directions
of motion, until when k � ��a sin 45� � �2���a the electrons are reflected, even
when they move diagonally through the lattice.

n�
�
a sin
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�
�

2�
�
�

Positive ions

k

θ

θ

kx

k = nπ
a sin θ

kx = k sin θ
   =

nπ
a

a

a

Figure 10.40 Bragg reflection from the vertical rows of ions occurs when kx � n��a.
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Brillouin Zones

The region in k-space (here an imaginary plane whose rectangular coordinates are kx

and ky) that low-k electrons can occupy without being diffracted is called the first
Brillouin zone, shown in Fig. 10.41. The second Brillouin zone is also shown; it con-
tains electrons with k � ��a that do not fit into the first zone yet which have suffi-
ciently small wave numbers to avoid diffraction by the diagonal sets of atomic planes
in Fig. 10.40. The second zone contains electrons with k values from ��a to 2��a
for electrons moving in the �x and �y directions, with the possible range of k val-
ues narrowing as the diagonal directions are approached. Further Brillouin zones can
be constructed in the same manner. The extension of this analysis to actual three-
dimensional structures leads to Brillouin zones such as those shown in Fig. 10.42.

The significance of the Brillouin zones becomes apparent when we look at the en-
ergies of the electrons in each zone.

The energy of a free electron is related to its momentum p by

E � (10.21)

and hence to its wave number k by

E � (10.22)

In the case of an electron in a crystal for which k �� ��a, there is practically no
interaction with the lattice, and Eq. (10.22) is valid. Since the energy of such an electron

�2k2

�
2m

Energy and wave
number

p2

�
2m

Energy and
momentum

First Brillouin
zone

Second
Brillouin
zone

ky = + π
a

kx = + π
a

ky = – π
a

kx = – π
a

ky

kx

Figure 10.41 The first and second Brillouin zones of a two-dimensional square lattice.

Figure 10.42 First and second
Brillouin zones in a face-centered
crystal.
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depends on k2, the contour lines of constant energy in a two-dimensional k space are
simply circles of constant k, as in Fig. 10.43, for such k values.

With increasing k the constant-energy contour lines become progressively closer to-
gether and also more and more distorted. The reason for the first effect is merely that E
varies with k2. The reason for the second is almost equally straightforward. The closer
an electron is to the boundary of a Brillouin zone in k-space, the closer it is to being re-
flected by the actual crystal lattice. But in particle terms the reflection occurs by virtue
of the interaction of the electron with the periodic array of positive ions that occupy the
lattice points, and the stronger the interaction, the more the electron’s energy is affected.

Origin of Forbidden Bands

Figure 10.44 shows how E varies with k in the x direction. As k approaches ��a, E
increases more slowly than �2k2�2m, the free-particle figure. At k � ��a, E has two
values, the lower belonging to the first Brillouin zone and the higher to the second
zone. There is a definite gap between the possible energies in the first and second Bril-
louin zones which corresponds to a forbidden band. The same pattern continues as
successively higher Brillouin zones are reached.

The energy discontinuity at the boundary of a Brillouin zone follows from the
fact that the limiting values of k correspond to standing waves rather than traveling

16
15

14
13

12
11

ky

10

65433
2

1

0

Second
Brillouin zone

First
Brillouin zone

kx

Figure 10.43 Energy contours in electronvolts in the first and second Brillouin zones of a hypotheti-
cal square lattice.
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waves. For clarity we consider electrons moving in the x direction; extending the
argument to any other direction is straightforward. When k � ���a, as we have
seen, the waves are Bragg-reflected back and forth, and so the only solutions of
Schrödinger’s equation consist of standing waves whose wavelength is equal to the
periodicity of the lattice. There are two possibilities for these standing waves for 
n � 1, namely,

�1 � A sin (10.23)

�2 � A cos (10.24)

The probability densities ��1�2 and ��2�2 are plotted in Fig. 10.45. Evidently ��1�2

has its minima at the lattice points occupied by the positive ions, while ��2�2 has its

�x
�
a

�x
�
a

–4π
a

–3π
a

–2π
a

–π
a

0 π
a

2π
a

3π
a

4π
a

k

E

Allowed
energies

Forbidden
energies

E =  2k2

2m
h

Figure 10.44 Electron energy E versus wave number k in the kx direction. The dashed line shows how
E varies with k for a free electron, as given by Eq. (10.22).

(b)

x

|�2|2

x

(a)

|�1|2

Figure 10.45 Distributions of the probability densities ��1�2 and ��2�2.
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maxima at the lattice points. Since the charge density corresponding to an electron
wave function � is �e���2, the charge density in the case of �1 is concentrated between
the positive ions, while in the case of �2, it is concentrated at the positive ions. The
potential energy of an electron in a lattice of positive ions is greatest midway between
each pair of ions and least at the ions themselves, so the electron energies E1 and E2

associated with the standing waves �1 and �2 are different. No other solutions are
possible when k � ���a and accordingly no electron can have an energy between
E1 and E2.

Figure 10.46 shows the distribution of electron energies that corresponds to the
Brillouin zones pictured in Fig. 10.43. At low energies (in this hypothetical situation
for E � �2 eV) the curve is almost exactly the same as that of Fig. 9.11 based on the
free-electron theory. This is not surprising since at low energies k is small and the elec-
trons in a periodic lattice then do behave like free electrons.

With increasing energy, however, the number of available energy states goes be-
yond that of the free-electron theory owing to the distortion of the energy contours
by the lattice. Hence there are more different k values for each energy. Then, when
k � ���a, the energy contours reach the boundaries of the first zone and energies
higher than about 4 eV (in this particular model) are forbidden for electrons in the
kx and ky directions although permitted in other directions. As the energy goes far-
ther and farther beyond 4 eV, the available energy states become restricted more and
more to the corners of the zone, and n(E) falls. Finally, at approximately 6 �

1
2

� eV, there
are no more states and n(E) � 0. The lowest possible energy in the second zone is
somewhat less than 10 eV and another curve similar in shape to the first begins. Here
the gap between the possible energies in the two zones is about 3 eV, and so the
forbidden band is about 3 eV wide.

Forbidden
band

Second zone

n(E)

First zone

0 5 10 15
E, eV

Figure 10.46 The distributions of electron energies in the Brillouin zones of Fig. 10.43. The dashed
line is the distribution predicted by the free-electron theory.

Table 10.2 Effective Mass
Ratios m*�m at the Fermi
Surface in Some Metals

Metal m*�m

Lithium Li 1.2
Beryllium Be 1.6
Sodium Na 1.2
Aluminum Al 0.97
Cobalt Co 14
Nickel Ni 28
Copper Cu 1.01
Zinc Zn 0.85
Silver Ag 0.99
Platinum Pt 13

B ecause an electron in a crystal interacts with the crystal lattice, its response to an external
electric field is not the same as that of a free electron. Remarkably enough, the most important

results of the free-electron theory of metals discussed in Secs. 9.9 and 9.10 can be incorporated
in the more realistic band theory merely by replacing the electron mass m by an average effec-
tive mass m*. For example, Eq. (9.56) for the Fermi energy is equally valid in the band theory
when m* is used in place of m. Table 10.2 is a list of effective mass ratios m*�m for several
metals.

Effective Mass
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Although there must be an energy gap between successive Brillouin zones in any
given direction, the various gaps may overlap permitted energies in other directions
so that there is no forbidden band in the crystal as a whole. Figure 10.47 contains
graphs of E versus k for three directions (a) in a crystal that has a forbidden band and
(b) in a crystal whose allowed bands overlap sufficiently to avoid having a forbidden
band.

As we know, the electrical behavior of a solid depends on the degree of occupancy
of its energy bands as well as on its band structure. Figure 10.48a shows the first and
second Brillouin zones of a hypothetical two-dimensional insulator. The first zone is
filled with electrons, and the energy gap between this zone and the second is much
wider than kT. This corresponds to the situation shown in Fig. 10.24 where the insu-
lator is diamond. In Fig. 10.48b the zones are the same, but the first zone is only half
filled. This corresponds to the situation shown in Fig. 10.22, and the material is anal-
ogous to a metal such as sodium whose atoms have one valence electron each. In
Fig. 10.48c the energies in the second zone overlap those in the first zone, so the
valence electrons partly occupy both zones. This corresponds to the situation shown
in Fig. 10.47b, and the material is analogous to a metal such as magnesium which has
two valence electrons per atom.

(a)

Forbidden band

k

k1 k2 k3

E

k

(b)

E

k

No forbidden band

k1 k2 k3

Figure 10.47 E versus k curves for three directions in two crystals. In (a) there is a forbidden band,
in (b) the allowed energy bands overlap and there is no forbidden band.
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10.9   SUPERCONDUCTIVITY

No resistance at all, but only at very low temperatures (so far)

Electrical conductors, even the very best, resist to some extent the flow of charge
through them at ordinary temperatures. At very low temperatures, however, most
metals, many alloys, and some chemical compounds all allow current to pass freely
through them. This phenomenon is called superconductivity.

Superconductivity was discovered in 1911 by the Dutch physicist Heike
Kamerlingh Onnes. He found that, down to 4.15 K, the resistance of a mercury sam-
ple decreased with temperature as other metals do (see Fig. 10.18). At Tc � 4.15 K,
though, the resistance fell sharply to as close to zero as his instruments could measure
(Fig. 10.49). The critical temperature Tc for other superconducting elements varies
from less than 0.1 K to nearly 10 K. As we shall see later, it is significant that elements
which are ordinarily good conductors, such as copper and silver, do not become
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Figure 10.48 Electron energy contours and Fermi levels in three types of solid: (a) insulator; (b) mono-
valent metal; (c) divalent metal. Energies are in electronvolts.
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superconducting when cooled. The highest critical temperatures, as much as 134 K,
are found in certain ceramic materials.

Does a superconductor actually have zero resistance or just very little? To find out,
currents have been set up in superconducting wire loops and the resulting magnetic
fields monitored, sometimes for years. No decrease in such currents has ever been
found: superconductors do have no resistance at all.

Magnetic Effects

The presence of a magnetic field causes the critical temperature of type I super-
conductors to decrease in the manner shown in Fig. 10.50. If the magnetic field
exceeds a certain critical value Bc, which depends on the material and its tempera-
ture, its superconductivity disappears altogether. Such materials are superconduc-
tors only for values of T and B below their respective curves and are normal con-
ductors for values of T and B above these curves. The critical field Bc would be a
maximum at 0 K.

Table 10.3 gives critical temperatures and critical magnetic fields Bc(0) extrapolated
to 0 K for several type I superconductors. The critical fields are all quite low, less than
0.1 T, so type I superconductors cannot be used for the coils of strong electromagnets.

Superconductors are perfectly diamagnetic—no magnetic field can exist inside them
under any circumstances. If we put a sample of a superconductor in a magnetic field
weaker than the critical field and then reduce the temperature below Tc, the field is ex-
pelled from the interior of the sample (Fig. 10.51). What happens is that currents appear

4.0

Tc

4.1 4.2 4.3 4.4

Temperature, K

R
es

is
ta

n
ce

Figure 10.49 Resistance of a mercury sample at low temperature. Below the critical temperature of
Tc � 4.15 K mercury is a superconductor with zero electrical resistance.
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on the surface of the sample whose magnetic fields exactly cancel the original field inside
it. This Meissner effect would not occur in an ordinary conductor whose resistance we
can imagine reduced to zero; it is characteristic only of superconductivity, which is evi-
dently a unique state of matter in respects other than ability to conduct electric current.

Type I superconductors exist only in two states, normal and superconducting.
Type II superconductors, which were discovered several decades later and are usu-
ally alloys, have an intermediate state as well. Such materials have two critical mag-
netic fields, Bc1 and Bc2 (Fig. 10.52). For an applied magnetic field less than Bc1, a type
II superconductor behaves just like its type I counterpart when B � Bc: it is super-
conducting with no magnetic field in its interior. When B � Bc2, a type II supercon-
ductor exhibits normal behavior, again like a type I superconductor. However, in applied
fields between Bc1 and Bc2, a type II superconductor is in a mixed state in which it

0.10

Superconductor

Ordinary conductor

Bc(0)

Tc

0.08

0.06

0.04

0.02

0 4 6  8 10

Temperature, K

C
ri

ti
ca

l m
ag

n
et

ic
 f

ie
ld

 B
c,

 T

2

Figure 10.50 Variation of the critical magnetic field Bc with temperature for lead. Below the curve,
lead is a superconductor; above the curve, it is an ordinary conductor.

Table 10.3 Critical Temperatures and
Critical Magnetic Fields (at T � 0) of
Some Type I Superconductors

Superconductor Tc, K Bc(0), T

Al 1.18 0.0105
Hg 4.15 0.0411
In 3.41 0.0281
Pb 7.19 0.0803
Sn 3.72 0.0305
Zn 0.85 0.0054
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(a) T > Tc (b) T < Tc

B B

Figure 10.51 The Meissner effect. (a) An applied magnetic field can exist inside a superconductor at tem-
peratures above its critical temperature Tc. (b) When the superconductor is then cooled below Tc, sur-
face currents appear whose effect is to expel the magnetic field from the interior of the superconductor.
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Figure 10.52 Variation of the critical magnetic fields Bc1 and Bc2 with temperature for a type II su-
perconductor. For magnetic fields between Bc1 and Bc2 the material is in a mixed state in which it is
superconducting but a magnetic field can exist in its interior.

contains some magnetic flux but is superconducting. The stronger the external field,
the more flux penetrates the material, up to the higher critical field Bc2.

A type II superconductor behaves as though it consists of filaments of normal and
of superconducting matter mixed together. A magnetic field can exist in the normal
filaments, while the superconducting filaments are diamagnetic and resistanceless like
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type I superconductors. Because Bc2 can be quite high (Table 10.4), type II supercon-
ductors are used to make high-field (up to 20 T) magnets for particle accelerators, fusion
reactors, magnetic resonance imagery, and experimental maglev (magnetic levitation)
trains in which magnetic forces provide both propulsion and frictionless support.

D espite much effort, until 1986 no superconductor was known whose critical tempera-
ture was higher than 27 K. In that year Alex Muller and Georg Bednorz, working in

Switzerland, studied a class of ceramic materials that had never before been suspected of su-
perconducting behavior. They discovered an oxide of lanthanum, barium, and copper for which
Tc was 30 K, and soon afterward others extended their approach to produce superconductors
with critical temperatures of as high as 134 K (�139°C) for an oxide of mercury, barium,
calcium, and copper. (This material has an even higher critical temperature when under pres-
sure.) Although still extremely cold by everyday standards, such temperatures are above the
77-K boiling point of liquid nitrogen, which is cheap (cheaper than milk) and readily avail-
able, unlike the liquid helium needed for earlier superconductors.

The new superconductors are all type II and some have high Bc2 values. The ceramic crys-
tals consist of layers of copper oxide sandwiched between layers of the other metal oxides. The
superconduction occurs in the copper oxide, normally an insulator. Despite much study, the ex-
act mechanism of current flow remains unknown, but it is definitely not the same as in ordinary
superconductors.

A number of problems have prevented the wide use of the new superconductors thus far.
For instance, like other ceramic crystals they are brittle and difficult to make into wires, cannot
carry high currents, and tend to be unstable over long periods. However, methods have been
devised to overcome or sidestep these difficulties; one is to encase granules of superconduct-
ing material in silver tubes that are then drawn into thin filaments and finally bundled into ca-
bles or ribbons. For electric power transmission, the superconducting cables are placed in an
insulated pipe through which liquid nitrogen is circulated. The result is not necessarily cheaper
than a copper cable that can carry the same current but it is much smaller and lighter. This
makes superconducting pipes attractive in such applications as adding electric distribution ca-
pacity by replacing copper cables in places where cable ducts are already full, a common situ-
ation in cities.

A material that is superconducting at room temperature would revolutionize technology. In
addition, by reducing the waste of electrical energy (about 10 percent of the electrical energy
generated in the United States is lost as heat in transmission lines), the rate at which the world’s
resources are being depleted would be reduced. Since 1986 such a material no long seems
inconceivable.

High-Temperature Superconductors

Table 10.4 Critical Temperatures and
Upper Critical Magnetic Fields (at T �
0) of Some Type II Superconductors

Superconductor Tc, K Bc2(0), T

Nb3Sn 18.0 24.5
Nb3Ge 23.2 38
Nb3Al 18.7 32.4
Nb3(AlGe) 20.7 44
V3Ge 14.8 2.08
V3Si 16.9 2.35
PbMoS 14.4 6.0
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10.10   BOUND ELECTRON PAIRS

The key to superconductivity

The origin of superconductivity remained a mystery until the Bardeen-Cooper-Schrieffer
(BCS) theory of 1957. An earlier hint of the direction such a theory should take was
the discovery that the critical temperatures Tc of the isotopes of a superconducting
element decrease with increasing atomic mass. For instance, in mercury Tc is 4.161 K
in 199Hg but only 4.126 K in 204Hg. This isotope effect suggests that the current-
carrying electrons in a superconductor do not move independently of the ion lattice
(as we might think when we recall that the resistance of ordinary conductors arises
from the scattering of these electrons by lattice defects and vibrations) but instead are
somehow interacting with the lattice.

The nature of the interaction became clear when Leon Cooper showed how two
electrons in a superconductor could form a bound state despite their coulomb repul-
sion. What happens is that the lattice is slightly deformed as an electron moves through
it, with the positive ions in the electron’s path being displaced toward it. The defor-
mation produces a region of increased positive charge. Another electron moving through
this polarized region will be attracted by the greater concentration of positive charge
there. If the attraction is stronger than the repulsion between the electrons, the elec-
trons are effectively coupled together into a Cooper pair with the deformed lattice as
the intermediary.

The electron-lattice-electron interaction does not keep the electrons a fixed distance
apart. In fact, the theory shows that they must be moving in opposite directions, and
their correlations may persist over lengths as great as 10�6 m. The binding energy of

Magnetic levitation. A small permanent mag-
net is floating freely above a high-temperature
superconductor cooled with liquid nitrogen.
The magnetic field of the magnet induces
electric currents in the superconductor which
lead to a zero resultant field inside the super-
conductor. The magnetic field of these cur-
rent outside the superconductor repels the
magnet.
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a Cooper pair, called the energy gap Eg, is of the order of 10�3 eV, which is why
superconductivity is a low-temperature phenomenon. The energy gap can be measured
by directing microwave radiation of frequency � at a superconductor. When h� 	 Eg,
strong absorption occurs as the Cooper pairs break apart.

The BCS theory relates the energy gap of a superconductor at 0 K to its critical
temperature Tc by the formula

Energy gap at 0 K Eg (0) � 3.53kTc (10.25)

Equation (10.25) agrees fairly well with the observed values of Eg and Tc. At temper-
atures above 0 K, some Cooper pairs break up. The resulting individual electrons in-
teract with the remaining Cooper pairs and reduce the energy gap (Fig. 10.53). Finally,
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Figure 10.53 Variation of the superconducting energy gap with temperature. Here Eg(T) is the energy
gap at the temperature T and Eg(0) is the gap at T � 0; Tc is the critical temperature of the material.

John Bardeen (1908–1991) was
born in Madison, Wisconsin, and
studied electrical engineering at
the University of Wisconsin and
solid-state physics at Princeton
University. After working at several
universities and, during World
War II, at the Naval Ordnance Lab-
oratory, he went to Bell Telephone
Laboratories in 1945 where he
joined a semiconductor research
group led by William Shockley. In
1948 the group produced the first

transistor, for which Shockley, Bardeen, and their collaborator

Walter Brattain received a Nobel Prize in 1956. Bardeen later
said, “I knew the transistor was important, but I never foresaw
the revolution in electronics it would bring.”

In 1951 Bardeen left Bell Labs for the University of Illinois
where, together with Leon Cooper and J. Robert Schrieffer, he
developed the theory of superconductivity. Compared with his
earlier work on the transistor, “Superconductivity was more dif-
ficult to solve, and it required some radically new concepts.”
According to the theory, the motions of two electrons can be-
come correlated through their interactions with a crystal lattice,
which enables the pair to move with complete freedom through
the crystal. Bardeen received his second Nobel Prize in 1972
for this theory along with Cooper and Schrieffer; he was the
first person to receive two such prizes in the same field.
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at the critical temperature Tc, the energy gap disappears, there are no more Cooper
pairs, and the material is no longer superconducting.

The electrons in a Cooper pair have opposite spins, so the pair has a total spin of
zero. As a result, the electron pairs in a superconductor are bosons (unlike individual
electrons, which have spins of �

1
2

� and are fermions), and any number of them can exist
in the same quantum state at the same time. When there is no current in the super-
conductor, the linear momenta of the electrons in a Cooper pair are equal and opposite
for a total of zero. All the pairs are then in the same ground state and make up a giant
system the size of the superconductor. A single wave function represents this system,
whose total energy is less than that of a system of the same number of electrons with
a Fermi energy distribution.

A current in a superconductor involves the entire system of electron pairs acting as
a unit. Every pair now has a non-zero momentum. To alter such a current means that
the correlated states of motion of all the electron pairs, not just the states of motion of
some individual electrons as in an ordinary conductor, must be changed. Because such
a change requires a relatively large amount of energy, the current persists indefinitely

F igure 10.54 shows a superconducting ring of area A that carries a current. The amount of
magnetic flux � � BA passes through the ring as a result. According to Faraday’s law of

electromagnetic induction, any change in the flux will change the current in the ring so as to
oppose the change in flux. Because the ring has no resistance, the change in flux will be per-
fectly canceled out. The flux � therefore is permanently trapped.

Because the phase of the wave function of the Cooper pairs in the ring must be continuous
around the ring, it turns out that � is quantized. The only values that � can have are

Flux quantization � � n� � � n�0 n � 1, 2, 3, . . . (10.26)

The quantum of magnetic flux is

Flux quantum �0 � � 2.068 � 10�15 T � m2h
�
2e

h
�
2e

Flux Quantization

Area = A

B

Figure 10.54 The magnetic flux � � BA that passes through a superconducting ring can only have
the values � � n�0 where �0 is the flux quantum and n � 1, 2, 3, . . .
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if undisturbed, and the electron scattering that leads to resistance in an ordinary
conductor does not occur.

A material with large-amplitude lattice vibrations may be only a fair conductor at
ordinary temperatures because electron scattering takes place frequently. However, the
same ease of lattice deformation means more strongly bound Cooper pairs at low tem-
peratures, and hence the material is more likely to be a superconductor then. Good
conductors, such as copper and silver, have small lattice vibrations at ordinary tem-
peratures, which means their lattices are unable to mediate the formation of Cooper
pairs at low temperatures and so they do not become superconducting. Such metals
as mercury, tin, and lead have large lattice vibrations at ordinary temperatures and so
are poorer conductors than copper and silver, but they are superconductors at low
temperatures.

Josephson Junctions

As we learned in Chap. 5, the wave nature of a moving particle allows it to tunnel
through a barrier that, in classical physics, it could not penetrate. Thus a small but de-
tectable current of electrons can tunnel through a thin insulating layer between two
metals. In 1962 Brian Josephson, then a graduate student at Cambridge University,
predicted that Cooper pairs could tunnel through what is now called a Josephson
junction, a thin insulating layer between two superconductors. The wave functions of
the Cooper pairs on each side of the junction penetrate the insulating layer with
exponentially decreasing amplitudes, just as the wave functions of individual electrons
would. If the layer is thin enough, less than 2 nm in practice, the wave functions over-
lap sufficiently to become coupled together, and the Cooper pairs they describe can
then pass through the junction. Josephson shared the 1975 Nobel Prize in physics for
his work.

In the dc Josephson effect, the current through a Josephson junction that has no
voltage across it is given by

dc Josephson effect IJ � Imax sin � (10.27)

The small rectangle at the center of this photograph is a Josephson
junction 1.25 	m wide.
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Here � is the phase difference between the wave functions of the Cooper pairs on either
side of the junction. The value Imax of the maximum junction current depends on the
thickness of the insulating layer and is quite small, between 1 	A and 1 mA in a 
Nb-NbO-Nb junction, for example.

When a voltage V is applied across a Josephson junction, the phase difference � in-
creases with time at the rate

ac Josephson effect � � � (10.28)

As a result, IJ varies sinusoidally with time, which constitutes the ac Josephson effect.
The value of 2e�h is 483.5979 THz/volt. Because � is proportional to V and can be
measured accurately, for instance by finding the frequency of the em radiation emitted
by the junction, the ac Josephson effect enables very precise voltage determinations to
be made. In fact, the effect is the basis for the present definition of the volt: one volt
is the potential difference across a Josephson junction that produces oscillations at a
frequency of 483.5979 THz.

Josephson junctions are used in extremely sensitive magnetometers called
SQUIDs—superconducting quantum interference devices. SQUIDs vary in detail, but
all make use of the fact that the maximum current in a superconducting ring that con-
tains a Josephson junction varies periodically as the magnetic flux through the ring
changes. The periodicity is interpreted as an interference effect involving the wave func-
tions of the Cooper pairs. Magnetic field changes as small as 10�21 T can be detected
by SQUIDs, which among other applications permits sensing the weak magnetic fields
produced by biological currents such as those in the brain.

2Ve
�

h

d�
�
dt

compute the cohesive energy of KCl. (b) The observed cohesive
energy of KCl is 6.42 eV per ion pair. On the assumption that
the difference between this figure and that obtained in a is due
to the exclusion-principle repulsion, find the exponent n in the
formula Br�n for the potential energy arising from this source.

4. Repeat Exercise 3 for LiCl, in which the Madelung constant is
1.748, the ion spacing is 0.257 nm, and the observed cohesive en-
ergy is 6.8 eV per ion pair. The ionization energy of Li is 5.4 eV.

10.4 Van der Waals Bond

5. The Joule-Thomson effect refers to the drop in temperature a
gas undergoes when it passes slowly from a full container to an
empty one through a porous plug. Since the expansion is into a
rigid container, no mechanical work is done. Explain the Joule-
Thomson effect in terms of the van der Waals attraction
between molecules.

6. Van der Waals forces can hold inert gas atoms together to form
solids at low temperatures, but they cannot hold such atoms
together to form molecules in the gaseous state. Why not?

10.2 Ionic Crystals

1. The ion spacings and melting points of the sodium halides are
as follows:

NaF NaCl NaBr Nal

Ion spacing, nm 0.23 0.28 0.29 0.32
Melting point, °C 988 801 740 660

Explain the regular variation in these quantities with halogen
atomic number.

2. Show that the first five terms in the series for the Madelung
constant of NaCl are

� � 6 � � � � � . . .

3. (a) The ionization energy of potassium is 4.34 eV and the elec-
tron affinity of chlorine is 3.61 eV. The Madelung constant for
the KCl structure is 1.748 and the distance between ions of
opposite sign is 0.314 nm. On the basis of these data only,

24
�
�5�

6
�
2

8
�
�3�

12
�
�2�

E X E R C I S E S

I pass with relief from the tossing sea of Cause and Theory to the firm ground of Result and Fact. —Winston Churchill
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7. What is the effect on the cohesive energy of ionic and cova-
lent crystals of (a) van der Waals forces and (b) zero-point
oscillations of the ions and atoms about their equilibrium
positions?

10.5 Metallic Bond

8. Lithium atoms, like hydrogen atoms, have only a single electron
in their outer shells, yet lithium atoms do not join together to
form Li2 molecules the way hydrogen atoms form H2 molecules.
Instead, lithium is a metal with each atom part of a crystal
lattice. Why?

9. Does the “gas” of freely moving electrons in a metal include all
the electrons present? If not, which electrons are members of
the “gas”?

10. Gold has an atomic mass of 197 u, a density of 19.3 �

103 kg/m3, a Fermi energy of 5.54 eV, and a resistivity of
2.04 � 10�8 
 � m. Estimate the mean free path in atom
spacings between collisions of the free electrons in gold under
the assumption that each gold atom contributes one electron to
the electron gas.

11. Silver has an atomic mass of 108 u, a density of 10.5 �

103 kg/m3, and a Fermi energy of 5.51 eV. On the assumptions
that each silver atom contributes one electron to the electron
gas and that the mean free path of the electrons is 200 atom
spacings, estimate the resistivity of silver. (The actual resistivity
of silver at 20�C is 1.6 � 10�8 
 � m.)

10.6 Band Theory of Solids

12. What is the basic physical principle responsible for the pres-
ence of energy bands rather than specific energy levels in a
solid?

13. How are the band structures of insulators and semiconductors
similar? How are they different?

14. What are the two combinations of band structure and occu-
pancy by electrons that can cause a solid to be a metal?

15. (a) Why are some solids transparent to visible light and others
opaque? (b) The forbidden band is 1.1 eV in silicon and 6 eV in
diamond. To what wavelengths of light are these substances
transparent?

16. The forbidden band is 0.7 eV in germanium and 1.1 eV in
silicon. How does the conductivity of germanium compare with
that of silicon at (a) very low temperatures and (b) room
temperature?

17. (a) When germanium is doped with aluminum, is the result an
n-type or a p-type semiconductor? (b) Why?

10.8 Energy Bands: Alternative Analysis

18. Compare the de Broglie wavelength of an electron in copper
with the 7.04-eV Fermi energy with the 0.256-nm spacing of
the copper atoms.

19. Draw the third Brillouin zone of the two-dimensional square lat-
tice whose first two Brillouin zones are shown in Fig. 10.41.

20. Find the ratio between the kinetic energies of an electron in a
two-dimensional square lattice which has kx � ky � ��a and an
electron which has kx � ��a, ky � 0.

21. Phosphorus is present in a germanium sample. Assume that one
of its five valence electrons revolves in a Bohr orbit around each
P� ion in the germanium lattice. (a) If the effective mass of the
electron is 0.17 me and the dielectric constant of germanium is
16, find the radius of the first Bohr orbit of the electron.
(b) The energy gap between the valence and conduction bands
in germanium is 0.65 eV. How does the ionization energy of the
above electron compare with this energy and with kT at room
temperature?

22. Repeat Exercise 21 for a silicon sample that contains arsenic.
The effective mass of an electron in silicon is about 0.31 me, the
dielectric constant of silicon is 12, and the energy gap in silicon
is 1.1 eV.

23. The effective mass m* of a current carrier in a semiconductor
can be directly determined by means of a cyclotron resonance
experiment in which the carriers (whether electrons or holes)
move in helical orbits about the direction of an externally
applied magnetic field B. An alternating electric field is applied
perpendicular to B, and resonant absorption of energy from this
field occurs when its frequency � is equal to the frequency of
revolution �c of the carrier. (a) Derive an equation for �c in terms
of m*, e, and B. (b) In a certain experiment, B � 0.1 T and
maximum absorption is found to occur at � � 1.4 � 1010 Hz.
Find m*. (c) Find the maximum orbital radius of a charge
carrier in this experiment whose speed is 3 � 104 m/s.

10.9 Superconductivity

10.10 Bound Electron Pairs

24. The actual energy gap at 0 K in lead is 2.73 � 10�3 eV.
(a) What is the prediction of the BCS theory for this energy
gap? (b) Radiation of what minimum frequency could break
apart Cooper pairs in lead at 0 K? In what part of the em spec-
trum is such radiation?

25. A voltage of 5.0 	V is applied across a Josephson junction.
What is the frequency of the radiation emitted by the junction?

26. A SQUID magnetometer that uses a superconducting ring
2.0 mm in diameter indicates a change in the magnetic flux
through it of 5 flux quanta. What is the corresponding magnetic
field change?
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CHAPTER 11

Nuclear Structure

Nuclear magnetic resonance is the basis of a high-resolution method of imaging body tissues. The
screen shows a computer-constructed cross section of the head of the person lying inside the powerful
magnet at the rear.

11.1 NUCLEAR COMPOSITION
Atomic nuclei of the same element have the
same numbers of protons but can have different
numbers of neutrons

11.2 SOME NUCLEAR PROPERTIES
Small in size, a nucleus may have angular
momentum and a magnetic moment

11.3 STABLE NUCLEI
Why some combinations of neutrons and protons
are more stable than others

11.4 BINDING ENERGY
The missing energy that keeps a nucleus together

11.5 LIQUID-DROP MODEL
A simple explanation for the binding-energy curve

11.6 SHELL MODEL
Magic numbers in the nucleus

11.7 MESON THEORY OF NUCLEAR FORCES
Particle exchange can produce either attraction
or repulsion
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T
hus far we have been able to regard the nucleus of an atom merely as a tiny,
positively charged object whose only roles are to provide the atom with most
of its mass and to hold its electrons in thrall. The chief properties (except mass)

of atoms, molecules, solids, and liquids can all be traced to the behavior of atomic
electrons, not to the behavior of nuclei. Nevertheless, the nucleus turns out to be of
paramount importance in the grand scheme of things. To begin with, the very exis-
tence of the various elements is due to the ability of nuclei to possess multiple electric
charges. Furthermore, the energy involved in almost all natural processes can be traced
to nuclear reactions and transformations. And the liberation of nuclear energy in re-
actors and weapons has affected all our lives in one way or another.

11.1   NUCLEAR COMPOSITION

Atomic nuclei of the same element have the same numbers of protons 
but can have different numbers of neutrons

The electron structure of the atom was understood before even the composition of its
nucleus was known. The reason is that the forces that hold the nucleus together are
vastly stronger than the electric forces that hold the electrons to the nucleus, and it is
correspondingly harder to break apart a nucleus to find out what is inside. Changes
in the electron structure of an atom, such as those that occur when a photon is emit-
ted or absorbed or when a chemical bond is formed or broken, involve energies of
only a few electronvolts. Changes in nuclear structure, on the other hand, involve
energies in the MeV range, a million times greater.

An ordinary hydrogen atom has as its nucleus a single proton, whose charge is �e
and whose mass is 1836 times that of the electron. All other elements have nuclei that
contain neutrons as well as protons. As its name suggests, the neutron is uncharged;
its mass is slightly greater than that of the proton. Neutrons and protons are jointly
called nucleons.

The atomic number of an element is the number of protons in each of its atomic
nuclei, which is the same as the number of electrons in a neutral atom of the element.
Thus the atomic number of hydrogen is 1, of helium 2, of lithium 3, and of uranium
92. All nuclei of a given element do not necessarily have equal numbers of neutrons.
For instance, although over 99.9 percent of hydrogen nuclei are just single protons, a
few also contain a neutron, and a very few two neutrons, along with the proton
(Fig. 11.1). The varieties of an element that differ in the numbers of neutrons their
nuclei contain are called its isotopes.

The hydrogen isotope deuterium is stable, but tritium is radioactive and eventu-
ally changes into an isotope of helium. The flux of cosmic rays from space continually
replenishes the earth’s tritium by nuclear reactions in the atmosphere. Only about 2 kg
of tritium of natural origin is present at any time on the earth, nearly all of it in the
oceans. Heavy water is water in which deuterium atoms instead of ordinary hydrogen
atoms are combined with oxygen atoms.

The conventional symbols for nuclear species, or nuclides, follow the pattern A
ZX,

where X � chemical symbol of the element
Z � atomic number of the element

� number of protons in the nucleus
A � mass number of the nuclide

� number of nucleons in the nucleus

Proton

Neutron

Electron

Ordinary
hydrogen Deuterium Tritium

Figure 11.1 The isotopes of
hydrogen.
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James Chadwick (1891–1974) was
educated at the University of Man-
chester in England and remained there
to work on gamma-ray emission un-
der Rutherford. In Germany to inves-
tigate beta decay when World War I
broke out, Chadwick was interned as
an enemy alien. After the war he joined
Rutherford at Cambridge, where he
used alpha-particle scattering to show
that the atomic number of an element

equals its nuclear charge. Rutherford and Chadwick suggested
an uncharged particle as a nuclear constituent but could not
find a way to detect it experimentally.

Then, in 1930, the German physicists W. Bothe and H. Becker
found that an uncharged radiation able to penetrate lead is emit-
ted by beryllium bombarded with alpha particles from polonium
(Fig. 11.2). Irene Curie and her husband Frederic Joliot, working
in France in 1932, discovered that this mysterious radiation
could knock protons with energies up to 5.7 MeV out of a
paraffin slab. They assumed the radiation consisted of gamma
rays (photons more energetic than x-rays) and, on the basis that
the protons were knocked out of the hydrogen-rich paraffin in
Compton collisions, calculated that the gamma-ray photon
energy had to be at least 55 MeV. But this was far too much
energy to be produced by the alpha particles interacting with
beryllium nuclei.

Chadwick proposed instead that neutral particles with about
the same mass as the proton are responsible, in which case their
energy need be only 5.7 MeV since a particle colliding head on
with another particle of the same mass can transfer all of its KE
to the latter. Other experiments confirmed his hypothesis, and
he received the Nobel Prize in 1935 for his part in the discov-
ery of the neutron. (Chadwick did not immediately regard the
neutron as an elementary particle but instead as “a small di-
pole, or perhaps better as a proton embedded in an electron.”
The idea that the neutron is actually an elementary particle was
first put forward by the Russian physicist Dmitri Iwanenko.)
During World War II Chadwick headed the British group that
participated in developing the atomic bomb.

Figure 11.2 (a) Alpha particles incident on a beryllium foil cause
the emission of a very penetrating radiation. (b) Protons of
up to 5.7 MeV are ejected when the radiation strikes a paraffin
slab. (c) If the radiation consists of gamma rays, their energies
must be at least 55 MeV. (d) If the radiation consists of neutral
particles of approximately proton mass, their energies need not
exceed 5.7 MeV.

(a)

α
α
α

5.7-MeV
protons

Beryllium Paraffin

55 MeV

Gamma rays

5.7 MeV

Neutrons

α
α
α

Lead

(b)

(c)

(d)

Beryllium

Hence ordinary hydrogen is 1
1H, deuterium is 2

1H, and the two isotopes of chlorine
(Z � 17), whose nuclei contain 18 and 20 neutrons respectively, are 35

17Cl and 37
17Cl.

Because every element has a characteristic atomic number, Z is often omitted from the
symbol for a nuclide: 35Cl (read as “chlorine 35”) instead of 35

17Cl.

Atomic Masses

Atomic masses refer to the masses of neutral atoms, not of bare nuclei. Thus an atomic
mass always includes the masses of its Z electrons. Atomic masses are expressed in
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Table 11.1 Some Masses in Various Units

Particle Mass (kg) Mass (u) Mass (MeV/c2)

Proton 1.6726 � 10�27 1.007276 938.28
Neutron 1.6750 � 10�27 1.008665 939.57
Electron 9.1095 � 10�31 5.486 � 10�4 0.511
1
1H atom 1.6736 � 10�27 1.007825 938.79

mass units (u), which are so defined that the mass of a 12
6C atom, the most abundant

isotope of carbon, is exactly 12 u. The value of a mass unit is

Atomic mass unit 1 u � 1.66054 � 10�27 kg

The energy equivalent of a mass unit is 931.49 MeV. Table 11.1 gives the masses of
the proton, neutron, electron, and 11H atom in various units, including the MeV/c2. The
advantage of using this unit is that the energy equivalent of a mass of, say, 10 MeV/c2

is simply E � mc2 � 10 MeV.
Table 11.2 gives the compositions of the isotopes of hydrogen and chlorine. Chlo-

rine in nature consists of about three-quarters of the 35Cl isotope and one-quarter of
the 37Cl isotope, which yields the average atomic mass of 35.46 u that chemists use
(see Table 7.2). The chemical properties of an element are determined by the number
and arrangement of the electrons in its atoms. Since the isotopes of an element have
almost identical electron structures in their atoms, it is not surprising that the two iso-
topes of chlorine, for instance, have the same yellow color, the same suffocating odor,
the same efficiency as poisons and bleaching agents, and the same ability to combine
with metals. Because boiling and freezing points depend somewhat on atomic mass,
they are slightly different for the two isotopes, as are their densities. Other physical

Mass spectrometer being used to study the composition of semiconductor crystals.
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properties of isotopes may very more dramatically with mass number: tritium is radioac-
tive, for instance, whereas ordinary hydrogen and deuterium are not.

N uclide masses are always very close to being integral multiples of the mass of the hydro-
gen atom, as we can see in Table 11.2. Before the discovery of the neutron, it was tempt-

ing to regard all nuclei as consisting of protons together with enough electrons to neutralize the
positive charge of some of them. This hypothesis is buttressed by the fact that certain radioac-
tive nuclei spontaneously emit electrons, a phenomenon called beta decay. However, there are
some strong arguments against the idea of nuclear electrons.

1 Nuclear size. In Example 3.7 we saw that an electron confined to a box of nuclear dimensions
must have an energy of more than 20 MeV, whereas electrons emitted during beta decay have
energies of only 2 or 3 MeV, an order of magnitude smaller. A similar calculation for protons
gives a minimum energy of around 0.2 MeV, which is entirely plausible.
2 Nuclear spin. Protons and electrons are fermions with spins (that is, spin quantum numbers)
of �

1
2

�. Thus nuclei with an even number of protons plus electrons should have 0 or integral spin,
those with an odd number of protons plus electrons should have half-integral spins. This pre-
diction is not obeyed. For instance, if a deuterium nucleus, 2

1H, consisted of two protons and
an electron, its nuclear spin should be �

1
2

� or �
3
2

�, but in fact is observed to be 1.
3 Magnetic moment. The proton has a magnetic moment only about 0.15 percent that of the
electron. If electrons are part of a nucleus, its magnetic moment ought to be of the order of mag-
nitude of that of the electron. However, observed nuclear magnetic moments are comparable
with that of the proton, not with that of the electron.
4 Electron-nuclear interaction. The forces that hold the constituents of a nucleus together lead
to typical binding energies of around 8 MeV per particle. If some electrons can bind this strongly
to protons in the nucleus of an atom, how can the other electrons in the atom remain outside
the nucleus? Furthermore, when fast electrons are scattered by nuclei, they behave as though
acted upon solely by electric forces, whereas the scattering of fast protons shows that a differ-
ent force also acts on them.

Despite these difficulties, the hypothesis of nuclear electrons was not universally abandoned
untill the discovery of the neutron in 1932. When he wrote a book on nuclear physics pub-
lished the year before, George Gamow felt so uneasy about the accepted proton-electron model
of the nucleus that he marked each section dealing with nuclear electrons with a skull and cross-
bones. When the publisher objected, Gamow replied that “It has never been my intention to
scare the poor readers more than the text itself will undoubtedly do,” and replaced the skull and
crossbones with a less dramatic symbol.

Nuclear Electrons

Table 11.2 The Isotopes of Hydrogen and Chlorine Found in Nature

Properties of
Element Properties of Isotope

Average Protons Neutrons Atomic Relative
Atomic Atomic in in Mass Mass, Abundance,

Element Number Mass, u Nucleus Nucleus Number u Percent

Hydrogen 1 1.008 1 0 1 1.008 99.985
1 1 2 2.014 0.015
1 2 3 3.016 Very small

Chlorine 17 35.46 17 18 35 34.97 75.53
17 20 37 36.97 24.47
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11.2   SOME NUCLEAR PROPERTIES

Small in size, a nucleus may have angular momentum and a magnetic
moment

The Rutherford scattering experiment provided the first estimates of nuclear sizes.
In that experiment, as we saw in Chap. 4, an incident alpha particle is deflected by
a target nucleus in a manner consistent with Coulomb’s law provided the distance
between them exceeds about 10�14 m. For smaller separations Coulomb’s law is
not obeyed because the nucleus no longer appears as a point charge to the alpha
particle.

Since Rutherford’s time a variety of experiments have been performed to determine
nuclear dimensions, with particle scattering still a favored technique. Fast electrons and
neutrons are ideal for this purpose, since an electron interacts with a nucleus only
through electric forces while a neutron interacts only through specifically nuclear forces.
Thus electron scattering provides information on the distribution of charge in a nucleus
and neutron scattering provides information on the distribution of nuclear matter. In
both cases the de Broglie wavelength of the particle must be smaller than the radius
of the nucleus under study. What is found is that the volume of a nucleus is directly
proportional to the number of nucleons it contains, which is its mass number A. This
suggests that the density of nucleons is very nearly the same in the interiors of all
nuclei.

If a nuclear radius is R, the corresponding volume is �
4
3

��R3 and so R3 is proportional
to A. This relationship is usually expressed in inverse form as

Nuclear radii R � R0A1�3 (11.1)

The value of R0 is

R0 � 1.2 � 10�15 m � 1.2 fm

It is necessary to be indefinite in expressing R0 because, as Fig. 11.3 shows, nuclei do
not have sharp boundaries. Despite this, the values of R from Eq. (11.1) are represen-
tative of effective nuclear sizes. The value of R0 is slightly smaller when it is deduced
from electron scattering, which implies that nuclear matter and nuclear charge are not
identically distributed through a nucleus.

Nuclei are so small that the unit of length appropriate in describing them is the
femtometer (fm), equal to 10�15 m. The femtometer is sometimes called the fermi in
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Figure 11.3 The density of nucleons in 59
27Co (cobalt) and 197

79Au (gold) nuclei plotted versus radial
distance from the center. The values of the nuclear radius given by R � 1.2A1�3 fm are indicated.
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honor of Enrico Fermi, a pioneer in nuclear physics. From Eq. (11.1) we find that the
radius of the 12

6C nucleus is

R � (1.2)(12)1�3 fm � 2.7 fm

Similarly, the radius of the 107
47Ag nucleus is 5.7 fm and that of the 238

92U nucleus is 7.4 fm.

Example 11.1

Find the density of the 12
6C nucleus.

Solution

The atomic mass of 12
6C is 12 u. Neglecting the masses and binding energies of the six electrons,

we have for the nuclear density

� � � � 2.4 � 1017 kg/m3

This figure—equivalent to 4 billion tons per cubic inch!—is essentially the same for all nuclei.
We learned in Sec. 9.11 of the existence of neutron stars, which consist of atoms that have been
so compressed that their protons and electrons have interacted to become neutrons. Neutrons
in such an assembly, as in a stable nucleus, do not undergo radioactive decay as do free neu-
trons. The densities of neutron stars are comparable with that of nuclear matter: a neutron star
packs the mass of 1.4 to 3 suns into a sphere only about 10 km in radius.

Example 11.2

Find the repulsive electric force on a proton whose center is 2.4 fm from the center of another
proton. Assume the protons are uniformly charged spheres of positive charge. (Protons actually
have internal structures, as we shall learn in Chapter 13.)

Solution

Everywhere outside a uniformly charged sphere the sphere is electrically equivalent to a point
charge located at the center of the sphere. Hence

F � � � 40 N

This is equivalent to 9 lb, a familiar enough amount of force—but it acts on a particle whose
mass is less than 2 � 10�27 kg! Evidently the attractive forces that bind protons into nuclei de-
spite such repulsions must be very strong indeed.

Spin and Magnetic Moment

Protons and neutrons, like electrons, are fermions with spin quantum numbers of 
s � �

1
2

�. This means they have spin angular momenta S of magnitude

S � �s(s � 1�)�� � ����� � 1	� � � � (11.2)

and spin magnetic quantum numbers of ms � ��
1
2

� (see Fig. 7.2).

�3�
�

2

1
�
2

1
�
2

(8.99 � 109 N 	 m2/C2)(1.60 � 10�19 C)2

�����
(2.4 � 10�15 m)2

e2

�
r2

1
�
4��0

(12 u)(1.66 � 10�27 Kg/u)
���

(�
4
3

�� )(2.7 � 10�15 m)3
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�
4
3
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Figure 11.4 (a) The spin magnetic moment �p of the proton is in the same direction as its spin angular
momentum S. (b) In the case of the neutron, �n is opposite to S.

(a) b)

S

µp

µn

S

np

(

As in the case of electrons, magnetic moments are associated with the spins of pro-
tons and neutrons. In nuclear physics, magnetic moments are expressed in nuclear
magnetons (�N), where

�N � � 5.051 � 10�27 J/T � 3.152 � 10�8 eV/T (11.3)

Here mp is the proton mass. The nuclear magneton is smaller than the Bohr magneton
of Eq. (6.42) by the ratio of the proton mass to the electron mass, which is 1836. The
spin magnetic moments of the proton and neutron have components in any direction of

Proton �pz � �2.793 �N

Neutron �nz � 
1.913 �N

There are two possibilities for the signs of �pz and �nz� depending on whether ms is
��

1
2

� or ��
1
2

�. The � sign is used for �pz because �pz is in the same direction as the spin
S, whereas 
 is used for �nz because �nz is opposite to S (Fig. 11.4).

At first glance it seems odd that the neutron, with no net charge, has a spin mag-
netic moment. But if we assume that the neutron contains equal amounts of positive
and negative charge, a spin magnetic moment could arise even with no net charge. As
we shall find in Chap. 13, such a picture has experimental support.

The hydrogen nucleus 11H consists of a single proton, and its total angular momen-
tum is given by Eq. (11.2). A nucleon in a more complex nucleus may have orbital
angular momentum due to motion inside the nucleus as well as spin angular mo-
mentum. The total angular momentum of such a nucleus is the vector sum of the spin
and orbital angular momenta of its nucleons, as in the analogous case of the electrons
of an atom. This subject will be considered further in Sec. 11.6.

When a nucleus whose magnetic moment has the z component �z is in a constant
magnetic field B, the magnetic potential energy of the nucleus is

Magnetic energy Um � ��zB (11.4)

This energy is negative when �z is in the same direction as B and positive when �z is
opposite to B. In a magnetic field, each angular momentum state of the nucleus is
therefore split into components, just as in the Zeeman effect in atomic electron states.
Figure 11.5 shows the splitting when the angular momentum of the nucleus is due to
the spin of a single proton. The energy difference between the sublevels is

�E � 2�pzB (11.5)

e�
�
2mp

Nuclear
magneton
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Figure 11.5 The energy levels of a proton in a magnetic field are split into spin-up (Sz parallel to B)
and spin-down (Sz antiparallel to B) sublevels.
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A photon with this energy will be emitted when a proton in the upper state flips its
spin to fall to the lower state. A proton in the lower state can be raised to the upper
one by absorbing a photon of this energy. The photon frequency �L that corresponds
to �E is

�L � � (11.6)

This is equal to the frequency with which a magnetic dipole precesses around a mag-
netic field (Fig. 11.6). It is named for Joseph Larmor, who derived �L from classical
physics for an orbiting electron in a magnetic field; his result can be generalized to any
magnetic dipole.

Example 11.3

(a) Find the energy difference between the spin-up and spin-down states of a proton in a mag-
netic field of B � 1.000 T (which is quite strong). (b) What is the Larmor frequency of a proton
in this field?

Solution

(a) The energy difference is

�E � 2�pzB � (2)(2.793)(3.153 � 10�8 eV/T)(1.000 T) � 1.761 � 10�7 eV

If an electron rather than a proton were involved, �E would be considerably greater.
(b) The Larmor frequency of the proton in this field is

�L � � � 4.258 � 107 Hz � 42.58 MHz

From Fig. 2.2 we see that em radiation of this frequency is in the lower end of the microwave
part of the spectrum.

Nuclear Magnetic Resonance

Suppose we put a sample of some substance that contains nuclei with spins of �
1
2

� in a
magnetic field B. The spins of most of these nuclei will become aligned parallel to B

1.761 � 10�7 eV
���
4.136 � 10�15 eV 	 s

�E
�

h

2�pzB
�

h

�E
�

h
Larmor frequency
for protons

B

µ

Figure 11.6 A nuclear magnetic
moment � precesses around an
external magnetic field B with a
frequency called the Larmor fre-
quency that is proportional to B.
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(spin-up) because this is the lowest energy state; see Fig. 11.5. If we now supply em
radiation at the Larmor frequency �L to the sample, the nuclei will receive the right
amount of energy to flip their spins to the higher state (spin-down). This phenome-
non is called nuclear magnetic resonance (NMR) and it gives a way to determine nu-
clear magnetic moments experimentally. In one method, radio frequency (rf ) radiation
is supplied at a fixed frequency by a coil around the sample, and B is varied until the
energy absorbed is a maximum. The resonance frequency is then the Larmor frequency
for that value of B, from which � can be calculated. Another method is to apply a
broad-spectrum rf pulse and then measure the frequency (which will be �L) of the
radiation the sample gives off as its excited nuclei return to the lower energy state.

11.3   STABLE NUCLEI

Why some combinations of neutrons and protons are more stable 
than others

Not all combinations of neutrons and protons form stable nuclei. In general, light nuclei
(A 
 20) contain approximately equal numbers of neutrons and protons, while in
heavier nuclei the proportion of neutrons becomes progressively greater. This is evident
from Fig. 11.7, which is a plot of N versus Z for stable nuclides.

The tendency for N to equal Z follows from the existence of nuclear energy levels.
Nucleons, which have spins of �

1
2

�, obey the exclusion principle. As a result, each nuclear
energy level can contain two neutrons of opposite spins and two protons of opposite

396 Chapter Eleven

N MR turns  out to be far more useful than just as a way to find nuclear magnetic moments.
The electrons around a nucleus partly shield it from an external magnetic field to an ex-

tent that depends on the chemical environment of the nucleus. The relaxation time needed
for the nuclei to drop to the lower state after having been excited also depends on this envi-
ronment. These properties of NMR enable chemists to use NMR spectroscopy to help unravel
details of chemical structures and reactions. For instance, the hydrogen nuclei in the CH3, CH2

and OH groups have slightly different resonant frequencies in the same magnetic field. All of
these frequencies appear in the NMR spectrum of ethanol with a 3:2:1 ratio of intensities.
Ethanol molecules are known to contain two C atoms, six H atoms, and one O atom, so they
must consist of the three above groups linked together. The formula CH3CH2OH thus better
represents methanol than C2H6O, which merely lists the atoms in its molecules. The intensity
ratio 3:2:1 corroborates this picture since the CH3 group has three H atoms, CH2 has two, and
OH has one. The NMR spectra of other spin-�

1
2

� nuclei, such as 13C and 32P, are also of great
help to chemists.

In medicine, NMR is the basis of an imaging method with higher resolution than x-ray to-
mography. In addition, NMR imaging is safer because rf radiation, unlike x radiation, has too
little quantum energy to disrupt chemical bonds and so cannot harm living tissue. What is done
is to use a nonuniform magnetic field, which means that the resonance frequency for a partic-
ular nucleus depends on the position of the nucleus in the field. Because our bodies are largely
water, H2O, proton NMR is usually employed. By changing the direction of the field gradient,
an image that shows the proton density in a thin (3–4 mm) slice of the body can then be con-
structed by a computer. Relaxation times can also be mapped, which is useful because they are
different in diseased tissue. In medicine, NMR imaging is called just magnetic resonance imag-
ing, or MRI, to avoid frightening patients with the word “nuclear.”

Applications of NMR
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Nuclear Structure 397

spins. Energy levels in nuclei are filled in sequence, just as energy levels in atoms are,
to achieve configurations of minimum energy and therefore maximum stability. Thus
the boron isotope 12

5B has more energy than the carbon isotope 12
6C because one of its

neutrons is in a higher energy level, and 12
5B is accordingly unstable (Fig. 11.8). If
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Figure 11.7 Neutron-proton diagram for stable nuclides. There are no stable nuclides with Z � 43 or
61, with N � 19, 35, 39, 45, 61, 89, 115, 126, or with A � Z � N � 5 or 8. All nuclides with Z � 83,
N � 126, and A � 209 are unstable.
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Figure 11.8 Simplified energy-level diagrams of some boron and carbon isotopes. The exclusion
principle limits the occupancy of each level to two neutrons of opposite spin and two protons of
opposite spin. Stable nuclei have configurations of minimum energy.
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created in a nuclear reaction, a 12
5B nucleus changes by beta decay into a stable 12

6C
nucleus in a fraction of a second.

The preceding argument is only part of the story. Protons are positively charged and
repel one another electrically. This repulsion becomes so great in nuclei with more than
10 protons or so that an excess of neutrons, which produce only attractive forces, is
required for stability. Thus the curve of Fig. 11.7 departs more and more from the 
N � Z line as Z increases. Even in light nuclei N may exceed Z, but (except in 11H and
3
2He) is never smaller; 11

5B is stable, for instance, but not 11
6C.

Sixty percent of stable nuclides have both even Z and even N; these are called “even-
even” nuclides. Nearly all the others have either even Z and odd N (even-odd nuclides)
or odd Z and even N (odd-even nuclides), with the numbers of both kinds being about
equal. Only five stable odd-odd nuclides are known: 2

1H, 6
3Li, 10

5Be, 14
7N, and 180

73Ta.
Nuclear abundances follow a similar pattern of favoring even numbers for Z and N.
Only about one in eight of the atoms of which the earth is composed has a nucleus
with an odd number of protons, for instance.

These observations are consistent with the presence of nuclear energy levels that can
each contain two particles of opposite spin. Nuclei with filled levels have less tendency
to pick up other nucleons than those with partly filled levels and hence were less likely
to participate in the nuclear reactions involved in the formation of the elements.

Nuclear Decay

Nuclear forces are limited in range, and as a result nucleons interact strongly only with
their nearest neighbors. This effect is referred to as the saturation of nuclear forces.
Because the coulomb repulsion of the protons is appreciable throughout the entire nu-
cleus, there is a limit to the ability of neutrons to prevent the disruption of a large
nucleus. This limit is represented by the bismuth isotope 209

83Bi, which is the heaviest
stable nuclide. All nuclei with Z � 83 and A � 209 spontaneously transform them-
selves into lighter ones through the emission of one or more alpha particles, which are
4
2He nuclei:

Alpha decay Z
AX S A�4

Z�2Y � 4
2He

S �

Since an alpha particle consists of two protons and two neutrons, an alpha decay
reduces the Z and the N of the original nucleus by two each. If the resulting daughter
nucleus has either too small or too large a neutron/proton ratio for stability, it may
beta-decay to a more appropriate configuration. In negative beta decay, a neutron is
transformed into a proton and an electron is emitted:

Beta decay n0 S p� � e�

In positive beta decay, a proton becomes a neutron and a positron is emitted:

Positron emission p� S n0 � e�

Thus negative beta decay decreases the proportion of neutrons and positive beta de-
cay increases it. A process that competes with positron emission is the capture by a

Alpha
particle

Daughter
nucleus

Parent
nucleus
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Nuclear Structure 399

nucleus of an electron from its innermost shell. The electron is absorbed by a nuclear
proton which is thereby transformed into a neutron:

Electron capture p� � e� S n0

Figure 11.9 shows how alpha and beta decays enable stability to be achieved. Ra-
dioactivity is considered in more detail in Chap. 12, where we will find that another
particle, the neutrino, is also involved in beta decay and electron capture.

11.4   BINDING ENERGY

The missing energy that keeps a nucleus together

The hydrogen isotope deuterium, 21H, has a neutron as well as a proton in its nucleus.
Thus we would expect the mass of the deuterium atom to be equal to that of an ordinary
1
1H atom plus the mass of a neutron:

Mass of 1
1H atom 1.007825 u

� mass of neutron �1.008665 u
Expected mass of 2

1H atom 2.016490 u

However, the measured mass of the 21H atom is only 2.014102 u, which is 0.002388 u
less than the combined masses of a 1

1H atom and a neutron (Fig. 11.10).
What comes to mind is that the “missing” mass might correspond to energy given

off when a 2
1H nucleus is formed from a free proton and neutron. The energy equiva-

lent of the missing mass is

�E � (0.002388 u)(931.49 MeV/u) � 2.224 MeV

To test this interpretation of the missing mass, we can perform experiments to see how
much energy is needed to break apart a deuterium nucleus into a separate neutron and

Alpha decay

N
eu

tr
on

 n
u

m
be

r 
(N

 )

Proton number (Z)

N decreases by 2

Z decreases by 2

Positive beta decay
or electron capture

Z decreases by 1
N increases by 1

Z increases by 1
N decreases by 1

Stability curve

Negative beta decay

Alpha decay

Figure 11.9 Alpha and beta decays permit an unstable nucleus to reach a stable configuration.
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proton. The required energy indeed turns out to be 2.224 MeV (Fig. 11.11). When
less energy than 2.224 MeV is given to a 21H nucleus, the nucleus stays together. When
the added energy is more than 2.224 MeV, the extra energy goes into kinetic energy of
the neutron and proton as they fly apart.

Deuterium atoms are not the only ones that have less mass than the combined
masses of the particles they are composed of—all atoms are like that. The energy equiv-
alent of the missing mass of a nucleus is called the binding energy of the nucleus. The
greater its binding energy, the more the energy that must be supplied to break up the
nucleus.

The binding energy Eb in MeV of the nucleus A
ZX, which has N � A � Z neutrons,

is given by

Eb � [Zm(1
1H) � Nm(n) � m(Z

AX)](931.49 MeV/u) (11.7)

where m(1
1H) is the atomic mass of 1

1H, m(n) is the neutron mass, and m(Z
AX) is the

atomic mass of AZX, all in mass units. As mentioned before, atomic masses, not nuclear
masses, are used in such calculations; the electron masses subtract out.

Nuclear binding energies are strikingly high. The range for stable nuclei is from
2.224 MeV for 2

1H (deuterium) to 1640 MeV for 209
83Bi (an isotope of the metal bis-

muth). To appreciate how high binding energies are, we can compare them with more
familiar energies in terms of kilojoules of energy per kilogram of mass. In these units,
a typical binding energy is 8 � 1011 kJ/kg—800 billion kJ/kg. By contrast, to boil water

400 Chapter Eleven

Figure 11.11 The binding energy of the deuterium nucleus is 2.224 MeV. A gamma ray whose energy
is 2.224 MeV or more can split a deuterium nucleus into a proton and neutron. A gamma ray whose
energy is less than 2.224 MeV cannot do this.

Deuterium
nucleus

Proton

Neutron

2.224-MeV
gamma ray

=

Hydrogen
atom

Deuterium
atom

Neutron mn = 1.0087 u

mH = 1.0078 u

mD = 2.0141 u

2.0165 u

Figure 11.10 The mass of a deuterium atom (2
1H) is less than the sum of the masses of a hydrogen

atom (1
1H) and a neutron. The energy equivalent of the missing mass is called the binding energy of

the nucleus.
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Figure 11.12 Binding energy per nucleon as a function of mass number. The peak at A � 4 corresponds
to the exceptionally stable 4

2He nucleus, which is the alpha particle. The binding energy per nucleon
is a maximum for nuclei of mass number A � 56. Such nuclei are the most stable. When two light
nuclei join to form a heavier one, a process called fusion, the greater binding energy of the product
nucleus causes energy to be given off. When a heavy nucleus is split into two lighter ones, a process
called fission, the greater binding energy of the product nuclei also causes energy to be given off.
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involves a heat of vaporization of a mere 2260 kJ/kg, and even the heat given off by
burning gasoline is only 4.7 � 104 kJ/kg, 17 million times smaller.

Example 11.4

The binding energy of the neon isotope 20
10Ne is 160.647 MeV. Find its atomic mass.

Solution

Here Z � 10 and N � 10. From Eq. (11.7),

m(Z
AX) � [Zm(1

1H) � Nm(n)] �

m(20
10Ne) � [10(1.007825 u) � 10(1.008665)] � � 19.992 u

Binding Energy per Nucleon

The binding energy per nucleon for a given nucleus is an average found by dividing
its total binding energy by the number of nucleons it contains. Thus the binding energy
per nucleon for 21H is (2.2 MeV)�2 � 1.1 MeV/nucleon, and for 209

83Bi it is (1640 MeV)�
209 � 7.8 MeV/nucleon.

Figure 11.12 shows the binding energy per nucleon plotted against the number of
nucleons in various atomic nuclei. The greater the binding energy per nucleon, the

160.647 MeV
��
931.49 MeV
u

Eb
��
931.49 MeV
u
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more stable the nucleus is. The graph has its maximum of 8.8 MeV/nucleon when the
total number of nucleons is 56. The nucleus that has 56 protons and neutrons is 56

26Fe,
an iron isotope. This is the most stable nucleus of them all, since the most energy is
needed to pull a nucleon away from it.

Two remarkable conclusions can be drawn from the curve of Fig. 11.12. The first
is that if we can somehow split a heavy nucleus into two medium-sized ones, each of
the new nuclei will have more binding energy per nucleon than the original nucleus
did. The extra energy will be given off, and it can be a lot. For instance, if the uranium
nucleus 235

92U is broken into two smaller nuclei, the binding energy difference per
nucleon is about 0.8 MeV. The total energy given off is therefore

�0.8 	 (235 nucleons) � 188 MeV

This is a truly enormous amount of energy to be produced in a single atomic event.
As we know, ordinary chemical reactions involve rearrangements of the electrons in
atoms and liberate only a few electronvolts per reacting atom. Splitting a heavy nucleus,
which is called nuclear fission, thus involves 100 million times more energy per atom
than, say, the burning of coal or oil.

The other notable conclusion is that joining two light nuclei together to give a single
nucleus of medium size also means more binding energy per nucleon in the new nucleus.
For instance, if two 21H deuterium nuclei combine to form a 42He helium nucleus, over 23
MeV is released. Such a process, called nuclear fusion, is also a very effective way to ob-
tain energy. In fact, nuclear fusion is the main energy source of the sun and other stars.

The graph of Fig. 11.12 has a good claim to being the most significant in all of sci-
ence. The fact that binding energy exists at all means that nuclei more complex than
the single proton of hydrogen can be stable. Such stability in turn accounts for the
existence of the elements and so for the existence of the many and diverse forms of
matter we see around us (and for us, too). Because the curve peaks in the middle, we
have the explanation for the energy that powers, directly or indirectly, the evolution of
the universe: it comes from the fusion of light nuclei to form heavier ones.

Example 11.5

(a) Find the energy needed to remove a neutron from the nucleus of the calcium isotope 42
20Ca.

(b) Find the energy needed to remove a proton from this nucleus. (c) Why are these energies
different?

MeV
�
nucleon

402 Chapter Eleven

T he short-range attractive forces between nucleons arise from the strong interaction. (There
is another fundamental interaction affecting nucleons called the weak interaction that will

be discussed in Chaps. 12 and 13.) The strong interaction is what holds nucleons together to
form nuclei, and it is powerful enough to overcome the electric repulsion of the positively charged
protons in nuclei provided neutrons are also present to help. If the strong interaction were a
little stronger—perhaps only 1 percent would be enough—two protons could stick together
without any neutrons needed. In this case, when the universe came into being in the Big Bang
(Sec. 13.8), all its protons would have joined into diprotons almost as soon as they appeared.
Then there would be no individual protons to undergo the fusion reactions that power the stars
and have created the chemical elements. The universe would be a very different place from what
it is today, and we would not exist.

The Strong Interaction
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Solution

(a) Removing a neutron from 42
20Ca leaves 41

20Ca. From the table of atomic masses in the Appendix
the mass of 41

20Ca plus the mass of a free neutron is

40.962278 u � 1.008665 u � 41.970943 u

The difference between this mass and the mass of 42
20Ca is 0.012321 u, so the binding energy of

the missing neutron is`

(0.012321 u)(931.49 MeV/u) � 11.48 MeV

(b) Removing a proton from 42
20Ca leaves the potassium isotope 41

19K. A similar calculation gives
a binding energy of 10.27 MeV for the missing proton.
(c) The neutron was acted upon only by attractive nuclear forces whereas the proton was also
acted upon by repulsive electric forces that decrease its binding energy.

11.5   LIQUID-DROP MODEL

A simple explanation for the binding-energy curve

The short-range force that binds nucleons so securely into nuclei is by far the strongest
type of force known. Unfortunately the nuclear force is not as well understood as the
electromagnetic force, and the theory of nuclear structure is less complete than the the-
ory of atomic structure. However, even without a full understanding of the nuclear
force, much progress has been made in devising nuclear models able to account for
prominent aspects of nuclear properties and behavior. We shall examine some of the
concepts embodied in these models in this section and the next.

While the attractive forces that nucleons exert upon one another are very strong,
their range is short. Up to a separation of about 3 fm, the nuclear attraction between
two protons is about 100 times stronger than the electric repulsion between them. The
nuclear interactions between protons and protons, between protons and neutrons, and
between neutrons and neutrons appear to be identical.

As a first approximation, we can think of each nucleon in a nucleus as interacting
solely with its nearest neighbors. This situation is the same as that of atoms in a solid,
which ideally vibrate about fixed positions in a crystal lattice, or that of molecules in
a liquid, which ideally are free to move about while maintaining a fixed intermolecu-
lar distance. The analogy with a solid cannot be pursued because a calculation shows
that the vibrations of the nucleons about their average positions would be too great
for the nucleus to be stable. The analogy with a liquid, on the other hand, turns out
to be extremely useful in understanding certain aspects of nuclear behavior. This anal-
ogy was proposed by George Gamow in 1929 and developed in detail by C. F. von
Weizsäcker in 1935.

Let us see how the picture of a nucleus as a drop of liquid accounts for the
observed variation of binding energy per nucleon with mass number. We start by
assuming that the energy associated with each nucleon-nucleon bond has some value
U. This energy is actually negative since attractive forces are involved, but is usu-
ally written as positive because binding energy is considered a positive quantity for
convenience.

Because each bond energy U is shared by two nucleons, each has a binding energy
of �

1
2

�U. When an assembly of spheres of the same size is packed together into the small-
est volume, as we suppose is the case of nucleons within a nucleus, each interior sphere
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has 12 other spheres in contact with it (Fig. 11.13). Hence each interior nucleon in a
nucleus has a binding energy of (12)(�

1
2

�U) or 6 U. If all A nucleons in a nucleus were
in its interior, the total binding energy of the nucleus would be

Ev � 6 AU (11.8)

Equation (11.8) is often written simply as

Volume energy Ev � a1A (11.9)

The energy E� is called the volume energy of a nucleus and is directly proportional to A.
Actually, of course, some nucleons are on the surface of every nucleus and there-

fore have fewer than 12 neighbors (Fig. 11.14). The number of such nucleons depends
on the surface area of the nucleus in question. A nucleus of radius R has an area of
4�R2 � 4�R2

0A2�3. Hence the number of nucleons with fewer than the maximum num-
ber of bonds is proportional to A2�3, reducing the total binding energy by

Surface energy Es � �a2A2�3 (11.10)

The negative energy Es is called the surface energy of a nucleus. It is most significant
for the lighter nuclei since a greater fraction of their nucleons are on the surface. Be-
cause natural systems always tend to evolve toward configurations of minimum po-
tential energy, nuclei tend toward configurations of maximum binding energy. Hence
a nucleus should exhibit the same surface-tension effects as a liquid drop, and in the
absence of other effects it should be spherical, since a sphere has the least surface area
for a given volume.

The electric repulsion between each pair of protons in a nucleus also contributes
toward decreasing its binding energy. The coulomb energy Ec of a nucleus is the work
that must be done to bring together Z protons from infinity into a spherical aggregate
the size of the nucleus. The potential energy of a pair of protons r apart is equal to

V � �
e2

�
4��0r

Figure 11.14 A nucleon at the surface of a nucleus
interacts with fewer other nucleons than one in the
interior of the nucleus and hence its binding energy
is less. The larger the nucleus, the smaller the
proportion of nucleons at the surface.

Figure 11.13 In a tightly packed assembly of
identical spheres, each interior sphere is in
contact with 12 others.
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Since there are Z(Z � 1)�2 pairs of protons,

Ec � V � � � 	
av

(11.11)

where (1�r)av is the value of 1�r averaged over all proton pairs. If the protons are
uniformly distributed throughout a nucleus of radius R, (1�r)av is proportional to 1�R
and hence to 1�A1�3, so that

Coulomb energy Ec � �a3 (11.12)

The coulomb energy is negative because it arises from an effect that opposes nuclear
stability.

This is as far as the liquid-drop model itself can go. Let us now see how the result
compares with reality.

The total binding energy Eb of a nucleus ought to be the sum of its volume, surface,
and coulomb energies:

Eb � E� � Es � Ec � a1A � a2A2�3 � a3 (11.13)

The binding energy per nucleon is therefore

� a1 � � a3 (11.14)

Each of the terms of Eq. (11.14) is plotted in Fig. 11.15 versus A, together with their
sum Eb�A. The coefficients were chosen to make the Eb�A curve resemble as closely
as possible the empirical binding energy per nucleon curve of Fig. 11.12. The fact that
the theoretical curve can be made to agree so well with the empirical one means that
the analogy between a nucleus and a liquid drop has at least some validity.
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�
A1�3

Eb
�
A

Z(Z � 1)
�

A1�3

Z(Z � 1)
�

A1�3

1
�
r

Z(Z � 1)e2

��
8��0

Z(Z � 1)
�

2

50 100 150 200 250

15

10

5

0

–5

–10

A

E
b
/A

, M
eV

Volume energy

Total energy

Coulomb energySurface
energy

Figure 11.15 The binding energy per nucleon is the sum of the volume, surface, and coulomb energies.
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Corrections to the Formula

The binding-energy formula of Eq. (11.13) can be improved by taking into account
two effects that do not fit into the simple liquid-drop model but which make sense in
terms of a model that provides for nuclear energy levels. (We will see in the next sec-
tion how these apparently very different approaches can be reconciled.) One of these
effects occurs when the neutrons in a nucleus outnumber the protons, which means
that higher energy levels have to be occupied than would be the case if N and Z were
equal.

Let us suppose that the uppermost neutron and proton energy levels, which the
exclusion principle limits to two particles each, have the same spacing �, as in
Fig. 11.16. In order to produce a neutron excess of, say, N � Z � 8 without chang-
ing A, �

1
2

�(N � Z) � 4 neutrons would have to replace protons in an original nucleus
in which N � Z. The new neutrons would occupy levels higher in energy by 
2� � 4��2 than those of the protons they replace. In the general case of �

1
2

�(N � Z)
new neutrons, each must be raised in energy by �

1
2

�(N � Z)��2. The total work 
needed is

�E � (number of new neutrons) � 	

� � (N � Z)� � (N � Z) � � (N � Z)2

Because N � A � Z, (N � Z)2 � (A � 2Z)2, and

�E � (A � 2Z)2 (11.15)

As it happens, the greater the number of nucleons in a nucleus, the smaller is the
energy level spacing �, with � proportional to 1�A. This means that the asymmetry
energy Ea due to the difference between N and Z can be expressed as

Asymmetry energy Ea � ��E � �a4 (11.16)

The asymmetry energy is negative because it reduces the binding energy of the
nucleus.

(A � 2Z)2

��
A

�
�
8

�
�
8

�
�
2

1
�
2

1
�
2

energy increase
��

new neutron
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Figure 11.16 In order to replace 4 protons in a nucleus with N � Z by 4 neutrons, the work
(4)(4��2) must be done. The resulting nucleus has 8 more neutrons than protons.
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The last correction term arises from the tendency of proton pairs and neutron pairs
to occur (Sec. 11.3). Even-even nuclei are the most stable and hence have higher bind-
ing energies than would otherwise be expected. Thus such nuclei as 42He, 12

6C, and 16
8O

appear as peaks on the empirical curve of binding energy per nucleon. At the other
extreme, odd-odd nuclei have both unpaired protons and neutrons and have relatively
low binding energies. The pairing energy Ep is positive for even-even nuclei, 0 for
odd-even and even-odd nuclei, and negative for odd-odd nuclei, and seems to vary
with A as A�3�4. Hence

Pairing energy Ep � (�, 0) (11.17)

The final expression for the binding energy of a nucleus of atomic number Z and
mass number A, which was first obtained by C. F. von Weizsäcker in 1935, is

Eb � a1A � a2A2�3 � a3

� a4 (�, 0) (11.18)

A set of coefficients that gives a good fit with the data is as follows:

a1 � 14.1 MeV a2 � 13.0 MeV a3 � 0.595 MeV

a4 � 19.0 MeV a5 � 33.5 MeV

Other sets of coefficients have also been proposed. Equation (11.18) agrees better
with observed binding energies than does Eq. (11.13), which suggests that the
liquid-drop model, though a good approximation, is not the last word on the 
subject.

Example 11.6

The atomic mass of the zinc isotope 64
30Zn is 63.929 u. Compare its binding energy with the

prediction of Eq. (11.18).

Solution

The binding energy of 64
30Zn is, from Eq. (11.7),

Eb � [(30)(1.007825 u) � (34)(1.008665 u) � 63.929 u](931.49 MeV/u) � 559.1 MeV

The semiempirical binding energy formula, using the coefficients in the text, gives

Eb � (14.1 MeV)(64) � (13.0 MeV)(64)2�3 �

� � � 561.7 MeV

The plus sign is used for the last term because 64
30Zn is an even-even nucleus. The difference

between the observed and calculated binding energies is less than 0.5 percent.

33.5 MeV
��

(64)3�4

(19.0 MeV)(16)
��

64

(0.595 MeV)(30)(29)
���

(64)1�3

a5
�
A3�4

(A � 2Z)2

��
A

Z (Z � 1)
�

A1�3

a5�
A3�4

Semiempirical 
binding-energy 
formula
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Example 11.7

Isobars are nuclides that have the same mass number A. Derive a formula for the atomic
number of the most stable isobar of a given A and use it to find the most stable isobar of 
A � 25.

Solution

To find the value of Z for which the binding energy Eb is a maximum, which corresponds to
maximum stability, we must solve dEb�dZ � 0 for Z. From Eq. (11.18) we have

� � (2Z � 1) � (A � 2Z) � 0

Z � �

For A � 25 this formula gives Z � 11.7, from which we conclude that Z � 12 should be the
atomic number of the most stable isobar of A � 25. This nuclide is 25

12Mg, which is in fact
the only stable A � 25 isobar. The other isobars, 25

11Na and 25
13Al, are both radioactive.

11.6 SHELL MODEL

Magic numbers in the nucleus

The basic assumption of the liquid-drop model is that each nucleon in a nucleus
interacts only with its nearest neighbors, like a molecule in a liquid. At the other
extreme, the hypothesis that each nucleon interacts chiefly with a general force field
produced by all the other nucleons also has a lot of support. The latter situation 
is like that of electrons in an atom, where only certain quantum states are permit-
ted and no more than two electrons, which are fermions, can occupy each state.
Nucleons are also fermions, and several nuclear properties vary periodically with 
Z and N in a manner reminiscent of the periodic variation of atomic properties
with Z.

The electrons in an atom may be thought of as occupying positions in “shells”
designated by the various principal quantum numbers. The degree of occupancy
of the outermost shell is what determines certain important aspects of an atom’s
behavior. For instance, atoms with 2, 10, 18, 36, 54, and 86 electrons have all
their electron shells completely filled. Such electron structures have high binding
energies and are exceptionally stable, which accounts for the chemical inertness of
the rare gases.

The same kind of effect is observed with respect to nuclei. Nuclei that have 2, 8,
20, 28, 50, 82, and 126 neutrons or protons are more abundant than other nuclei of
similar mass numbers, suggesting that their structures are more stable. Since complex
nuclei arose from reactions among lighter ones, the evolution of heavier and heavier
nuclei became retarded when each relatively inert nucleus was formed, which accounts
for their abundance.

Other evidence also points up the significance in nuclear structure of the numbers
2, 8, 20, 28, 50, 82, and 126, which have become known as magic numbers. An
example is the observed pattern of nuclear electric quadrupole moments, which are
measures of how much nuclear charge distributions depart from sphericity. A spheri-
cal nucleus has no quadrupole moment, while one shaped like a football has a positive

0.595A�1�3 � 76
���
1.19A�1�3 � 152A�1

a3A�1�3 � 4a4
���
2a3A�1�3 � 8a4A�1

4a4
�

A

a3
�
A1�3

dEb
�
dZ
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a very good thesis on a problem of quantum mechanics, she
married a young American, Joseph Mayer, who worked with
me on problems of crystal theory. Both had brilliant careers
in the U.S.A., always remaining together.” At the University
of Chicago in 1948 Goeppert-Mayer reopened the question
of periodicities in nuclear stability, which had remained a
mystery since their discovery in the early 1930s, and devised
a shell model that agreed with the data. J. H. D. Jensen in
Germany published a similar theory independently at the
same time, and both received the Nobel Prize in 1963 for
their work.

Maria Goeppert-Mayer (1906–1972)
was the daughter of the pediatrician
of Max Born’s children, and she stud-
ied at Göttingen under Born. As Born
recalled, “She went through all my
courses with great industry and con-
scientiousness, yet remained at the
same time a gay and witty member of
Göttingen society, fond of parties, of
laughter, dancing, and jokes. . . .
After she got her doctor’s degree with

Nuclear Structure 409

moment and one shaped like a pumpkin has a negative moment. Nuclei of magic N
and Z are found to have zero quadrupole moments and hence are spherical, while other
nuclei are distorted in shape.

The shell model of the nucleus is an attempt to account for the existence of magic
numbers and certain other nuclear properties in terms of nucleon behavior in a com-
mon force field.

Because the precise form of the potential-energy function for a nucleus is not known,
unlike the case of an atom, a suitable function U(r) has to be assumed. A reasonable
guess on the basis of the nuclear density curves of Fig. 11.3 is a square well with
rounded corners. Schrödinger’s equation for a particle in a potential well of this kind
is then solved, and it is found that stationary states of the system occur that are char-
acterized by quantum numbers n, l, and ml whose significance is the same as in the
analogous case of stationary states of atomic electrons. Neutrons and protons occupy
separate sets of states in a nucleus because the latter interact electrically as well as
through the specifically nuclear charge. However, the energy levels that come from such
a calculation do not agree with the observed sequence of magic numbers. Using other
potential-energy functions, for instance that of the harmonic oscillator, gives no better
results. Something essential is missing from the picture.

How Magic Numbers Arise

The problem was finally solved independently by Maria Goeppert-Mayer and J. H. D.
Jensen in 1949. They realized that it is necessary to incorporate a spin-orbit interac-
tion whose magnitude is such that the consequent splitting of energy levels into sub-
levels is many times larger than the analogous splitting of atomic energy levels. The
exact form of the potential-energy function then turns out not to be critical, provided
that it more or less resembles a square well.

The shell theory assumes that LS coupling holds only for the very lightest nuclei,
in which the l values are necessarily small in their normal configurations. In this scheme,
as we saw in Chap. 7, the intrinsic spin angular momenta Si of the particles concerned
(the neutrons form one group and the protons another) are coupled together into a
total spin momentum S. The orbital angular momenta Li are separately coupled together
into a total orbital momentum L. Then S and L are coupled to form a total angular
momentum J of magnitude �J (J �� 1)��.

After a transition region in which an intermediate coupling scheme holds, the heavier
nuclei exhibit jj coupling. In this case the Si and Li of each particle are first coupled to
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Figure 11.17 Sequence of neutron and proton energy levels according to the shell model (not to scale). The
numbers in the right-hand column correspond to the magic numbers expected on the basis of this sequence.
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form a Ji for that particle of magnitude �j ( j � 1�)��. The various Ji then couple together
to form the total angular momentum J. The jj coupling scheme holds for the great
majority of nuclei.

When an appropriate strength is assumed for the spin-orbit interaction, the energy
levels of either class of nucleon fall into the sequence shown in Fig. 11.17. The levels
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Nuclear Structure 411

are designated by a prefix equal to the total quantum number n, a letter that indicates l
for each particle in that level according to the usual pattern (s, p, d, f, g, . . .
corresponding, respectively, to l � 0, 1, 2, 3, 4, . . . ), and a subscript equal to j. The
spin-orbit interaction splits each state of given j into 2j � 1 substates, since there are
2j � 1 allowed orientations of Ji. Large energy gaps appear in the spacing of the levels
at intervals that are consistent with the notion of separate shells. The number of available
nuclear states in each nuclear shell is, in ascending order of energy, 2, 6, 12, 8, 22,
32, and 44. Hence shells are filled when there are 2, 8, 20, 28, 50, 82, and 126 neutrons
or protons in a nucleus.

The shell model accounts for several nuclear phenomena in addition to magic num-
bers. To begin with, the very existence of energy sublevels that can each be occupied
by two particles of opposite spin explains the tendency of nuclear abundances to favor
even Z and even N as discussed in Sec. 11.3.

The shell model can also predict nuclear angular momenta. In even-even nuclei,
all the protons and neutrons should pair off to cancel out one another’s spin and
orbital angular momenta. Thus even-even nuclei ought to have zero nuclear angular
momenta, as observed. In even-odd and odd-even nuclei, the half-integral spin of the
single “extra” nucleon should be combined with the integral angular momentum of
the rest of the nucleus for a half-integral total angular momentum. Odd-odd nuclei
each have an extra neutron and an extra proton whose half-integral spins should yield
integral total angular momenta. Both these predictions are experimentally confirmed.

Reconciling the Models

If the nucleons in a nucleus are so close together and interact so strongly that the
nucleus can be considered as analogous to a liquid drop, how can these same nucleons
be regarded as moving independently of each other in a common force field as required
by the shell model? It would seem that the points of view are mutually exclusive, since
a nucleon moving about in a liquid-drop nucleus must surely undergo frequent
collisions with other nucleons.

A closer look shows that there is no contradiction. In the ground state of a nucleus,
the neutrons and protons fill the energy levels available to them in order of increasing
energy in such a way as to obey the exclusion principle (see Fig. 11.8). In a collision,
energy is transferred from one nucleon to another, leaving the former in a state of
reduced energy and the latter in one of increased energy. But all the available levels of
lower energy are already filled, so such an energy transfer can take place only if the
exclusion principle is violated. Of course, it is possible for two indistinguishable
nucleons of the same kind to merely exchange their respective energies, but such a
collision is hardly significant since the system remains in exactly the same state it was
in initially. In essence, then, the exclusion principle prevents nucleon-nucleon collisions
even in a tightly packed nucleus and thereby justifies the independent-particle approach
to nuclear structure.

Both the liquid-drop and shell models of the nucleus are, in their very different
ways, able to account for much that is known of nuclear behavior. The collective
model of Aage Bohr (Niels Bohr’s son) and Ben Mottelson combines features of both
models in a consistent scheme that has proved quite successful. The collective model
takes into account such factors as the nonspherical shape of all but even-even nuclei
and the centrifugal distortion experienced by a rotating nucleus. The detailed theory
is able to account for the spacing of excited nuclear levels inferred from the gamma-
ray spectra of nuclei and in other ways.
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11.7 MESON THEORY OF NUCLEAR FORCES

Particle exchange can produce either attraction or repulsion

In Chap. 8 we saw how a molecule is held together by the exchange of electrons
between adjacent atoms. Is it possible that a similar mechanism operates inside a nu-
cleus, with its component nucleons being held together by the exchange of particles
of some kind among them?

The first approach to this question was made in 1932 by Heisenberg, who sug-
gested that electrons and positrons shift back and forth between nucleons. A neu-
tron, for instance, might emit an electron and become a proton, while a proton
absorbing the electron would become a neutron. However, calculations based on
beta-decay data showed that the forces resulting from electron and positron exchange
by nucleons would be too small by the huge factor of 1014 to be significant in nuclear
structure.

412 Chapter Eleven

A s mentioned in Sec. 11.3, the short range of the strong interaction means that the largest
stable nucleus is that of the bismuth isotope 209

83Bi. All nuclei with Z � 83 and A � 209
undergo radioactive decays until they reach a stable configuration. We can think of the stable
nuclei in Fig. 11.7 as representing a peninsula of stability in a sea of instability.

In general, the farther from the peninsula of stability a nucleus is, the faster it decays. For
nuclei heavier than 209

83Bi, lifetimes become shorter and shorter with increasing size until they
are only milliseconds for Z � 107, 108, and 109. (Such superheavy nuclei are created in the
laboratory by bombarding targets of heavy atoms with beams of lighter ones.) Since a nucleus
with magic numbers of protons or neutrons is exceptionally stable, the question arises whether
there might be an island of relative stability among the superheavy nuclei.

In the case of neutrons, Fig. 11.17 shows that the next magic number after N � 126 is
N � 184. For protons the situation is complicated by their electric potential energy, which be-
comes significant relative to the purely nuclear potential energy (which is independent of charge)
when Z is large. The electric potential has a greater effect on proton levels of low l because it is
stronger near the nuclear center where the probability densities of such levels are concentrated
(see Fig. 6.8). In consequence, the order of proton levels changes from that shown in Fig. 11.17
to make Z � 114 a proton magic number instead of Z � 126.

A nucleus with Z � 114 and N � 184 would therefore be doubly magic. This nucleus and
nuclei near it in Z and N ought to form an island of stability in the sea of instability that is (so
to speak) northeast of the tip of the peninsula of stability in Fig. 11.7.

In 1998 Russian physicists directed a beam of the calcium isotope 48
20Ca at a target of the plu-

tonium isotope 244
94Pu to create a nucleus of Z � 114 and N � 175. Magic in proton number

and not far from the middle of the island of stability, this nucleus has a half-life (the time needed
for half a sample to decay; see Sec. 12.2) of 30.4 s. As expected, this half-life is much longer
than those of nuclei near but outside the island of stability.

When the idea of an island of stability first came up in 1966, it was thought that perhaps
the nucleus of Z � 114, N � 184 might have a half-life in the billions of years. Later calcula-
tions gave more modest estimates that range from less than a hundred years to millions of years.
When this doubly magic nucleus is eventually produced, we will know. In the meantime, physi-
cists at the Lawrence Berkeley National Laboratory in California have managed to sail past the
island of stability to create nuclei of Z � 116.

Island of Stability

bei48482_ch11.qxd  1/23/02  3:14 AM  Page 412 RKAUL-9 RKAUL-9:Desktop Folder:



Nuclear Structure 413

Hideki Yukawa (1907–1981) grew up
in Kyoto, Japan, and attended the uni-
versity there. After receiving his doctor-
ate at Osaka, he returned to Kyoto
where he spent the rest of his career. In
the early 1930s Yukawa tackled the
problem of what keeps an atomic
nucleus together despite the repulsive
forces its protons exert on one another.
The interaction must be extremely
strong but limited in range, and Yukawa

found it could be explained on the basis of the exchange between
nucleons of particles whose mass is in the neighborhood of

200 electron masses: “Could the neutrons and protons be play-
ing catch?” In 1936, the year after Yukawa published his proposal,
a particle of such intermediate mass was found in cosmic rays by
C. D. Anderson, who had earlier discovered the positron, and oth-
ers. But, this particle, today called the muon, did not interact
strongly with nuclei, as it should have. The mystery was not
cleared up until 1947 when British physicist C. F. Powell discov-
ered the pion, which has the properties Yukawa predicted but de-
cays rapidly into the longer-lived (and hence easier-to-detect)
muon. (The pion and muon were originally called the � and �
mesons by Powell because, according to legend, these were the
only Greek letters on his typewriter.) Yukawa received the Nobel
Prize in 1949, the first Japanese to do so.

The Japanese physicist Hideki Yukawa was more successful with his 1935 proposal
that particles intermediate in mass between electrons and nucleons are responsible for
nuclear forces. Today these particles are called pions. Pions may be charged (��, ��)
or neutral (�0), and are members of a class of elementary particles collectively called
mesons. The word pion is a contraction of the original name � meson.

According to Yukawa’s theory, every nucleon continually emits and reabsorbs pions.
If another nucleon is nearby, an emitted pion may shift across to it instead of returning
to its parent nucleon. The associated transfer of momentum is equivalent to the action
of a force. Nuclear forces are repulsive at very short range as well as being attractive
at greater nucleon-nucleon distances; otherwise the nucleons in a nucleus would mesh
together. One of the strengths of the meson theory of such forces is that it can account
for both these properties. Although there is no simple way to explain how this comes
about, a rough analogy may make it less mysterious.

Let us imagine two boys exchanging basketballs (Fig. 11.18). If they throw the balls
at each other, the boys move backward, and when they catch the balls thrown at them,

Repulsive force due to particle exchange

Attractive force due to particle exchange

Figure 11.18 Attractive and repulsive forces can both arise from particle exchange.
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their backward momentum increases. Thus this method of exchanging basketballs has
the same effect as a repulsive force between the boys. If the boys snatch the basket-
balls from each other’s hands, however, the result will be equivalent to an attractive
force acting between them.

A fundamental problem presents itself at this point. If nucleons constantly emit and
absorb pions, why are neutrons and protons never found with other than their usual
masses? The answer is based upon the uncertainty principle. The laws of physics refer
to measurable quantities only, and the uncertainty principle limits the accuracy with
which certain combinations of measurements can be made. The emission of a pion
by a nucleon which does not change in mass—a clear violation of the law of conser-
vation of energy—can take place provided that the nucleon reabsorbs it or absorbs
another pion emitted by a neighboring nucleon so soon afterward that even in principle
it is impossible to determine whether or not any mass change has actually been involved.

From the uncertainty principle in the form

�E �t � (3.26)

an event in which an amount of energy �E is not conserved is not prohibited so long
as the duration of the event does not exceed ��2�E. This condition lets us estimate
the pion mass.

Let us assume that a pion travels between nucleons at a speed of � 
 c (actually
� 
 c, of course); that the emission of a pion of mass m� represents a temporary energy
discrepancy of �E 
 m�c2 (this neglects the pion’s kinetic energy); and that �E �t 
 �.
Nuclear forces have a maximum range r of about 1.7 fm, and the time �t needed for
the pion to travel this far (Fig. 11.19) is

�t � 

r
�
c

r
�
�

�
�
2
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t = r/c

r

π+

c

π+

c

t = 0

np

nn

nn

pn

Figure 11.19 The uncertainty principle permits the creation, transfer, and disappearance of a pion to
occur without violating conservation of energy provided that the sequence takes place fast enough.
Here a positive pion emitted by a proton is absorbed by a neutron; as a result, the proton becomes a
neutron and the neutron becomes a proton.
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We therefore have

�E �t 
 �

(m�c2) � 	 
 �

m� 
 (11.19)

which gives a value for m� of

m� 
 
 2 � 10�28 kg

This rough figure is about 220 times the rest mass me of the electron.

Discovery of the Pion

A dozen years after Yukawa’s proposal, particles with the properties he had predicted
were actually discovered. The rest mass of charged pions is 273 me and that of neutral
pions is 264 me, not far from the above estimate.

Two factors contributed to the belated discovery of the free pion. First, enough
energy must be supplied to a nucleon so that its emission of a pion conserves energy.
Thus at least m�c2 of energy, about 140 MeV, is required. To furnish a stationary nucleon
with this much energy in a collision, the incident particle must have considerably more
kinetic energy than m�c2 in order that momentum as well as energy be conserved. Par-
ticles with kinetic energies of several hundred MeV are therefore required to produce
free pions, and such particles are found in nature only in the diffuse stream of cosmic
radiation that bombards the earth. Hence the discovery of the pion had to await the
development of sufficiently sensitive and precise methods of investigating cosmic-ray

1.05 � 10�34 J 	 s
����
(1.7 � 10�15 m)(3 � 108 m/s)

�
�
rc

r
�
c

S ome years before Yukawa’s work, particle exchange had been suggested as the mechanism
of electromagnetic forces. In this case the particles are photons which, being massless, are

not limited in range by Eq.(11.19). However, the greater the distance between two charges, the
smaller must be the energies of the photons that pass between them (and hence the less the mo-
menta of the photons and the weaker the resulting force) in order that the uncertainty princi-
ple not be violated. For this reason electric forces decrease with distance. Because the photons
exchanged in the interactions of electric charges cannot be detected, they are called virtual pho-
tons. As in the case of pions, they can become actual photons if enough energy is somehow
supplied to liberate them from the energy-conservation constraint.

The idea of photons as carriers of electromagnetic forces is attractive on many counts, an ob-
vious one being that it explains why such forces are transmitted with the speed of light and not,
say, instantaneously. As subsequently developed, the full theory is called quantum electrody-
namics (see Sec. 6.9). Its conclusions have turned out to be in extraordinanly precise agreement
with the data on such phenomena as the photoelectric and Compton effects, pair production
and annihilation, bremsstrahlung, and photon emission by excited atoms. Unfortunately the
details of the theory are too mathematically complex to consider here.

Virtual Photons
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interactions. Later high-energy accelerators were placed in operation which gave the
necessary particle energies, and the profusion of pions that were created with their help
could be studied readily.

The second reason for the lag between the prediction and experimental discovery
of the pion is its instability; the mean lifetime of the charged pion is only 2.6 � 10�8 s
and that of the neutral pion is 8.4 � 10�17 s. The lifetime of the �0 is so short, in
fact, that its existence was not established until 1950. The modes of decay of the ��,
��, and �0 are described in Chap. 13. Heavier mesons than the pion have also been
discovered, some over a thousand times the electron mass. The contribution of these
mesons to nuclear forces is, by Eq. (11.19), limited to shorter distances than those
characteristic of pions.

11.1 Nuclear Composition

1. State the number of neutrons and protons in each of the
following: 6

3Li; 22
10Ne; 94

40Zr; 180
72Hf.

2. Ordinary boron is a mixture of the 10
5B and 11

5B isotopes and
has a composite atomic mass of 10.82 u. What percentage of
each isotope is present in ordinary boron?

11.2 Some Nuclear Properties

3. Electrons of what energy have wavelengths comparable with the
radius of a 197

79Au nucleus? (Note: A relativistic calculation is
needed.)

4. The greater the atomic number of an atom, the larger its
nucleus and the closer its inner electrons are to the nucleus.
Compare the radius of the 238

92U nucleus with the radius of its
innermost Bohr orbit.

5. It is believed possible on the basis of the shell model that the
nuclide of Z � 110 and A � 294 may be exceptionally long-
lived. Estimate its nuclear radius.

6. Show that the nuclear density of 1
1H is over 1014 times greater

than its atomic density. (Assume the atom to have the radius of
the first Bohr orbit.)

7. Compare the magnetic potential energies (in eV) of an electron
and of a proton in a magnetic field of 0.10 T.

8. One type of magnetometer is based on proton precession. What
is the Larmor frequency of a proton in the earth’s magnetic field
where its magnitude is 3.00 � 10�5 T? In what part of the em
spectrum is radiation of this frequency?

9. A system of a million distinguishable protons is in thermal
equilibrium at 20�C in a 1.00-T magnetic field. More of the
protons are in the lower-energy spin-up state than in the
higher-energy spin-down state. (a) On the average, how many
more? (b) Repeat the calculation for a temperature of 20 K.

(c) What do these results suggest about how strongly such a
system will absorb em radiation at the Larmor frequency?
(d) Could such a system in principle be used as the basis of a
laser? If not, why not?

11.3 Stable Nuclei

10. The Appendix at the back of the book lists all known stable
nuclides. Are there any for which Z � N? Why are such
nuclides so rare (or absent)?

11. What limits the size of a stable nucleus?

12. What happens to the atomic number and mass number of a
nucleus when it (a) emits an alpha particle, (b) emits an
electron, (c) emits a position, (d) captures an electron?

13. Which nucleus would you expect to be more stable, 7
3Li or 8

3Li;
13

6C or 15
6C?

14. Both 14
8O and 19

8O undergo beta decay. Which would you
expect to emit a positron and which an electron? Why?

11.4 Binding Energy

15. Find the binding energy per nucleon in 20
10Ne and in 56

26Fe.

16. Find the binding energy per nucleon in 79
35Br and in 197

79Au.

17. Find the energies needed to remove a neutron from 4
2He, then

to remove a proton, and finally to separate the remaining
neutron and proton. Compare the total with the binding energy
of 4

2He.

18. The binding energy of 24
12Mg is 198.25 MeV. Find its atomic mass.

19. Show that the potential energy of two protons 1.7 fm (the
maximum range of nuclear forces) apart is of the correct order
of magnitude to account for the difference in binding energy
between 3

1H and 3
2He. How does this result bear upon the

question of the dependence of nuclear forces on electric charge?

E X E R C I S E S

I hear, and I forget. I see, and I remember. I do, and I understand. —Anon.
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20. The neutron decays in free space into a proton and an electron.
What must be the minimum binding energy contributed by a
neutron to a nucleus in order that the neutron not decay inside
the nucleus? How does this figure compare with the observed
binding energies per nucleon in stable nuclei?

11.5 Liquid-Drop Model

21. Use the semiempirical binding-energy formula to calculate the
binding energy of 40

20Ca. What is the percentage discrepancy
between this figure and the actual binding energy?

22. Two nuclei with the same mass number for which Z1 � N2 and
Z2 � N1, so that their atomic numbers differ by 1, are called
mirror isobars; for example, 15

7N and 15
8O. The constant a3 in

the coulomb energy term of Eq. (11.18) can be evaluated from
the mass difference between two mirror isobars, one of which is
odd-even and the other even-odd (so that their pairing energies
are zero). (a) Derive a formula for a3 in terms of the mass
difference between two such nuclei, their mass number A, the
smaller atomic number Z of the pair, and the masses of the
hydrogen atom and the neutron. (Hint: First show that
(A � 2Z)2 � 1 for both nuclei.) (b) Evaluate a3 for the case of
the mirror isobars 15

7N and 15
8O.

23. The coulomb energy of Z protons uniformly distributed
throughout a spherical nucleus of radius R is given by

EC �

(a) On the assumption that the mass difference �M between a
pair of mirror isobars is entirely due to the difference �m
between the 1

1H and neutron masses and to the difference
between their coulomb energies, derive a formula for R in
terms of �M, �m, and Z, where Z is the atomic number
of the nucleus with the smaller number of protons. 
(b) Use this formula to find the radii of the mirror isobars
15

7N and 15
8O.

Z(Z � 1)e2

��
4��0R

3
�
5

24. Use the formula for Ec of Exercise 23 to calculate a3 in
Eq. (11.12). If this figure is not the same as the value of
0.60 MeV quoted in the text, can you think of any reasons for
the difference?

25. (a) Find the energy needed to remove a neutron from 81Kr,
from 82Kr, and from 83Kr. (b) Why is the figure for 82Kr so
different from the others?

26. Which isobar of A � 75 does the liquid-drop model suggest is
the most stable?

27. Use the liquid-drop model to establish which of the mirror
isobars 127

52Te and 127
53I decays into the other. What kind of

decay occurs?

11.6 Shell Model

28. According to the Fermi gas model of the nucleus, its protons and
neutrons exist in a box of nuclear dimensions and fill the lowest
available quantum states to the extent permitted by the exclusion
principle. Since both protons and neutrons have spins of �

1
2

� they
are fermions and obey Fermi-Dirac statistics. (a) Find an equation
for the Fermi energy in a nucleus under the assumption that A �
2Z. Note that the protons and neutrons must be considered sepa-
rately. (b) What is the Fermi energy in such a nucleus for R0 �

1.2 fm? (c) In heavier nuclei, A � 2Z. What effect will this have
on the Fermi energies for each type of particle?

29. A simplified model of the deuteron consists of a neutron and a
proton in a square potential well 2 fm in radius and 35 MeV
deep. Is this model consistent with the uncertainty principle?

11.7 Meson Theory of Nuclear Forces

30. Van der Waals forces are limited to very short ranges and do
not have an inverse-square dependence on distance, yet nobody
suggests that the exchange of a special mesonlike particle is
responsible for such forces. Why not?
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CHAPTER 12

Nuclear Transformations

12.1 RADIOACTIVE DECAY
Five kinds

12.2 HALF-LIFE
Less and less, but always some left

12.3 RADIOACTIVE SERIES
Four decay sequences that each end in a stable
daughter

12.4 ALPHA DECAY
Impossible in classical physics, it nevertheless
occurs

12.5 BETA DECAY
Why the neutrino should exist and how it was
discovered

12.6 GAMMA DECAY
Like an excited atom, an excited nucleus can
emit a photon

12.7 CROSS SECTION
A measure of the likelihood of a particular
interaction

12.8 NUCLEAR REACTIONS
In many cases, a compound nucleus is
formed first

12.9 NUCLEAR FISSION
Divide and conquer

12.10 NUCLEAR REACTORS
E0 � mc2 � $$$

12.11 NUCLEAR FUSION IN STARS
How the sun and stars get their energy

12.12 FUSION REACTORS
The energy source of the future?

APPENDIX: THEORY OF ALPHA DECAY

Interior of the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.
In December 1993 this reactor produced 6.2 MW of fusion power for 4 s from a deuterium-
tritium plasma confined by strong magnetic fields.
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D
espite the strength of the forces that hold nucleons together to form an atomic
nucleus, many nuclides are unstable and spontaneously change into other nu-
clides by radioactive decay. And all nuclei can be transformed by reactions

with nucleons or other nuclei that collide with them. In fact, all complex nuclei came
into being in the first place through successive nuclear reactions, some in the first few
minutes after the Big Bang and the rest in stellar interiors. The principal aspects of
radioactivity and nuclear reactions are considered in this chapter.

12.1 RADIOACTIVE DECAY

Five kinds

No single phenomenon has played so significant a role in the development of nu-
clear physics as radioactivity, which was discovered in 1896 by Antoine Becquerel.
Three features of radioactivity are extraordinary from the perspective of classical
physics:

1 When a nucleus undergoes alpha or beta decay, its atomic number Z changes and it
becomes the nucleus of a different element. Thus the elements are not immutable, although
the mechanism of their transformation would hardly be recognized by an alchemist.
2 The energy liberated during radioactive decay comes from within individual nuclei
without external excitation, unlike the case of atomic radiation. How can this happen?
Not until Einstein proposed the equivalence of mass and energy could this puzzle be
understood.
3 Radioactive decay is a statistical process that obeys the laws of chance. No cause-
effect relationship is involved in the decay of a particular nucleus, only a certain prob-
ability per unit time. Classical physics cannot account for such behavior, although it
fits naturally into the framework of quantum physics.

The radioactivity of an element arises from the radioactivity of one or more of its
isotopes. Most elements in nature have no radioactive isotopes, although such isotopes
can be prepared artificially and are useful in biological and medical research as “trac-
ers.” (The procedure is to incorporate a radionuclide in a chemical compound and fol-
low what happens to the compound in a living organism by monitoring the radiation
from the nuclide.) Other elements, such as potassium, have some stable isotopes and
some radioactive ones; a few, such as uranium, have only radioactive isotopes.

The early experimenters, among them Rutherford and his coworkers, distinguished three
components in the radiations from radionuclides (Figs. 12.1 and 12.2). These components

Nuclear Transformations 419

Gamma-ray path Magnetic field directed into paper

Alpha-particle path
Beta-particle path

Radium sampleLead box

x x x x x

x x x x x

x x x x x

x x x x x

Figure 12.1 The radiations from a radium sample may be analyzed with the help of a magnetic field.
Alpha particles are deflected to the left, hence they are positively charged; beta particles are deflected to
the right, hence they are negatively charged; and gamma rays are not affected, hence they are unchanged.
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Antoine-Henri Becquerel (1852–
1908) was born and educated in
Paris. His grandfather, father, and
son were also physicists, all of
them in turn professors at the Paris
Museum of Natural History. Like
his grandfather and father, Bec-
querel specialized in fluorescence
and phosphorescence, phenomena
in which a substance absorbs light
at one frequency and reemits it at
another, lower frequency.

In 1895 Roentgen had detected x-rays by the fluorescence they
cause in an appropriate material. When he learned of this early in
1896, Becquerel wondered whether the reverse process might not

420 Chapter Twelve

Cardboard Aluminum Lead

α

β

γ

Figure 12.2 Alpha particles from radioactive materials are stopped by a piece of cardboard. Beta
particles penetrate the cardboard but are stopped by a sheet of aluminum. Even a thick slab of lead
may not stop all the gamma rays.

occur, with intense light stimulating a fluorescent material to give
off x-rays. He placed a fluorescent uranium salt on a photographic
plate covered with black paper, exposed the arrangement to the
sun, and indeed found the plate fogged when he had developed it.
Becquerel then tried to repeat the experiment, but clouds obscured
the sun for several days. He developed the plates anyway, expect-
ing them to be clear, but to his surprise they were just as fogged as
before. In a short time he had identified the source of the pene-
trating radiation as the uranium in the fluorescent salt. He was also
able to show that the radiation ionized gases and that part of it con-
sisted of fast charged particles.

Although Becquerel’s discovery was accidental, he realized
its importance at once and explored various aspects of the ra-
dioactivity of uranium for the rest of his life. He received the
Nobel Prize in physics in 1903.

Table 12.1 Radioactive Decay†

Decay Transformation Example

Alpha decay Z
AX → A�4

Z�2Y � 4
2He 92

238U → 234
90Th � 4

2He
Beta decay Z

AX → Z�1
AY � e�

6
14C → 14

7N � e�

Positron emission Z
AX → Z�1

AY � e� 64
29Cu → 64

28Ni � e�

Electron capture Z
AX � e� → Z�1

AY 64
29Cu � e�→ 64

28Ni
Gamma decay Z

AX* → Z
AX � � 87

38Sr* → 87
38Sr � �

†The * denotes an excited nuclear state and � denotes a gamma-ray photon.

were called alpha, beta, and gamma, which were eventually identified as 42He nuclei, elec-
trons, and high-energy photons respectively. Later, positron emission and electron capture
were added to the list of decay modes. Figure 12.3 shows the five ways in which an unstable
nucleus can decay, together with the reason for the instability. (The neutrinos given off when
nuclei emit or absorb electrons are discussed in Sec. 12.5.) Examples of the nuclear trans-
formations that accompany the various decays are given in Table 12.1.
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Nuclear Transformations 421

Gamma
decay

Alpha
decay

Beta
decay

Electron
capture

Positron
emission

Emission of positron
by proton in nucleus

changes the proton to a neutron

Capture of electron
by proton in nucleus

changes the proton to a neutron

Emission of electron
by neutron in nucleus

changes the neutron to a proton

Emission of alpha particle
reduces size of nucleus

Emission of gamma ray
reduces energy of nucleus

Proton (charge = +e)

Neutron (charge = 0)

Electron (charge = –e)

Positron (charge = +e)

= +

=+

= +

Original nucleus Decay event
Final

nucleus
Reason for
instability

Nucleus has
excess energy

Nucleus too
large

Nucleus has too
many neutrons
relative to number
of protons

Nucleus has too
many protons
relative to number
of neutrons

Nucleus has too
many protons
relative to number
of neutrons

Figure 12.3 Five kinds of radioactive decay.

Example 12.1

The helium isotope 6
2He is unstable. What kind of decay would you expect it to undergo?

Solution

The most stable helium nucleus is 4
2He, all of whose neutrons and protons are in the lowest

possible energy levels (see Sec. 11.3). Since 6
2He has four neutrons whereas 4

2He has only two,
the instability of 6

2He must be due to an excess of neutrons. This suggests that 6
2He undergoes

negative beta decay to become the lithium isotope 6
3Li whose neutron/proton ratio is more

consistent with stability:

6
2He S 6

3Li � e�

This is, in fact, the manner in which 6
2He decays.
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422 Chapter Twelve

Radiation Hazards

T he various radiations from radionuclides ionize matter through which they pass. X-ray ion-
ize matter, too. All ionizing radiation is harmful to living tissue, although if the damage is

slight, the tissue can often repair itself with no permanent effect. Radiation hazards are easy to
underestimate because there is usually a delay, sometimes of many years, between an exposure
and some of its possible consequences. These consequences include cancer, leukemia, and
changes in the DNA of reproductive cells that lead to children with physical deformities and
mental handicaps.

Activity

The activity of a sample of any radioactive nuclide is the rate at which the nuclei of
its constituent atoms decay. If N is the number of nuclei present in the sample at a
certain time, its activity R is given by

Activity R � � (12.1)

The minus sign is used to make R a positive quantity since dN�dt is, of course, in-
trinsically negative. The SI unit of activity is named after Becquerel:

1 becquerel � 1 Bq � 1 decay/s

The activities encountered in practice are usually so high that the megabecquerel 
(1 MBq � 106 Bq) and gigabecquerel (1 GBq � 109 Bq) are more often appropriate.

The traditional unit of activity is the curie (Ci), which was originally defined as the
activity of 1 g of radium, 226

88Ra. Because the precise value of the curie changed as
methods of measurement improved, it is now defined arbitrarily as

1 curie � 1 Ci � 3.70 � 1010 decays/s � 37 GBq

The activity of 1 g of radium is a few percent smaller. Ordinary potassium has an
activity of about 0.7 microcurie (1 �Ci � 10�6 Ci) per kilogram because it contains a
small proportion of the radioisotope 40

19K.

dN
�
dt

Radioactivity and the Earth

M ost of the energy responsible for the geological history of the earth can be traced to the
decay of the radioactive uranium, thorium, and potassium isotopes it contains. The earth

is believed to have come into being perhaps 4.5 billion years ago as a cold aggregate of smaller
bodies that consisted largely of metallic iron and silicate minerals that had been circling the sun.
Heat of radioactive origin accumulated in the interior of the infant earth and in time led to par-
tial melting. The influence of gravity then caused the iron to migrate inward to form the molten
core of today’s planet; the geomagnetic field comes from electric currents in this core. The lighter
silicates rose to form the rocky mantle around the core that makes up about 80 percent of the
earth’s volume. Most of the earth’s radioactivity is now concentrated in the upper mantle and
the crust (the relatively thin outer shell), where the heat it produces escapes and cannot collect
to remelt the earth. The steady stream of heat is more than enough to power the motions of the
giant plates into which the earth's surface is divided and the mountain building, earthquakes,
and volcanoes associated with these motions.
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Nuclear Transformations 423

Figure 12.4 The chief sources of radiation dosage averaged around the world. The total is 2.7 mSv,
but actual dosages vary widely. For instance, radon concentrations are not the same everywhere, some
people receive much more medical radiation than others, cosmic rays are more intense at high altitudes
(frequent fliers may get double the sea-level dose, residents of high-altitude cities up to five times as
much), and so on. Nuclear power stations are responsible for less than 0.1 percent of the total, though
accidents can raise the amount in affected areas to dangerous levels.

Radiation dosage is measured in sieverts (Sv), where 1 Sv is the amount of any radiation
that has the same biological effect as those produced when 1 kg of body tissue absorbs 1 joule
of x-rays or gamma rays. Although radiobiologists disagree about the exact relationship 
between radiation exposure and the likelihood of developing cancer, there is no question that
such a link exists. The International Commission on Radiation Protection estimates an aver-
age risk factor of 0.05 Sv�1. This means that the chances of dying from cancer as a result of
radiation are 1 in 20 for a dose of 1 Sv, 1 in 20,000 for a dose of 1 mSv (1 mSv � 0.001 Sv),
and so on.

Figure 12.4 shows the chief sources of radiation dosage on a worldwide basis. The most
important single source is the radioactive gas radon, a decay product of radium whose own origin
traces back to the decay of uranium. Uranium is found in many common rocks, notably granite.
Hense radon, colorless and odorless, is present nearly everywhere, though usually in amounts too
small to endanger health. Problems arise when houses are built in uranium-rich regions, since it
is impossible to prevent radon from entering such houses from the ground under them. Surveys
show that millions of American homes have radon concentrations high enough to pose a
nonneglible cancer risk. As a cause of lung cancer, radon is second only to cigarette smoking.
The most effective method of reducing radon levels in an existing house in a hazardous region
seems to be to extract air with fans from underneath the ground floor and disperse it into the
atmosphere before it can enter the house.

Other natural sources of radiation dosage include cosmic rays from space and radionuclides
present in rocks, soil, and building materials. Food, water, and the human body itself contain
small amounts of radionuclides of such elements as potassium and carbon.

Many useful processes involve ionizing radiation. Some employ such radiation directly, as
in the x-rays and gamma rays used in medicine and industry. In other cases the radiation is
an unwanted but inescapable byproduct, notably in the operation of nuclear reactors and in
the disposal of their wastes. In many countries the dose limit for workers (about 9 million
wordwide) whose jobs involve ionizing radiation is 20 mSv per year. For the general public,
which has no choice in the matter, the dose limit for nonbackground radiation is 1 mSv
per year.

An appropriate balance between risk and benefit is not always easy to find where radiation
is concerned. This seems particularly true for medical x-ray exposures, many of which are made
for no strong reason and do more harm than good. The once “routine” x-raying of symptom-
less young women to search for breast cancer is now generally believed to have increased, not
decreased, the overall death rate due to cancer. Particularly dangerous is the x-raying of pregnant
women, until not long ago another “routine” procedure, which dramatically increases the chance
of cancer in their children. Of course, x-rays have many valuable applications in medicine. The

Radon

Medical x-rays and nuclear medicine

Diet

Cosmic rays

Radionuclides in rock, soil, and buildings

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Millisieverts per person per year

bei48482_ch12.qxd  4/8/03  20:20  Page 423 RKAUL-7 Rkaul-07:Desktop Folder:bei:



424 Chapter Twelve

0 10 15 20 25

Time t, h

A
ct

iv
it

y 
R

  Half-life = T1/2 = 5.00 h
Mean life = T = 7.20 h

5

Figure 12.5 The activity of a radionuclide decreases exponentially with time. The half-life is the time
needed for an initial activity to drop by half. The mean life of a radionuclide is 1.44 times its half-life
[Eq. (12.7)].

12.2 HALF-LIFE

Less and less, but always some left

Measurements of the activities of radioactive samples show that, in every case, they fall
off exponentially with time. Figure 12.5 is a graph of R versus t for a typical radionuclide.
We note that in every 5.00-h period, regardless of when the period starts, the activity
drops to half of what it was at the start of the period. Accordingly the half-life T1�2 of
the nuclide is 5.00 h.

Every radionuclide has a characteristic half-life. Some half-lives are only a millionth
of a second, others are billions of years. One of the major problems faced by nuclear
power plants is the safe disposal of radioactive wastes since some of the nuclides present
have long half-lives.

The behavior illustrated in Fig. 12.5 means that the time variation of activity follows
the formula

Activity law R � R0e��t (12.2)

where �, called the decay constant, has a different value for each radionuclide. The
connection between decay constant � and half-life T1�2 is easy to find. After a half-
life has elapsed, that is, when t � T1�2, the activity R drops to �

1
2

�R0 by definition. Hence

�
1
2

�R0 � R0e��T1�2

e�T1�2 � 2

point is that every exposure should have a definite justification that outweights the risk in-
volved. An ordinary chest x-ray using modern equipment involves a radiation dose of about
0.017 mSv, much less than in the past. However, a CT chest scan (Sec. 2.5) involves the
considerable dose of 8 mSv. CT scans of children pose especially serious risks and need equally
serious justification.
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Taking natural logarithms of both sides of this equation,

�T1�2 � ln 2

Half-life T1�2 � � (12.3)

The decay constant of the radionuclide whose half-life is 5.00 h is therefore

� � � � 3.85 � 10�5 s�1

The larger the decay constant, the greater the chance a given nucleus will decay in a
certain period of time.

The activity law of Eq. (12.2) follows if we assume a constant probability � per unit
time for the decay of each nucleus of a given nuclide. With � as the probability per
unit time, � dt is the probability that any nucleus will undergo decay in a time interval
dt. If a sample contains N undecayed nuclei, the number dN that decay in a time dt is
the product of the number of nuclei N and the probability � dt that each will decay in
dt. That is,

dN � �N� dt (12.4)

where the minus sign is needed because N decreases with increasing t.
Equation (12.4) can be rewritten

� �� dt

and each side can now be integrated:

�N

N0

� ���t

0
dt

ln N � ln N0 � ��t

Radioactive decay N � N0e��t (12.5)

This formula gives the number N of undecayed nuclei at the time t in terms of the
decay probability per unit time � of the nuclide involved and the number N0 of
undecayed nuclei at t � 0.

Figure 12.6 illustrates the alpha decay of the gas radon, 222
86Rn, whose half-life is

3.82 days, to the polonium isotope 218
84Po. If we start with 1.00 mg of radon in a closed

container, 0.50 mg will remain after 3.82 days, 0.25 mg will remain after 7.64 days,
and so on.

Example 12.2

How long does it take for 60.0 percent of a sample of radon to decay?

dN
�
N

dN
�
N

0.693
��
(5.00 h)(3600 s/h)

0.693
�
T1�2

0.693
�

�

ln 2
�

�
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Solution

From Eq. (12.5)

� e��t ��t � ln �t � ln

t � ln

Here � � 0.693�T1�2 � 0.693�3.82 d and N � (1 � 0.600) N0 � 0.400N0, so that

t � ln � 5.05 d

The fact that radioactive decay follows the exponential law of Eq. (12.2) implies
that this phenomenon is statistical in nature. Every nucleus in a sample of a radionu-
clide has a certain probability of decaying, but there is no way to know in advance
which nuclei will actually decay in a particular time span. If the sample is large enough—
that is, if many nuclei are present—the actual fraction of it that decays in a certain
time span will be very close to the probability for any individual nucleus to decay.

To say that a certain radioisotope has a half-life of 5 h, then, signifies that every
nucleus of this isotope has a 50 percent change of decaying in every 5-h period. This
does not mean a 100 percent probability of decaying in 10 h. A nucleus does not have
a memory, and its decay probability per unit time is constant until it actually does
decay. A half-life of 5 h implies a 75 percent probability of decay in 10 h, which
increases to 87.5 percent in 15 h, to 93.75 percent in 20 h, and so on, because in
every 5-h interval the probability is 50 percent.

It is worth keeping in mind that the half-life of a radionuclide is not the same as
its mean lifetime T�. The mean lifetime of a nuclide is the reciprocal of its decay
probability per unit time:

T� � (12.6)
1
�
�

1
�
0.400

3.82 d
�
0.693

N0
�
N

1
�
�

N0
�
N

N
�
N0

N
�
N0
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Figure 12.6 The alpha decay of 222Rn to 218Po has a half-life of 3.8 d. The sample of radon whose
decay is graphed here had an initial mass of 1.0 mg.
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Hence

Mean lifetime T� � � � 1.44T1�2 (12.7)

T� is nearly half again more than T1�2. The mean lifetime of a radionuclide whose half-
life is 5.00 h is

T� � 1.44T1�2 � (1.44)(5.00 h) � 7.20 h

Since the activity of a radioactive sample is defined as

R � �

we see that, from Eq. (12.5),

R � �N0e��t

This agrees with the activity law of Eq. (12.2) if R0 � �N0, or, in general, if

Activity R � �N (12.8)

Example 12.3

Find the activity of 1.00 mg of radon, 222Rn, whose atomic mass is 222 u.

Solution

The decay constant of radon is

� � � � 2.11 � 10�6 s�1

The number N of atoms in 1.00 mg of 222Rn is

N � � 2.71 � 1018 atoms

Hence

R � �N � (2.11 � 10�6 s�1)(2.71 � 1018 nuclei)

� 5.72 � 1012 decays/s � 5.72 TBq � 155 Ci

Example 12.4

What will the activity of the above radon sample be exactly one week later?

Solution

The activity of the sample decays according to Eq. (12.2). Since R0 � 155 Ci here and

�t � (2.11 � 10�6 s�1)(7.00 d)(86,400 s �d) � 1.28

we find that

R � R0e��t � (155 Ci)e�1.28 � 43 Ci

1.00 � 10�6 kg
���
(222 u)(1.66 � 10�27 kg/u)

0.693
���
(3.8 d)(86,400 s �d)

0.693
�
T1�2

dN
�
dt

T1�2
�
0.693

1
�
�
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Radiometric Dating

Radioactivity makes it possible to establish the ages of many geological and bio-
logical specimens. Because the decay of any particular radionuclide is independent
of its environment, the ratio between the amounts of that nuclide and its stable
daughter in a specimen depends on the latter’s age. The greater the proportion of
the daughter nuclide, the older the specimen. Let us see how this procedure is used
to date objects of biological origin using radiocarbon, the beta-active carbon 
isotope 14

6C.
Cosmic rays are high-energy atomic nuclei, chiefly protons, that circulate through

the Milky Way galaxy of which the sun is a member. About 1018 of them reach the
earth each second. When they enter the atmosphere, they collide with the nuclei of
atoms in their paths to produce showers of secondary particles. Among these second-
aries are neutrons that can react with nitrogen nuclei in the atmosphere to form ra-
diocarbon with the emission of a proton:

14
7N � 1

0n S 14
6C � 1

1H

The proton picks up an electron and becomes a hydrogen atom. Radiocarbon has too
many neutrons for stability and beta decays into 14

7N with a half-life of about 5760
years. Although the radiocarbon decays steadily, the cosmic-ray bombardment con-
stantly replenishes the supply. A total of perhaps 90 tons of radiocarbon is distributed
around the world at the present time.

Shortly after their formation, radiocarbon atoms combine with oxygen molecules to
form carbon dioxide molecules. Green plants take in carbon dioxide and water which
they convert into carbohydrates in the process of photosynthesis, so that every plant
contains some radiocarbon. Animals eat plants and thereby become radioactive them-
selves. Because the mixing of radiocarbon is efficient, living plants and animals all have
the same ratio of radiocarbon to ordinary carbon (12C).

When plants and animals die, however, they no longer take in radiocarbon atoms,
but the radiocarbon they contain keeps decaying away to 14N. After 5760 years, then,
they have only one-half as much radiocarbon left—relative to their total carbon
content—as they had as living matter, after 11,520 years only one-fourth as much, and
so on. By determining the proportion of radiocarbon to ordinary carbon it is therefore
possible to evaluate the ages of ancient objects and remains of organic origin. This
elegant method permits the dating of mummies, wooden implements, cloth, leather,
charcoal from campfires, and similar artifacts from ancient civilizations as much as
50,000 years old, about nine half-lives of 14C.

Example 12.5

A piece of wood from the ruins of an ancient dwelling was found to have a 14C activity of 13
disintegrations per minute per gram of its carbon content. The 14C activity of living wood is 16
disintegrations per minute per gram. How long ago did the tree die from which the wood sample
came?

Formation of
radiocarbon
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Solution

If the activity of a certain mass of carbon from a plant or animal that was recently alive is R0

and the activity of the same mass of carbon from the sample to be dated is R, then from Eq. (12.2)

R � R0e��t

To solve for the age t we proceed as follows:

e�t � �t � ln t � ln

From Eq. (12.3) the decay constant � of radiocarbon is � � 0.693�T1�2 � 0.693�5760 y. Here
R0�R � 16�13 and so

t � ln � ln � 1.7 � 103 y

Radiocarbon dating is limited to about 50,000 years whereas the earth’s history goes
back 4.5 or so billion years Geologists accordingly use radionuclides of much longer
half-lives to date rocks (Table 12.2). In each case it is assumed that all the stable daugh-
ter nuclides found in a particular rock sample came from the decay of the parent
nuclide. Although the thorium and uranium isotopes in the table do not decay in a
single step as do 40K and 87Rb, the half-lives of the intermediate products are so short
compared with those of the parents that only the latter need be considered.

If the number of atoms of a parent nuclide in a sample is N and the number of
atoms of both parent and daughter is N0, then from Eq. (12.5)

Geological dating t � ln

The precise significance of the time t depends on the nature of the rock involved. It
may refer to the time at which the minerals of the rock crystallized, for instance, or it
may refer to the most recent time at which the rock cooled below a certain temperature.

The most ancient rocks whose ages have been determined are found in Greenland and
are believed to be 3.8 billion years old. Lunar rocks and meteorites as well as terrestrial
rocks have been dated by the methods of Table 12.2. Some lunar samples apparently so-
lidified 4.6 billion years ago, which is very soon after the solar system came into being.
Because the youngest rocks found on the moon are 3 billion years old, the inference is
that although the lunar surface was once molten and there were widespread volcanic erup-
tions for some time afterwards, all such activity must have ceased 3 billion years ago. To
be sure, the lunar surface has been disturbed in a variety of small-scale ways since it
cooled, but apparently meteoroid bombardment was responsible for most of them.

N0
�
N

1
�
�

16
�
13

5760 y
�
0.693

R0
�
R

1
�
�

R0
�
R

1
�
�

R0
�
R

R0
�
R
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Table 12.2 Geological Dating Methods

Parent Stable Daughter Half-Life,
Method Radionuclide Nuclide Billion Years

Potassium-argon 40K 40Ar 1.3
Rubidium-strontium 87Rb 87Sr 47
Thorium-lead 232Th 208Pb 13.9
Uranium-lead 235U 207Pb 0.7
Uranium-lead 238Pb 206Pb 4.5
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12.3   RADIOACTIVE SERIES

Four decay sequences that each end in a stable daughter

Most of the radionuclides found in nature are members of four radioactive series,
with each series consisting of a succession of daughter products all ultimately derived
from a single parent nuclide.

The reason that there are exactly four series follows from the fact that alpha decay re-
duces the mass number of a nucleus by 4. Thus the nuclides whose mass numbers are
all given by A � 4n, where n is an integer, can decay into one another in descending or-
der of mass number. The other three series have mass numbers specified by A � 4n �
1, 4n � 2, and 4n � 3. The members of these series, too, can decay into one another.

Table 12.3 lists the four radioactive series. The half-life of neptunium is so short
compared with the age of the solar system that members of this series are not found
on the earth today. They have, however, been produced in the laboratory by bombarding
other heavy nuclei with neutrons, as described later. The sequence of alpha and beta
decays that lead from parent to stable end product is shown in Fig. 12.7 for the uranium
series. The decay chain branches at 214Bi, which may decay either by alpha or beta
emission. The alpha decay is followed by a beta decay and the beta decay is followed
by an alpha decay, so both branches lead to 210Pb.
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Table 12.3 Four Radioactive Series

Half-Life, Stable End
Mass Numbers Series Parent Years Product

4n Thorium 232
90Th 1.39 � 1010 208

82Pb
4n � 1 Neptunium 237

93Np 2.25 � 106 209
83Bi

4n � 2 Uranium 238
92U 4.47 � 109 206

82Pb
4n � 3 Actinium 235

92U 7.07 � 108 207
82Pb

Astronaut Charles M. Duke, Jr., collecting rocks from the surface of the moon
during the Apollo 16 expedition in 1972. The rocks were dated radiometrically.
The youngest was found to be 3 billion years old, so igneous activity such as
volcanic eruptions must have stopped at that time.
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Marie Sklodowska Curie (1867–
1934) was born in Poland, at that
time under Russia’s oppressive
domination. Following high school,
she worked as a governess until she
was twenty-four so that she could
study science in Paris, where she
had barely enough money to
survive. In 1894 Marie married
Pierre Curie, eight years older and
already a noted physicist. In 1897,
just after the birth of her daughter
Irene (who was to win a Nobel

Prize in physics herself in 1935), Marie began to investigate
the newly discovered phenomenon of radioactivity—her
word—for her doctoral thesis.

The year before, Becquerel had found that uranium emitted
a mysterious radiation. Marie, after a search of all the known
elements, learned that thorium did so as well. She then
examined various minerals for radioactivity. Her studies
showed that the uranium ore pitchblende was far more
radioactive than its uranium content would suggest. Marie and
Pierre together went on to identify first polonium, named for

her native Poland, and then radium as the sources of the
additional activity. With the primitive facilities that were all
they could afford (they had to use their own money), they had
succeeded by 1902 in purifying a tenth of a gram of radium
from several tons of ore, a task that involved immense physical
as well as intellectual labor.

Together with Becquerel, the Curies shared the 1903 Nobel
Prize in physics. Pierre ended his acceptance speech with these
words: “One may also imagine that in criminal hands radium
might become very dangerous, and here one may ask if hu-
manity has anything to gain by learning the secrets of nature,
if it is ready to profit from them, or if this knowledge is not
harmful. . . . I am among those who think . . . that humanity
will obtain more good than evil from the new discoveries.”

In 1906 Pierre was struck and killed by a horse-drawn car-
riage in a Paris street. Marie continued work on radioactivity,
still in an inadequate laboratory, and won the Nobel Prize in
chemistry in 1911. Not until her scientific career was near an
end did she have proper research facilities. Even before Pierre’s
death, both Curies had suffered from ill health because of their
exposure to radiation, and much of Marie’s later life was marred
by radiation-induced ailments, including the leukemia from
which she died.

80 84 88 92

130

N
 =
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 Z

Z

α decay

β decay
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234Th

206Pb

210Po

210Pb

210Ti
214Po

214Pb

218Po

222Rn

226Ra

230Th

234U

234Pa
234Th

238U

214Bi

210Bi

Figure 12.7 The uranium decay series (A � 4n � 2). The decay of 214
83Bi may proceed either by alpha

emission and then beta emission or in the reverse order.
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Several alpha-radioactive nuclides whose atomic numbers are less than 82 are found
in nature, though they are not very abundant.

The intermediate members of each decay series have much shorter half-lives than
their parent nuclide. As a result, if we start with a sample of NA nuclei of a parent
nuclide A, after a period of time an equilibrium situation will come about in which
each successive daughter B, C, . . . decays at the same rate as it is formed. Thus the
activities RA, RB, RC, . . . are all equal at equilibrium, and since R � �N we have

NA�A � NB�B � NC�C � . . . (12.9)

Each number of atoms NA, NB, NC, . . . decreases exponentially with the decay con-
stant �A of the parent nuclide, but Eq. (12.9) remains valid at any time. Equation (12.9)
can be used to establish the decay constant (or half-life) of any member of the series
if the decay constant of another member and their relative proportions in a sample are
known.

Example 12.6

The atomic ratio between the uranium isotopes 238U and 234U in a mineral sample is found to
be 1.8 � 104. The half-life of 234U is T1�2(234) � 2.5 � 105 y. Find the half-life of 238U.

Solution

Since T1�2 � 0.693��, from Eq. (12.9) we have

T1�2(238) � T1�2(234)

� (1.8 � 104)(2.5 � 105 y) � 4.5 � 109 y

This method is convenient for finding the half-lives of very long-lived and very short-lived
radionuclides that are in equilibrium with other radionuclides whose half-lives are easier to measure.

12.4   ALPHA DECAY

Impossible in classical physics, it nevertheless occurs

Because the attractive forces between nucleons are of short range, the total binding
energy in a nucleus is approximately proportional to its mass number A, the number
of nucleons it contains. The repulsive electric forces between protons, however, are of
unlimited range, and the total disruptive energy in a nucleus is approximately
proportional to Z2 [Eq. (11.12)]. Nuclei which contain 210 or more nucleons are so
large that the short-range nuclear forces that hold them together are barely able to
counterbalance the mutual repulsion of their protons. Alpha decay occurs in such nuclei
as a means of increasing their stability by reducing their size.

Why are alpha particles emitted rather than, say, individual protons or 3
2He nuclei?

The answer follows from the high binding energy of the alpha particle. To escape from
a nucleus, a particle must have kinetic energy, and only the alpha-particle mass is
sufficiently smaller than that of its constituent nucleons for such energy to be available. 

N(238)
�
N(234)

Radioactive
equilibrium
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To illustrate this point, we can compute, from the known masses of each particle
and the parent and daughter nuclei, the energy Q released when various particles are
emitted by a heavy nucleus. This is given by

Q � (mi � mf � mx)c
2 (12.10)

where mi � mass of initial nucleus
mf � mass of final nucleus
mx � particle mass

We find that the emission of an alpha particle in some cases is energetically possible,
but other decay modes would need energy supplied from outside the nucleus. Thus
alpha decay in 232

92U is accompanied by the release of 5.4 MeV, while 6.1 MeV would
be needed for a proton to be emitted and 9.6 MeV for a 3

2He nucleus to be emitted.
The observed disintegration energies in alpha decay agree with the predicted values
based upon the nuclear masses involved.

The kinetic energy KE� of the emitted alpha particle is never quite equal to the
disintegration energy Q because, since momentum must be conserved, the nucleus
recoils with a small amount of kinetic energy when the alpha particle emerges. It is
easy to show (see Exercise 23) from momentum and energy conservation that KE� is
related to Q and the mass number A of the original nucleus by

KE� � Q (12.11)

The mass numbers of nearly all alpha emitters exceed 210, and so most of the disin-
tegration energy appears as the kinetic energy of the alpha particle.

Example 12.7

The polonium isotope 210
84Po is unstable and emits a 5.30-MeV alpha particle. The atomic mass

of 210
84Po is 209.9829 u and that of 4

2He is 4.0026 u. Identify the daughter nuclide and find its
atomic mass.

Solution

(a) The daughter nuclide has an atomic number of Z � 84 � 2 � 82 and a mass number of
A � 210 � 4 � 206. Since Z � 82 is the atomic number of lead, the symbol of the daughter
nuclide is 206

82Pb.
(b) The disintegration energy that follows from an alpha-particle energy of 5.30 MeV is

Q � KE� � � �(5.30 MeV) � 5.40 MeV

The mass equivalent of this Q value is

mQ � � 0.0058 u

Hence

mf � mi � m� � mQ � 209.9829 u � 4.0026 u � 0.0058 u � 205.9745 u

5.40 MeV
��
931 MeV/u

210
�
210 � 4

A
�
A � 4

A � 4
�

A

Alpha-particle
energy

Disintegration
energy
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Tunnel Theory of Alpha Decay

While a heavy nucleus can, in principle, spontaneously reduce its bulk by alpha decay,
there remains the problem of how an alpha particle can actually escape the nucleus.
Figure 12.8 is a plot of the potential energy U of an alpha particle as a function of its
distance r from the center of a certain heavy nucleus. The height of the potential barrier
is about 25 MeV, which is equal to the work that must be done against the repulsive
electric force to bring an alpha particle from infinity to a position adjacent to the nucleus
but just outside the range of its attractive forces. We may therefore regard an alpha
particle in such a nucleus as being inside a box whose walls require an energy of 25 MeV
to be surmounted. However, decay alpha particles have energies that range from 4 to
9 MeV, depending on the particular nuclide involved—16 to 21 MeV short of the energy
needed for escape.

Although alpha decay is inexplicable classically, quantum mechanics provides a
straightforward explanation. In fact, the theory of alpha decay, developed independently
in 1928 by Gamow and by Gurney and Condon, was greeted as an especially striking
confirmation of quantum mechanics. 

In the Appendix to this chapter we shall find that even a simplified treatment of
the problem of the escape of an alpha particle from a nucleus gives results in agree-
ment with experiment. Gurney and Condon made these observations in their paper:
“It has hitherto been necessary to postulate some special arbitrary ‘instability’ of the
nucleus; but in the following note it is pointed out that disintegration is a natural con-
squence of the laws of quantum mechanics without any special hypothesis. . . . Much
has been written about the explosive violence with which the �-particle is hurled from
its place in the nucleus. But from the process pictured above, one would rather say
that the particle slips away almost unnoticed.” 
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(a)   (b)

Alpha particle
cannot escape
(classically)

Potential energy of
alpha particle

Alpha particle cannot
enter (classically)

Kinetic energy of
alpha particle

r
R0

0

Energy

Wave function of
alpha particle

r
R0

0

Energy

Figure 12.8 (a) In classical physics, an alpha particle whose kinetic energy is less than the height of the potential barrier around a nucleus
cannot enter or leave the nucleus, whose radius is R0. (b) In quantum physics, such an alpha particle can tunnel through the potential
barrier with a probability that decreases with the height and thickness of the barrier.

bei48482_ch12.qxd  1/23/02  12:07 AM  Page 434 RKAUL-9 RKAUL-9:Desktop Folder:



Nuclear Transformations 435

George Gamow (1904–1968),
born and educated in Russia, did
his first important work at Göttin-
gen in 1928 when he developed
the theory of alpha decay, the first
application of quantum mechanics
to nuclear physics. (Edward U.
Condon and Ronald W. Gurney,
working together, arrived at the
same theory independently of
Gamow at about the same time).
In 1929 he proposed the liquid-

drop model of the nucleus. After periods in Copenhagen,

Cambridge, and Leningrad, Gamow went to the United States
in 1934 where he was first at George Washington University
and later at the University of Colorado. In 1936 Gamow
collaborated with Edward Teller on an extension of Fermi’s
theory of beta decay. Much of his later research was concerned
with astrophysics, notably on the evolution of stars, where he
showed that as a star uses up its supply of hydrogen in ther-
monuclear reactions, it becomes hotter, not cooler. Gamow also
did important work on the origin of the universe (he and his
students predicted the 2.7-K remnant radiation from the Big
Bang) and on the formation of the elements. His books for the
general public introduced many people to the concepts of
modern physics.

The basic notions of this theory are:

1 An alpha particle may exist as an entity within a heavy nucleus.
2 Such a particle is in constant motion and is held in the nucleus by a potential
barrier.
3 There is a small—but definite—likelihood that the particle may tunnel through the
barrier (despite its height) each time a collision with it occurs.

According to the last assumption, the decay probability per unit time � can be
expressed as

Decay constant � � �T (12.12)

Here � is the number of times per second an alpha particle within a nucleus strikes
the potential barrier around it and T is the probability that the particle will be
transmitted through the barrier.

If we suppose that at any moment only one alpha particle exists as such in a nucleus
and that it moves back and forth along a nuclear diameter,

Collision frequency � � (12.13)

where � is the alpha-particle velocity when it eventually leaves the nucleus and R0 is
the nuclear radius. Typical values of � and R0 might be 2 � 107 m/s and 10�14 m
respectively, so that

� � 1021 s�1

The alpha particle knocks at its confining wall 1021 times per second and yet may have
to wait an average of as much as 1010 y to escape from some nuclei!

As developed in the Appendix to this chapter, the tunnel theory for the decay
constant � gives the formula

log10 � � log10 � � � 1.29Z1�2R0
1�2 � 1.72ZE�1�2 (12.14)

�
�
2R0

Alpha decay
constant

�
�
2R0
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Here � is the alpha-particle velocity in m/s and E its energy in MeV, R0 is the nuclear
radius in fermis, and Z is the atomic number of the daughter nucleus. Figure 12.9 is a
plot of log10 � versus ZE�1�2 for a number of alpha-radioactive nuclides. The straight
line fitted to the experimental data has the �1.72 slope predicted throughout the entire
range of decay constants. We can use the position of the line to determine R0, the nuclear
radius. The result is just about what is obtained from nuclear scattering experiments.
This approach thus constitutes an independent means of determining nuclear sizes.

Equation (12.14) predicts that the decay constant �, and hence the half-life, should
vary strongly with the alpha-particle energy E. This is indeed the case. The slowest
decay is that of 232

90Th, whose half-life is 1.3 � 1010 y, and the fastest decay is that of
212

84Po, whose half-life is 3.0 � 10�7 s. Whereas its half-life is 1024 greater, the alpha-
particle energy of 232

90Th (4.05 MeV) is only about half that of 212
84Po (8.95 MeV).

12.5 BETA DECAY

Why the neutrino should exist and how it was discovered

Like alpha decay, beta decay is a means whereby a nucleus can alter its composition
to become more stable. Also like alpha decay, beta decay has its puzzling aspects: the
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Figure 12.9 Experimental verification of the theory of alpha decay.
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Figure 12.10 Energy spectrum of electrons from the beta decay of 210
83Bi.

conservation principles of energy, linear momentum, and angular momentum are all
apparently violated in beta decay.

1 The electron energies observed in the beta decay of a particular nuclide are found
to vary continuously from 0 to a maximum value KEmax characteristic of the nuclide.
Figure 12.10 shows the energy spectrum of the electrons emitted in the beta decay of
210

83Bi; here KEmax � 1.17 MeV. The maximum energy

Emax � mc2 � KEmax

carried off by the decay electron is equal to the energy equivalent of the mass difference
between the parent and daughter nuclei. Only seldom, however, is an emitted electron
found with an energy of KEmax.
2 When the directions of the emitted electrons and of the recoiling nuclei are observed,
they are almost never exactly opposite as required for linear momentum to be conserved.
3 The spins of the neutron, proton, and electron are all �

1
2

�. If beta decay involves just
a neutron becoming a proton and an electron, spin (and hence angular momentum)
is not conserved.

In 1930 Pauli proposed a “desperate remedy”: if an uncharged particle of small or
zero rest mass and spin �

1
2

� is emitted in beta decay together with the electron, the above
discrepancies would not occur. This particle, later called the neutrino (“little neutral
one”) by Fermi, would carry off an energy equal to the difference between KEmax and
the actual KE of the electron (the recoiling nucleus carries away negligible KE). The
neutrino’s linear momentum also exactly balances those of the electron and the recoiling
daughter nucleus.

Subsequently it was found that two kinds of neutrinos are involved in beta decay, the
neutrino itself (symbol �) and the antineutrino (symbol ��). The distinction between
them is discussed in Chap. 13. In ordinary beta decay it is an antineutrino that is emitted:

Beta decay n → p � e� � �� (12.15)
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The neutrino hypothesis has turned out to be completely successful. The neutrino
mass was not expected to be more than a small fraction of the electron mass because
KEmax is observed to be equal (within experimental error) to the value calculated
from the parent-daughter mass difference. The neutrino mass is now believed to be
the mass equivalent of at most a few electronvolts. The interaction of neutrinos with
matter is extremely feeble. Lacking charge and mass, and not electromagnetic in
nature as is the photon, the neutrino can pass unimpeded through vast amounts of
matter. A neutrino would have to pass through over 100 light-years of solid iron on
the average before interacting! The only interaction with matter a neutrino can
experience is through a process called inverse beta decay, which we shall consider
shortly. Neutrinos are believed to outnumber protons in the universe by about a
billion to one. 
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A positron emission tomography (PET) scan of the brain of a patient with Alzheimer’s disease.
The lighter the area, the higher the rate of metabolic activity. In PET, a suitable positron-emitting
radionuclide (here the oxygen isotope 15O) is injected and allowed to circulate in a patient’s body.
When a positron encounters an electron, which it does almost at once after being emitted, both
are annihilated. From the directions of the resulting pair of gamma rays the location of the an-
nihilation, and hence of the emitting nucleus, can be found. In this way, a map that is accurate
to several millimeters of the concetration of the radionuclide can be built up. In a normal brain,
metabolic activity produces a similar PET pattern in each hemisphere; here, the irregular
appearance of the scan indicates degeneration of brain tissue.
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Positions were discovered in 1932 and two years later were found to be
spontaneously emitted by certain nuclei. The properties of the positron are identical
with those of the electron except that it carries a charge of �e instead of �e. Positron
emission corresponds to the conversion of a nuclear proton into a neutron, a positron,
and a neutrino:

Positron emission p → n � e� � � (12.16)

Whereas a neutron outside a nucleus undergoes negative beta decay into a proton (half-
life � 10 min 16 s) because its mass is greater than that of the proton, the lighter
proton cannot be transformed into a neutron except within a nucleus. Positron emis-
sion leads to a daughter nucleus of lower atomic number Z while leaving the mass
number A unchanged.

Closely connected with positron emission is electron capture. In electron capture
a nucleus absorbs one of its inner atomic electrons, with the result that a nuclear
proton becomes a neutron and a neutrino is emitted:

Electron capture p � e� → n � � (12.17)

Usually the absorbed electron comes from the K shell, and an x-ray photon is emitted
when one of the atom’s outer electrons falls into the resulting vacant state. The wave-
length of the photon will be one of those characteristic of the daughter element, not
of the original one, and the process can be recognized on this basis.

Electron capture is competitive with positron emission since both processes lead to
the same nuclear transformation. Electron capture occurs more often than positron
emission in heavy nuclides because the electrons in such nuclides are relatively close
to the nucleus, which promotes their interaction with it. Since nearly all the unstable
nuclei found in nature are of high Z, positron emission was not discovered until several
decades after electron emission had been established.

Inverse Beta Decay

By comparing Eqs. (12.16) and (12.17) we see that electron capture by a nuclear proton
is equivalent to a proton’s emission of a positron. Similarly the absorption of an
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The Weak Interaction

T he  nuclear interaction that holds nucleons together to form nuclei cannot account for beta
decay. Another short-range fundamental interaction turns out to be responsible: the weak

interaction. Insofar as the structure of matter is concerned, the role of the weak interaction
seems to be confined to causing beta decays in nuclei whose neutron/proton ratios are not ap-
propriate for stability. This interaction also affects elementary particles that are not part of a nu-
cleus and can lead to their transformation into other particles. The name “weak interaction” arose
because the other short-range force affecting nucleons is extremely strong, as the high binding
energies of nuclei attest. The gravitational interaction is weaker than the weak interaction at
distances where the latter is a factor.

Thus four fundamental interactions are apparently sufficient to govern the structure and be-
havior of the entire physical universe, from atoms to galaxies of stars. In order of increasing
strength they are gravitational, weak nuclear, electromagnetic, and strong nuclear. These inter-
actions and how they are related to one another and to the origin and evolution of the universe
will be discussed in Chap. 13.
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antineutrino is equivalent to the emission of a neutrino, and vice versa. The latter
reactions are called inverse beta decays:

Inverse beta decay
p � �� → n � e� (12.18a)

n � � → p � e� (12.18b)

Inverse beta decays have extremely low probabilities, which is why neutrinos and
antineutrinos are able to pass through such vast amounts of matter, but these
probabilities are not zero. Starting in 1953, a series of experiments was carried out by
F. Reines, C. L. Cowan, and others to detect the considerable flux of neutrinos (actu-
ally antineutrinos) from the beta decays that occur in a nuclear reactor. A tank of wa-
ter containing a cadmium compound in solution supplied the protons which were to
interact with the incident neutrinos. Surrounding the tank were gamma-ray detectors.
Immediately after a proton absorbed a neutrino to yield a positron and a neutron, as
in Eq. (12.18a), the positron encountered an electron and both were annihilated. The
gamma-ray detectors responded to the resulting pair of 0.51-MeV photons. Meanwhile
the newly formed neutron migrated through the solution until, after a few microsec-
onds, it was captured by a cadmium nucleus. The new, heavier cadmium nucleus then
released about 8 MeV of excitation energy divided among three or four photons, which
were picked up by the detectors several microseconds after those from the positron-
electron annihilation. In principle, then, the arrival of this sequence of photons at the
detector is a sure sign that the reaction of Eq. (12.18a) has occurred. To avoid any un-
certainty, the experiment was performed with the reactor alternately on and off, and
the expected variation in the frequency of neutrino-capture events was observed. In
this way the neutrino hypothesis was confirmed.

12.6 GAMMA DECAY

Like an excited atom, an excited nucleus can emit a photon

A nucleus can exist in states whose energies are higher than that of its ground state,
just as an atom can. An excited nucleus is denoted by an asterisk after its usual symbol,
for instance 87

38Sr*. Excited nuclei return to their ground states by emitting photons
whose energies correspond to the energy differences between the various initial and
final states in the transitions involved. The photons emitted by nuclei range in energy
up to several MeV, and are traditionally called gamma rays.

A simple example of the relationship between energy levels and decay schemes is
shown in Fig. 12.11, which pictures the beta decay of 27

12Mg to 27
13Al. The half-life of

the decay is 9.5 min, and it may take place to either of the two excited states of 27
13Al.

The resulting 27
13Al* nucleus then undergoes one or two gamma decays to reach the

ground state.
As an alternative to gamma decay, an excited nucleus in some cases may return to

its ground state by giving up its excitation energy to one of the atomic electrons around
it. While we can think of this process, which is known as internal conversion, as a
kind of photoelectric effect in which a nuclear photon is absorbed by an atomic electron,
it is in better accord with experiment to regard internal conversion as representing a
direct transfer of excitation energy from a nucleus to an electron. The emitted electron
has a kinetic energy equal to the lost nuclear excitation energy minus the binding energy
of the electron in the atom.
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Most excited nuclei have very short half-lives against gamma decay, but a few remain
excited for as long as several hours. The analogy with metastable atomic states is a
close one. A long-lived excited nucleus is called an isomer of the same nucleus in its
ground state. The excited nucleus 87

38Sr* has a half-life of 2.8 h and is accordingly an
isomer of 87

38Sr.

12.7 CROSS SECTION

A measure of the likelihood of a particular interaction

Most of what is known about atomic nuclei has come from experiments in which
energetic bombarding particles collide with stationary target nuclei. A very con-
venient way to express the probability that a bombarding particle will interact in a
certain way with a target particle employs the idea of cross section that was intro-
duced in the Appendix to Chap. 4 in connection with the Rutherford scattering
experiment.

What we do is imagine each target particle as presenting a certain area, called its
cross section, to the incident particles, as in Fig. 12.12. Any incident particle that is
directed at this area interacts with the target particle. Hence the greater the cross section,
the greater the likelihood of an interaction. The interaction cross section of a target
particle varies with the nature of the process involved and with the energy of the
incident particle; it may be greater or less than the geometrical cross section of the
particle.

Suppose we have a slab of some material whose area is A and whose thickness is
dx (Fig. 12.13). If the material contains n atoms per unit volume, a total of nA dx nuclei
is in the slab, since its volume is A dx. Each nucleus has a cross section of � for some
particular interaction, so that the aggregate cross section of all the nuclei in the slab is
nA� dx. If there are N incident particles in a bombarding beam, the number dN that
interact with nuclei in the slab is therefore specified by

�

�

Cross section � n� dx (12.19)

nA� dx
�

A

dN
�
N

aggregate cross section
���

target area

Interacting particles
���

Incident particles
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Figure 12.11 Successive beta and gamma emissions in the decay of 27
12Mg to 27

13Al via 27
13Al*.
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Now we consider the same beam of particles incident on a slab of finite thickness
x. If each particle can interact only once, dN particles may be thought of as being
removed from the beam in passing through the first dx of the slab. Hence we need a
minus sign in Eq. (12.19), which becomes

� � n� dx
dN
�
N

442 Chapter Twelve

N – dN
particles
emerge

from slab

N incident
particles

n atoms/m3
Area = A

dN/N = nσ dxdx
σ = cross section/atom

Figure 12.13 The relationship between cross section and beam intensity.

Geometrical
cross section

Interaction
cross section

Target
nucleus

Only these
particles will

interact

Incident
particles

Figure 12.12 A geometrical interpretation of the concept of cross section. The interaction cross section
may be smaller than, equal to, or larger than the geometrical cross section. The cross section of a
nucleus for a particular interaction is a mathematical way to express the probability that the interaction
will occur when a certain particle is incident on the nucleus; the diagram here is nothing more than
a helpful visualization.
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Denoting the initial number of incident particles by N0, we have

�N

N0

� �n� �x

0
dx

ln N � ln N0 � �n�x (12.20)

Surviving particles N � N0e�n� x

The number of surviving particles N decreases exponentially with increasing slab
thickness x.

The customary unit for nuclear cross sections is the barn, where

1 barn � 1 b � 10�28 m2 � 100 fm2

Although not an SI unit, the barn is handy because it is of the same order of magnitude
as the geometrical cross section of a nucleus. The name comes from a more familiar
target cross-sectional area, the side of a barn.

The cross sections for most nuclear reactions depend on the energy of the incident
particle. Figure 12.14 shows how the neutron-capture cross section of 113

48Cd varies
with neutron energy. This reaction, in which the absorption of a neutron is followed
by the emission of a gamma ray, is usually expressed in shorthand form as

113Cd(n, �)114Cd

The narrow peak at 0.176 eV is a resonance effect associated with an excited state in
the 114Cd nucleus. Although the 113Cd isotope constitutes only 12 percent of natural
cadmium, its capture cross sections for slow neutrons are so great that cadmium is
widely used in control rods for nuclear reactors.

dN
�
N
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Figure 12.14 The cross section for the reaction 113Cd(n, �)114Cd varies strongly with neutron energy.
In this reaction a neutron is absorbed and a gamma ray is emitted.
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Example 12.8

A neutron passing through a body of matter and not absorbed in a nuclear reaction undergoes
frequent elastic collisions in which some of its kinetic energy is given up to nuclei in its path.
Very soon the neutron reaches thermal equilibrium, which means that it is equally likely to gain
or to lose energy in further collisions. At room temperature such a thermal neutron has an
average energy of �

3
2

�kT � 0.04 eV and a most probable energy of kT � 0.025 eV; the latter figure
is usually quoted as the energy of such neutrons.

The cross section of 113Cd for capturing thermal neutrons is 2 � 104 b, the mean atomic
mass of natural cadmium is 112 u, and its density is 8.64 g/cm3 � 8.64 � 103 kg/m3. (a) What
fraction of an incident beam of thermal neutrons is absorbed by a cadmium sheet 0.1 mm thick?
(b) What thickness of cadmium is needed to absorb 99 percent of an incident beam of thermal
neutrons?

Solution

(a) Since 113Cd constitutes 12 percent of natural cadmium, the number of 113Cd atoms per cubic
meter is

n � (0.12) 	 

� 5.58 � 1027 atoms �m3

The capture cross section is � � 2 � 104 b � 2 � 10�24 m2, so

n� � (5.58 � 1027 m�3)(2 � 10�24 m2) � 1.12 � 104 m�1

From Eq. (12.20), N � N0e�n� x, so the fraction of incident neutrons that is absorbed is

� � 1 � e�n�x

Since x � 0.1 mm � 10�4 m here,

� 1 � e(�1.12�104 m�1)(10�4 m) � 0.67

Two-thirds of the incident neutrons are absorbed.
(b) Since we are given that 1 percent of the incident neutrons pass through the cadmium sheet,
N � 0.01N0 and

� 0.01 � e�n� x

ln 0.01 � �n�x

x � � � 4.1 � 10�4 m � 0.41 mm

Cadmium is evidently a very efficient absorber of thermal neutrons.

The mean free path � of a particle in a material is the average distance it can travel
in the material before interacting there. Since e�n	x dx is the probability that a particle
interact in the interval dx at the distance x, we have, by the same reasoning as that

�ln 0.01
��
1.12 � 104 m�1

�ln 0.01
��

n�

N
�
N0

N0 � N
�

N0

N0 � N0e�n� x

��
N0

N0 � N
�

N0

8.64 � 103 kg/m3

����
(112 u/atom)(1.66 � 10�27 kg�u)
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used in Sec. 5.4,

�


0
xe�n� x dx

Mean free path � � � (12.21)
�


0
e�n� x dx

Example 12.9

Find the mean free path of thermal neutrons in 113Cd.

Solution

Since n� � 1.12 � 104 m�1 here, the mean free path is

� � � � 8.93 � 10�5m � 0.0893 mm
1

��
1.12 � 104m�1

1
�
n�

1
�
n�

Reaction Rate

When we know the cross section for a nuclear reaction caused by a beam of incident
particles, we can find the rate �N��t at which the reaction occurs in a given sample
of the target material. Let us consider a sample in the form of a slab of area A and
thickness x that contains n atoms/m3, with the particle beam incident normal to one
face of the slab. From Eq. (12.20)

� � (1 � e�n� x)

If the slab is thin enough so that none of the nuclear cross sections overlaps any others,
n�x �� 1. Since e�y � 1 � y for y �� 1, in this case

� � � n�x
N0
�
�t

�N
�
�t

N0
�
�t

N0 � N
�

�t

�N
�
�t

Slow Neutron Cross Sections

A lthough neutrons interact with nuclei only through short-range nuclear forces, reaction
cross sections for slow neutrons can be much greater than the geometrical cross sections

of the nuclei involved.The geometrical cross section of 113Cd is 1.06 b, for example but its cross
section for the capture of thermal neutrons is 20,000 b.

When we recall the wave nature of a moving neutron, though, such discrepancies become less
bizarre. The slower a neutron, the greater its de Broglie wavelength � and the larger the region of
space through which we must regard it as being spread out. A fast neutron with a wavelength
smaller than the radius R of a target nucleus behaves more or less like a particle when it interacts
with the nucleus. The cross section is then approximately geometrical, in the neighborhood of 	R2.
Less energetic neutrons behave more like wave packets and interact over larger areas. Although
cross sections in the latter case of 	�2 (which is over 107 b for a thermal neutron) are rare, cross
sections for nuclear reactions with slow neutrons greatly exceed 	R2, as we have seen.
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The flux 
 of the beam is the number of incident particles per unit area per unit
time, so 
A � N0��t is their number per unit time. Because Ax is the volume of the
sample, the total number of atoms it contains is n� � nAx. The reaction rate is there-
fore just

Reaction rate � (
A)(n�x) � 
n�� (12.22)

Example 12.10

Natural gold consists entirely of the isotope 197
79Au whose cross section for thermal neutron

capture is 99 b. When 197
79Au absorbs a neutron, the product is 198

79Au which is beta-radioactive
with a half-life of 2.69 d. How long should a 10.0-mg gold foil be exposed to a flux of 2.00 �
1016 neutrons/m2 � s in order for the sample to have an activity of 200 �Ci? Assume that the
irradiation period is much shorter than the half-life of 198

79Au so the decays that occur during
the irradiation can be neglected.

Solution

The decay constant of 198
79Au is

� � � 2.98 � 106 s�1

The required activity of R � �N� � 200�Ci � 2.00 � 10�4 Ci means that the number of 198
79Au

atoms must be

�N � � � 2.48 � 1012 atoms

The number of atoms in 10.0 mg � 1.00 � 10�5 kg of 197
79Au is

n� � � 3.06 � 1019 atoms

From Eq. (12.22) we find that

�t � �

� 409 s � 6 min 49 s

As we assumed, �t �� T1�2.

12.8 NUCLEAR REACTIONS

In many cases, a compound nucleus is formed first

When two nuclei come close together, a nuclear reaction can occur that results in new
nuclei being formed. Nuclei are positively charged and the repulsion between them
keeps them beyond the range where they can interact unless they are moving very fast
to begin with. In the sun and other stars, whose internal temperatures range up to

2.48 � 1012 atoms
�������
(2.00 � 1016 neutrons�m2 � s)(3.06 � 1024 atoms)(99 � 10�28 m2)

N
�

n��

1.00 � 10�5 kg
����
(197 u/atom)(1.66 � 10�27 kg�u)

(2.00 � 10�4 Ci)(3.70 � 1010 s�1�Ci)
����

2.98 � 106 s�1

R
�
�

0.693
���
(2.69 d)(86,400 s�d)

�N
�
�t
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millions of kelvins, many nuclei present have high enough speeds for reactions to be
frequent. Indeed, the reactions provide the energy that maintains these temperatures.

In the laboratory, it is easy to produce nuclear reactions on a small scale, either with
alpha particles from radionuclides or with protons or heavier nuclei accelerated in
various ways. But only one type of nuclear reaction has as yet proved to be a practical
source of energy on the earth, namely the fission of certain nuclei when struck by
neutrons.

Many nuclear reactions actually involve two separate stages. In the first, an incident
particle strikes a target nucleus and the two combine to form a new nucleus, called a
compound nucleus, whose atomic and mass numbers are respectively the sum of the
atomic numbers of the original particles and the sum of their mass numbers. This idea
was proposed by Bohr in 1936.

A compound nucleus has no memory of how it was formed, since its nucleons are
mixed together regardless of origin and the energy brought into it by the incident
particle is shared among all of them. A given compound nucleus may therefore be
formed in a variety of ways. To illustrate this, Fig. 12.15 shows six reactions whose
product is the compound nucleus 14

7N*. (The asterisk signifies an excited state.
Compound nuclei are always excited by amounts equal to at least the binding energies
of the incident particles in them.) Compound nuclei have lifetimes on the order of
10�16 s or so. Although too short to permit actually observing such nuclei directly,
such lifetimes are long relative to the 10�21 s or so a nuclear particle with an energy
of several MeV would need to pass through a nucleus.

A given compound nucleus may decay in one or more ways, depending on its
excitation energy. Thus 14

7N* with an excitation energy of, say, 12 MeV can decay in
any of the four ways shown in Fig. 12.15. 14

7N* can also simply emit one or more
gamma rays whose energies total 12 MeV. However, it cannot decay by the emission of
a triton (3

1H) or a helium-3 (3
2He) particle since it does not have enough energy to

liberate them. Usually a particular decay mode is favored by a compound nucleus in
a specific excited state.
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Figure 12.15 Six nuclear reactions whose product is the compound nucleus 14
7N* and four ways in

which 14
7N* can decay if its excitation energy is 12 meV. Other decay modes are possible if the excitation

energy is greater, fewer are possible if this energy is less. In addition, 14
7N* can simply lose its excita-

tion energy by emitting one or more gamma rays.
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The formation and decay of a compound nucleus has an interesting interpretation
on the basis of the liquid-drop nuclear model described in Sec. 11.5. In terms of this
model, an excited nucleus is analogous to a drop of hot liquid, with the binding energy
of the emitted particles corresponding to the heat of vaporization of the liquid
molecules. Such a drop of liquid will eventually evaporate one or more molecules,
thereby cooling down. The evaporation occurs when random fluctuations in the energy
distribution within the drop cause a particular molecule to have enough energy to
escape. Similarly, a compound nucleus persists in its excited state until a particular
nucleon or group of nucleons happens to gain enough of the excitation energy to leave
the nucleus. The time interval between the formation and decay of a compound nucleus
fits in nicely with this picture.

Resonance

Information about the excited states of nuclei can be gained from nuclear reactions as
well as from radioactive decay. The presence of an excited state may be detected by a
peak in the cross section versus energy curve of a particular reaction, as in the neutron-
capture reaction of Fig. 12.14. Such a peak is called a resonance by analogy with or-
dinary acoustic or ac circuit resonances. A compound nucleus is more likely to be
formed when the excitation energy provided exactly matches one of its energy levels
than if the excitation energy has some other value.

The reaction of Fig. 12.14 has a resonance at 0.176 eV whose width (at half-
maximum) is � � 0.115 eV. This resonance corresponds to an excited state in 114Cd
that decays by the emission of a gamma ray. The mean lifetime � of an excited state is
related to its level width � by the formula

� � (12.23)

This result is in accord with the uncertainty principle in the form �E �t � ��2 if we
associate � with the uncertainty �E in the excitation energy of the state and � with the
uncertainty �t in the time the state will decay. In the case of the above reaction, the
level width of 0.115 eV implies a mean lifetime for the compound nucleus of

� � � 5.73 � 1�15 s

Center-of-Mass Coordinate System

Most nuclear reaction in the laboratory occur when a moving nucleon or nucleus strikes
a stationary one. Analyzing such a reaction is simplified when we use a coordinate
system that moves with the center of mass of the colliding particles.

To an observer located at the center of mass, the particles have equal and opposite
momenta (Fig. 12.16). Hence if a particle of mass mA and speed � approaches a
stationary particle of mass mB as viewed by an observer in the laboratory, the speed V
of the center of mass is defined by the condition

mA(� � V) � mBV

1.054 � 10�34 J 	 s





(0.115 eV)(1.60 � 10�19 J�eV)

�


�

Mean lifetime of
excited state
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so that

V � � � � (12.24)

In most nuclear reactions, � �� c and a nonrelativistic treatment is sufficient.
In the laboratory system, the total kinetic energy is that of the incident particle only:

KElab � �
1
2

�mA�2 (12.25)

In the center-of-mass system, both particles are moving and contribute to the total
kinetic energy:

KEcm � �
1
2

�mA(� � V)2 � �
1
2

�mBV2

� �
1
2

�mA�2 � �
1
2

�(mA � mB)V2

� KElab � �
1
2

�(mA � mB)V2

KEcm � � � KElab (12.26)

The total kinetic energy of the particles relative to the center of mass is their total
kinetic energy in the laboratory system minus the kinetic energy �

1
2

�(mA � mB)V2of the
moving center of mass. Thus we can regard KEcm as the kinetic energy of the relative
motion of the particles. When the particles collide, the maximum amount of kinetic
energy that can be converted to excitation energy of the resulting compound nucleus
while still conserving momentum is KEcm, which is always less than KElab.

mB
�
mA � mB

Kinetic energy in
CM system

Kinetic energy in
lab system

mA
�
mA � mB

Speed of center
of mass

(a) Motion in the laboratory coordinate system before collision

(b) Motion in the center-of-mass coordinate system
      before collision

(c) A completely inelastic collision as seen in laboratory and
      center-of-mass coordinate systems

Before
collision

After
collision

Laboratory
coordinate system

Center-of-mass
coordinate system

Center of massv – V mBmA

mA v
Center of mass mBV =

mAv
mA + mB

–V

Figure 12.16 Laboratory and center-of-mass coordinate systems.
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The Q value of the nuclear reaction

A � B → C � D

is defined as the difference between the rest energies of A and B and the rest energies
of C and D:

Q � (mA � mB � mC � mD)c2 (12.27)

If Q is a positive quantity, energy is given off by the reaction. If Q is a negative quantity,
enough kinetic energy KEcm in the center-of-mass system must be provided by the
reacting particles so that KEcm � Q � 0.

Example 12.11

Find the minimum kinetic energy in the laboratory system needed by an alpha particle to cause
the reaction 14N(�, p)17O. The masses of 14N, 4He, 1H, and 17O are respectively 14.00307 u,
4.00260 u, 1.00783 u, and 16.99913 u.

Solution

Since the mases are given in atomic mass units, it is easiest to proceed by finding the mass
difference between reactants and products in the same units and then multiplying by
931.5 MeV�u. Thus we have

Q � (14.00307 u � 4.00260 u � 1.00783 u � 16.99913 u) (931.5 MeV�u) � �1.20 MeV

The minimum kinetic energy KEcm in the center-of-mass system must therefore be 1.20 MeV in
order for the reaction to occur. From Eq. (12.26) with the alpha particle as A,

KElab � � � KEcm � � �(1.20 MeV) � 1.54 MeV

The cross section for this reaction is another matter. Because both alpha particles and 14N nuclei
are positively charged and repel electrically, the greater KEcm is above the threshold of 1.20 MeV,
then the greater the cross section and the more likely the reaction will occur.

12.9   NUCLEAR FISSION

Divide and conquer

As we saw in Sec. 11.4, a lot of binding energy will be released if we can break a large
nucleus into smaller ones. But nuclei are ordinarily not at all easy to split. What we
need is a way to disrupt a heavy nucleus without using more energy than we get back
from the process.

The answer came in 1938 with the realization by Lise Meitner that a nucleus of the
uranium isotope 235

92U undergoes fission when struck by a neutron. It is not the impact
of the neutron that has this effect. Instead, the 235

92U nucleus absorbs the neutron to
become 236

92U, and the new nucleus is so unstable that almost at once it explodes into
two fragments (Fig. 12.17). Later several other heavy nuclides were found to be
fissionable by neutrons in similar processes.

4.00260 � 14.00307
���

14.00307

mA � mB
�

mB

Q value of nuclear
reaction
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Nuclear fission can be understood on the basis of the liquid-drop model of the
nucleus (Sec. 11.5). When a liquid drop is suitably excited, it may oscillate in a variety
of ways. A simple one is shown in Fig 12.18: the drop in turn becomes a prolate
spheroid, a sphere, an oblate spheroid, a sphere, a prolate spheroid again, and so on.
The restoring force of its surface tension always returns the drop to spherical shape,
but the inertia of the moving liquid molecules causes the drop to overshoot sphericity
and go to the opposite extreme of distortion.

Nuclei exhibit surface tension, and so can vibrate like a liquid drop when in an excited
state. They also are subject to disruptive forces due to the mutual repulsion of their pro-
tons. When a nucleus is distorted from a spherical shape, the short-range restoring force
of surface tension must cope with the long-range repulsive force as well as with the in-
ertia of the nuclear matter. If the degree of distortion is small, the surface tension can do
this, and the nuclear vibrates back and forth until it eventually loses its excitation energy
by gamma decay. If the degree of distortion is too great, however, the surface tension is
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Figure 12.17 In nuclear fission, an absorbed neutron causes a heavy nucleus to split into two parts.
Several neutrons and gamma rays are emitted in the process. The smaller nuclei shown here are typ-
ical of those produced in the fission of 235

92U and are both radioactive.

Time

Figure 12.18 The oscillations of a liquid drop.
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Figure 12.19 Nuclear fission according to the liquid-drop model.

unable to bring back together the now widely separated groups of protons, and the
nucleus splits into two parts. This picture of fission is illustrated in Fig. 12.19.

The new nuclei that result from fission are called fission fragments. Usually fission
fragments are of unequal size (Fig. 12.20). Because heavy nuclei have a greater
neutron/proton ratio than lighter ones, the fragments contain an excess of neutrons.
To reduce this excess, two or three neutrons are emitted by the fragments as soon as
they are formed, and subsequent beta decays bring their neutron/proton ratios to stable
values. A typical fission reaction is

235
92U � 1

0n → 236
92U* → 140

54Xe � 94
38Sr � 1

0n � 1
0n

which was illustrated in Fig. 12.17.
A heavy nucleus undergoes fission when it has enough excitation energy (5 MeV or

so) to oscillate violently. A few nuclei, notably 235U, are able to split in two merely by

Lise Meitner (1878–1968),
the daughter of a Viennese
lawyer, became interested in
science when she read about
the Curies and radium. She
earned her Ph.D. in physics
in 1905 at the University of
Vienna, only the second
woman to obtain a doctor-
ate there. She then went to
Berlin where she began re-
search on radioactivity with
the chemist Otto Hahn.
Their supervisor refused to
have a woman in his labo-
ratory, so they started their
work in a carpentry shop.

Ten years later she was a professor, a department head, and,
with Hahn, the discoverer of a new element, protactinium.

In the 1930s the Italian physicist Enrico Fermi found that bom-
barding heavy elements with neutrons led to the production of
other elements. What happened in the case of uranium was es-
pecially puzzling, and Meitner and Hahn tried to find out by re-
peating the experiment. At the time the German persecution of
Jews had begun, but Meitner, who was Jewish, was protected by
her Austrian citizenship. In 1938 Germany annexed Austria, and
Meitner fled to Sweden but kept in touch with Hahn and their
younger colleague Fritz Strassmann. Hahn and Strassmann finally
concluded that neutrons interact with uranium to produce
radium, but Meitner’s calculations showed that this was impossi-

ble and she urged them to persist in their work. They did, and
found to their surprise that the lighter element barium had in fact
been created. Meitner surmised that the neutrons had caused the
uranium nuclei to split apart and, with her nephew Otto Frisch,
developed the theoretical picture of what they called fission.

In January 1939 Hahn and Strassmann published the dis-
covery of fission in a German journal; because Meitner was
Jewish, they thought it safer for themselves to ignore her con-
tribution. Meitner and Frisch later published their own paper
on fission in an English journal, but it was too late: Hahn dis-
gracefully claimed full credit, and not once in the years that fol-
lowed acknowledged her role. Hahn alone received the Nobel
Prize in physics for discovering fission. Unfortunately Meitner
did not live to see a measure of justice: the element of atomic
number 109 is called meitnerium in her honor, while the ten-
tative name of hahnium for element 105 was changed in 1997
to dubnium, after the Russian nuclear research center in Dubna.

Niels Bohr carried the news of the discovery of fission to the
United States later in 1939, just before the start of World War II,
where its military possibilities were immediately recognized.
Expecting that German physicists would come to the same con-
clusion and would start work on an atomic bomb, such a program
began in earnest in the United States. By the time it was suc-
cessful, in 1945, Germany had been defeated, and two atomic
bombs exploded over Hiroshima and Nagasaki then ended the
war with Japan. It was later learned that the German atomic-
bomb effort had amounted to very little. Not long afterward the
Soviet Union, Great Britain, and France also developed nuclear
weapons, and later China, Israel, South Africa, India, and Pakistan
did so as well.
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absorbing an additional neutron. Other nuclei, notably 238U (which makes up 99.3 per-
cent of natural uranium, with 235U as the remainder) need more excitation energy for
fission than the binding energy released when another neutron is absorbed. Such nu-
clei undergo fission only by reaction with fast neutrons whose kinetic energies exceed
about 1 MeV.

Fission can occur after a nucleus is excited by means other than neutron capture,
for instance by gamma-ray or proton bombardment. Some nuclides are so unstable as
to be capable of spontaneous fission, but they are more likely to undergo alpha decay
before this takes place.

A striking aspect of nuclear fission is the magnitude of the energy given off. As we
saw earlier, this is in the neighborhood of 200 MeV, a remarkable figure for a single
atomic event; chemical reactions liberate only a few electronvolts per event. Most of
the energy released in fission goes into the kinetic energy of the fission fragments. In
the case of the fission of 235U, about 83 percent of the energy appears as kinetic energy
of the fragments, about 2.5 percent as kinetic energy of the neutrons, and about 3.5 per-
cent in the form of instantly emitted gamma rays. The remaining 11 percent is given
off in the subsequent beta and gamma decays of the fission fragments.

Shortly after nuclear fission was discovered it was realized that, because fission
leads to other neutrons being given off, a self-substaining sequence of fissions should
be possible (Fig.12.21). The condition for such a chain reaction to occur in an as-
sembly of fissionable material is simple: at least one neutron produced during each
fission must, on the average, cause another fission. If too few neutrons cause fis-
sions, the reaction will slow down and stop; if precisely one neutron per fission
causes another fission, energy will be released at a constant rate. (which is the case
in a nuclear reactor); and if the frequency of fissions increases, the energy release
will be so rapid that an explosion will occur (which is the case in an atomic bomb).
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Figure 12.20 The distribution of mass numbers in the fragments from the fission of 235
92U.
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These situations are respectively called subcritical, critical, and supercritical. If
two neutrons from each fission in an atomic bomb induce further fissions in 
10�8 s, a chain reaction starting with a single fission will give off 2 � 1013 J of
energy in less than 10�6 s.

12.10   NUCLEAR REACTORS

E0 � mc2 � $$$

A nuclear reactor is a very efficient source of energy: the fission of 1 g of 235U per day
evolves energy at a rate of about 1 MW, whereas 2.6 tons of coal per day must be
burned in a conventional power plant to produce 1 MW. The energy given off in a
reactor becomes heat, which is removed by a liquid or gas coolant. The hot coolant is
then used to boil water, and the resulting steam is fed to a turbine that can power an
electric generator, a ship, or a submarine.

Each fission in 235U releases an average of 2.5 neutrons, so no more than 1.5 neutrons
per fission can be lost for a self-substaining chain reaction to occur. However, natural
uranium contains only 0.7 percent of the fissionable isotope 235U. The more abundant
238U readily captures fast neutrons but usually does not undergo fission as a result. As
it happens, 238U has only a small cross section for the capture of slow neutrons, whereas
the cross section of 235U for slow neutron-induced fission is a whopping 582 barns.
Slowing down the fast neutrons that are liberated in fission thus helps prevent their
unproductive absorption by 238U and at the same time promotes further fissions in
235U.

To slow down fission neutrons, the uranium in a reactor is mixed with a moderator,
a substance whose nuclei absorb energy from fast neutrons in collisions without much
tendency to capture the neutrons. While the exact amount of energy lost by a moving
body that collides elastically with another depends on the details of the interaction, in
general the energy transfer is a maximum when the participants are of equal mass
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Figure 12.21 Sketch of a chain reaction. The reaction is self-sustaining if at least one neutron from
each fission event on the average induces another fission event. If more than one neutron per fission
on the average induces another fission, the reaction is explosive.
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(Fig. 12.22). The greater the difference between the masses, the greater the number of
collisions needed to slow a neutron down, and the longer the period in which it is in
danger of being captured by a 238U nucleus. The majority of today’s commercial reactors
use light water both as moderator and as coolant. Each molecule of water contains two
hydrogen atoms whose proton nuclei have masses almost identical with that of the
neutron, so light water is an efficient moderator.

Unfortunately protons tend to capture neutrons to form deuterons in the reaction 
1H(n, �)2H. Light-water reactors therefore cannot use natural uranium for fuel but need
enriched uranium whose 235U content has been increased to about 3 percent. Enriched
uranium can be produced in several ways. Originally all enriched uranium was produced
by gaseous diffusion, with uranium hexafluoride (UF6) gas being passed through about
2000 successive permeable barriers. Molecules of 235UF6 are slightly more likely to dif-
fuse through each barrier than 238UF6 because of their smaller mass. A more recent
method uses high-speed gas centrifuges for the separation. Still other processes are
possible.

Enrico Fermi (1901–1954) was
born in Rome and obtained his
doctorate at Pisa. After periods at
Göttingen and Leiden working
with leading figures in the new
quantum mechanics, Fermi re-
turned to Italy. At the University
of Rome in 1926 he investigated
the statistical mechanics of parti-
cles that obey Pauli’s exclusion
principle, such as electrons; the

result is called Fermi-Dirac statistics because Dirac independ-
ently arrived at the same conclusions shortly afterward. In
1933 Fermi introduced the concept of the weak interaction
and used it together with Pauli’s newly postulated neutrino (as
Fermi called it) to develop a theory of beta decay able to ac-
count for the shape of the electron energy spectrum and the
decay half-life.

Later in the 1930s Fermi and a group of collaborators car-
ried out a series of experiments in which radionuclides were pro-
duced artificially by bombarding various elements with neutrons;
they found slow neutrons especially effective. Some of their re-
sults seemed to suggest the formation of transuranic elements.
In fact, as Meitner and Hahn were to find later, what they were
observing was nuclear fission. In 1938 Fermi received the No-
bel Prize for this work, but instead of returning to Mussolini’s
Fascist Italy, he went to the United States. As part of the atomic-
bomb program, Fermi directed the design and construction of
the first nuclear reactor at the University of Chicago, which be-
gan operating in December 1942, four years after the discovery
of fission. After the war Fermi shifted to a different field, high-
energy particle physics, where he made important contributions.
He died of cancer in 1954, one of the very few physicists of the
modern era to combine virtuosity in both theory and experi-
ment. The element of atomic number 100, discovered the year
after his death, is called fermium in his honor.
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Figure 12.22 Energy transfer in an elastic head-on collision between a moving object of mass m1 and
a stationary object of mass m2 (see Exercise 59).
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456 Chapter Twelve

The fuel for a water-moderated reactor consists of uranium oxide (UO2) pellets
sealed in long, thin tubes. Control rods of cadmium or boron, which are good absorbers
of slow neutrons, can be slid in and out of the reactor core to adjust the rate of the
chain reaction. In the most common type of reactor, the water that circulates around
the fuel in the core is kept at a high pressure, about 155 atmospheres, to prevent
boiling. The water, which acts as both moderator and coolant, is passed through a heat
exchanger to produce steam that drives a turbine (Fig. 12.23). Such a reactor might
contain 90 tons of UO2 and operate at 3400 MW to yield 1100 MW of electric power.
The reactor fuel must be replaced every few years as its 235U content is used up.

Breeder Reactors

Some nonfissionable nuclides can be transmuted into fissionable ones by absorbing
neutrons. A notable example is 238U, which becomes 239U when it captures a fast
neutron. This uranium isotope beta-decays with a half-life of 24 min into 239

93Np, an
isotope of the element neptunium, which is also beta-active. The decay of 239Np has
a half-life of 2.3 days and yields 239

94Pu, an isotope of plutonium whose half-life against

Fuel rods being loaded into the core of a 1,129-MW reactor at the William McGuire Nuclear Power
Plant in Cornelius, North Carolina.
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alpha decay is 24,000 y. The entire sequence is shown in Fig. 12.24. Both neptunium
and plutonium are transuranic elements, none of which are found on the earth because
their half-lives are too short for them to have survived even if they had been present
when the earth came into being 4.5 billion years ago.

The plutonium isotope 239Pu is fissionable and can be used as a reactor fuel and
for weapons. Plutonium is chemically different from uranium, and its separation from
the remaining 238U after neutron irradiation is more easily accomplished than the
separation of 235U from the much more abundant 238U in natural uranium.

A breeder reactor is one especially designed to produce more plutonium than the
235U it consumes. Because the otherwise useless 238U is 140 times more abundant than
the fissionable 235U, the widespread use of breeder reactors would mean that known
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Figure 12.23 Basic design of the most common type of nuclear power plant. Water under pressure is
both the moderator and coolant, and transfers heat from the chain reaction in the fuel rods of the
core to a steam generator. The resulting steam then passes out of the containment shell, which serves
as a barrier to protect the outside world from accidents to the reactor, and is directed to a turbine that
drives an electric generator. In a typical plant, the reactor vessel is 13.5 m high and 4.4 m in diameter
and weighs 385 tons. It contains about 90 tons of uranium oxide in the form of 50,952 fuel rods each
3.85 m long and 9.5 mm in diameter. Four steam generators are used, instead of the single one shown
here, as well as a number of turbine generators.
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Figure 12.24 238U and 232Th are “fertile” nuclides. Each becomes a fissionable nuclide after absorb-
ing a neutron and undergoing two beta decays. These transformations are the basis of the breeder re-
actor, which produces more fuel in the form of 239Pu or 233U than it uses up in the form of 235U.
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458 Chapter Twelve

A Nuclear World?

I n 1951 the first electricity from a nuclear plant was generated in Idaho. Today over 400
reactors in 26 countries produce about 200,000 MW of electric power—the equivalent of

nearly 10 million barrels of oil per day. France, Belgium, and Taiwan obtain more than half
electricity from reactors, with several other countries close behind (Fig. 12.25). In the United

reserves of uranium could fuel reactors for many centuries to come. Because plutonium
can also be used in nuclear weapons (unlike the slightly enriched uranium that fuels
ordinary reactors), the widespread use of breeder reactors would also complicate the
control of nuclear weapons. Several breeder reactors are operating today, all of them
outside the United States. They have proved to be extremely expensive and have had
severe operating problems.

Actually, plutonium is already an important nuclear fuel. By the end of the usual
three-year fuel cycle in a reactor, after which the fuel rods are replaced, so much
plutonium has been produced from the 238U present that more fissions occur in 239Pu
than in 235U.

Figure 12.25 Percentage of electric energy in various countries that comes from nuclear power stations.
Figures are for 1997.
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Nuclear Transformations 459

States, nuclear energy is responsible for 21 percent of generated electricity, slightly more than
the world average; there are 103 reactors in 31 states. Yet for all the success of nuclear
technology, no new nuclear power stations have been planned in this country since 1979.
Why not?

In March 1979, failures in its cooling system disabled one of the reactors at Three Mile Island
in Pennsylvania and a certain amount of radioactive material escaped. Although a nuclear reac-
tor cannot explode in the way an atomic bomb does, breakdowns can occur that put large pop-
ulation at risk. Although a true catastrophe was narrowly avoided, the Three Mile Island incident
made it clear that the hazards associated with nuclear energy are real.

After 1979 it was inevitable that greater safety would have to be built into new reactors,
adding to their already high cost. In addition, demand for electricity in the United States was
not increasing as fast as expected, partly because of efforts toward greater efficiency and partly
because of a decline in some of industries (such as steel, cars, and chemicals) that are heavy
users of electricity. As a result of these factors, new reactors made less economic sense than be-
fore, which together with widespread public unease led to a halt in the expansion of nuclear en-
ergy in the United States.

Elsewhere the situation was different. Nuclear reactors still seemed the best way to meet the
energy needs of many countries without abundant fossil fuel resources. Then in April 1986, a
severe accident destroyed a 1000-MW reactor at Chernobyl in what is now Ukraine, then part
of the Soviet Union. This was the worst environmental disaster of technological origin in his-
tory and contributed to the collapse of the Soviet Union. Over 50 tons of radioactive material
escaped and was carried around the world by winds. The radiation released was nearly 200 times
the total given off by the Hiroshima and Nagasaki atomic bombs in 1945. Radiation levels in
much of Europe rose well above normal for a time and a quarter of a million people were per-
manently evacuated from the vicinity of Chernobyl. A number of reactor, rescue, and cleanup
workers died soon afterward as a result of exposure to radiation, and thousands more became
ill. Widespread contamination with radionuclides, particularly of food and water supplies, sug-
gests that cancer will raise the total of people affected manyfold in the years to come. Already
about a thousand children, who are especially susceptible, have developed thyroid cancer as a
result of ingesting the radioactive iodine isotope 131I; a third of all the children living near Cher-
nobyl who were under 4 years old in 1986 are expected to come down with thyroid cancer
eventually.

As in the United States after Three Mile Island, public anxiety over the safety of nuclear pro-
grams grew in Europe after Chernobyl. Some countries, for instance Italy, abandoned plans for
new reactors. In other countries, for instance France, the logic behind their nuclear programs
remained strong enough for them to continue despite Chernobyl.

Quite apart from the safty of reactors themselves is the issue of what to do with the wastes
they produce. Even if old fuel rods are processed to separate out the uranium and plutonium
they contain, what is left is still highly radioactive. Although a lot of the activity will be gone in
a few months and much of the rest in a few hundred years, some of the radionuclides have half-
lives in the millions of years. At present perhaps 20,000 tons of spent nuclear fuel is being stored
on a temporary basis in the United States (not to mention the vast amount of highly radioactive
waste left over from nuclear weapons manufacture that is also awaiting safe storage). Burying
nuclear wastes deep underground currently seems to be the best long-term way to dispose of
them. The right location is easy to specify but not easy to find: stable geologically with no earth-
quakes likely, no nearby population centers, a type of rock that does not disintegrate in the pres-
ence of heat and radiation but is easy to drill into, and not near groundwater that might become
contaminated.

From today’s perspective, nuclear energy has important advantages not fully appreciated in
the past: it does not produce the air pollution that fossil-fuel burning does, nor the huge quan-
tities of carbon dioxide that are the main contributor to global warming via the greenhouse effect.
Together with the rising cost of fossil fuels and increasing demand for electricity, these factors
seem likely to lead to the construction of new nuclear reactors in the United States after a delay
of over two decades.
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12.11   NUCLEAR FUSION IN STARS

How the sun and stars get their energy

Here on the earth, 150 million km from the sun, a surface 1 m2 in area exposed to the
vertical rays of the sun receives energy at a rate of about 1.4 kW. Adding up all the
energy radiated by the sun per second gives the enormous total of 4 � 1026 W. And
the sun has been emitting energy at this rate for billions of years. Where does it all
come from?

The basic energy-producing process in the sun is the fusion of hydrogen nuclei into
helium nuclei. This can take place in two different reaction sequences, the most
common of which, the proton-proton cycle, is shown in Fig. 12.26. The total evolved
energy is 24.7 MeV per 4

2He nucleus formed.
Since 24.7 MeV is 4 � 10�12 J, the sun’s power output of 4 � 1026 W means the

sequence of reactions in Fig. 12.26 must occur 1038 times per second. The sun consists
of 70 percent hydrogen, 28 percent helium, and 2 percent of other elements, so plenty
of hydrogen remains for billions of years of further energy production at its current
rate. Eventually the hydrogen in the sun’s core will be exhausted, and then, as the other
reactions described below take over, the sun will swell to become a red giant star and
later subside into a white dwarf.

Self-sustaining fusion reactions can occur only under conditions of extreme
temperature and density. The high temperature ensures that some nuclei—those in
the high-velocity tail of the Maxwell-Boltzmann distribution—have the energy needed
to come close enough together to interact, which they do by tunnelling through the
electric potential barrier between them. (At the 107 K temperature typical of the sun’s
interior, the average proton kinetic energy is only about 1 keV, whereas the barrier
is about 1 MeV, a thousand times higher.) The high density ensures that such colli-
sions are frequent. A further condition for the proton-proton and other multistep cy-
cles is a large reacting mass, such as that of the sun, since much time may elapse
between the initial fusion of a particular proton and its eventual incorporation in an
alpha particle.
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Figure 12.26 The proton-proton cycle. This is the chief nuclear reaction sequence that takes place in
stars like the sun and cooler stars. Energy is given off at each step. The net result is the combination
of four hydrogen nuclei to form a helium nucleus and two positrons. The neutrinos also produced
are not shown.
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The proton-proton cycle dominates in the sun and other stars with less than about
1.5 times the sun’s mass. In more massive stars, whose interiors are hotter, the carbon
cycle is the main energy source. This cycle proceeds as in Fig. 12.27. The net result
again is the formation of an alpha particle and two positrons from four protons, with
the evolution of 24.7 MeV. The initial 12

6C acts as a kind of catalyst for the process,
since it reappears at its end. The dependence of the two cycles on temperature is shown
in Fig. 12.28.

Formation of Heavier Elements

Fusion reactions that produce helium are not the only ones that occur in the sun and
other stars. When all the hydrogen in a star’s core has become helium, gravitational
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Figure 12.27 The carbon cycle also involves the combination of four hydrogen nuclei to form a helium
nucleus with the evolution of energy. The 12

6C nucleus is unchanged by the series of reactions. This
cycle occurs in stars hotter than the sun.

Hans A. Bethe (1906– ) was born
in Strasbourg, then part of Ger-
many but today part of France. He
studied physics in Frankfurt and
Munich and taught at various Ger-
man universities until 1933, when
Hitler came to power. After two
years in England he came to the
United States where he was profes-
sor of physics at Cornell University
from 1937 to 1975. He has re-

mained active in research and in public affairs even though for-
mally retired.

Notable among Bethe’s many and varied contributions to
physics is his 1938 account of the sequences of nuclear reactions
that power the sun and stars, for which he received the Nobel
Prize in 1967. During World War II he directed the theoretical
physics division of the laboratory at Los Alamos, New Mexico,
where the atomic bomb was developed. A strong believer in
nuclear energy—“it is more necessary now than ever before
because of global warming”—Bethe has also been an effective
advocate of nuclear disarmament.

bei48482_ch12.qxd  1/23/02  12:08 AM  Page 461 RKAUL-9 RKAUL-9:Desktop Folder:



462 Chapter Twelve

The Triple-Alpha Reaction

B ecause no sufficiently stable nuclides with A � 5 or A � 8 exist, there is no simple way
in which protons, neutrons, and alpha particles can add together in succession to form the

nuclei of carbon and elements of still higher atomic number. Eventually it became clear that
three alpha particles could react to produce a 12

6C nucleus in stars whose interiors are suffi-
ciently hot. However, the cross section (Sec. 12.7) for the process seemed much too small for
the reaction to be significant. Then, in 1953, the British astronomer Fred Hoyle realized that a
resonance associated with the triple-alpha process would greatly enhance its likelihood. Hoyle’s
calculation indicated that the resonance would correspond to an excited state in 12

6C of
7.7 MeV. Experiments soon showed that this excited state indeed occurred and increased the
cross section by a factor of 107, thereby removing the biggest obstacle to understanding the
origin of the elements.

Figure 12.28 How the rates of
energy generation for the carbon
and proton-proton fusion cycles
vary with the temperature of a
star’s interior. The rates are equal
at about 1.8 � 107 K. Note that
the power output scale is not
linear.

contraction compresses the core and raises its temperature to the 108 K needed for
helium fusion to begin. This involves the combination of three alpha particles to form
a carbon nucleus with the evolution of 7.5 MeV:

4
2He � 4

2He S 8
4Be � �

4
2He � 8

4Be S 12
6C � �

Because the beryllium isotope 84Be is unstable and breaks apart into two alpha particles
with a half-life of only 6.7 � 10�17 s, the second reaction must take place immediately
after the first. The sequence is called the triple-alpha reaction.

The smallest stars do not get hot enough (over 107 K) to go beyond hydrogen fusion,
and helium fusion is as far as a star with the sun’s mass gets. But in heavier stars, core
temperatures can go even higher, and fusion reactions that involve carbon then be-
come possible. Some examples are

4
2He � 12

6C S 16
8O

12
6C � 12

6C S 24
12Mg

12
6C � 12

6C S 20
10Ne � 4

2He

The heavier the star, the higher the eventual temperature of its core, and the larger the
nuclei that can be formed. (The high temperatures, of course, are needed to overcome
the greater electric repulsion of reacting nuclei with many protons.) In stars more than
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Nuclear Transformations 463

about 10 times as massive as the sun, the iron isotope 56
26Fe is reached. This is the nu-

cleus with the greatest binding energy per nucleon (Fig. 11.12). Any reaction between
a 56

26Fe nucleus and another nucleus will therefore lead to the breakup of the iron nu-
cleus, not to the formation of a still heavier one.

Then how do nuclides beyond 56
26Fe originate? The answer is through the successive

capture of neutrons, with beta decays when needed for appropriate neutron/proton
ratios. The neutrons are liberated in such sequences as

1
1H � 12

6C S 13
7N � �

13
7N S 13

6C � e� � �

4
2He � 13

6C S 16
8O � 1

0n

Neutron-capture reactions in a stellar interior can build up nuclides as far as 209
83Bi,

the largest stable nucleus, but no further. The density of neutrons there is not suffi-
cient for them to be captured in rapid enough succession by nuclei of A � 209 before
such nuclei decay. However, when a very massive star has reached the end of its fuel
supply, its core collapses and a violent explosion follows that appears in the sky as a
supernova. During the collapse neutrons are produced in abundance, some by the dis-
integration of neutron-rich nuclei into alpha particles and neutrons in collisions and
some by the reaction e� � p → n � �. The huge neutron flux lasts only a matter of
seconds, but this is sufficient to produce nuclei with mass numbers up to perhaps 260.

A supernova explosion, which occurs once or twice per century in a galaxy of stars
like our own Milky Way, flings into space a large part of the star’s mass, which becomes
dispersed in interstellar matter. New stars (and their planets, such as our own) that
come into being from this matter thus contain the entire spectrum of nuclides, not just
the hydrogen and helium of the early universe. We are all made of stardust.

12.12 FUSION REACTORS

The energy source of the future?

Enormous as the energy produced by fission is, the fusion of light nuclei to form heav-
ier ones can give out even more per kilogram of starting materials. It seems possible
that nuclear fusion could become the ultimate source of energy on the earth: safe, rel-
atively nonpolluting, and with the oceans themselves supplying limitless fuel.

On the earth, where any reacting mass must be very limited in size, an efficient
fusion process cannot involve more than a single step. Two reactions that may eventually
power fusion reactors involve the combination of two deuterons to form a triton and
a proton,

2
1H � 2

1H S 3
1H � 1

1H � 4.0 MeV (12.28)

or their combination to form a 3
2He nucleus and a neutron,

2
1H � 2

1H S 3
2He � 1

0n � 3.3 MeV (12.29)

Both D-D reactions have about equal probabilities. A major advantage of these reactions
is that deuterium is present in seawater and is cheap to extract. Although its
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concentration in seawater is only 33 g�m3, this adds up to a total of about 1015 tons
of deuterium in the world’s oceans. The deuterium in a gallon of seawater can yield
as much energy through fusion as 600 gallons of gasoline can through combustion.

The first fusion reactors are more likely to employ a deuterium-tritium mixture
because the D-T reaction

3
1H � 2

1H S 4
2He � 1

0n � 17.6 MeV (12.30)

has a higher yield than the others and occurs at lower temperatures. Seawater contains
too little tritium to be extracted economically, but it can be produced by the neutron
bombardment of the two isotopes of natural lithium:

6
3Li � 1

0n S 3
1H � 4

2He (12.31)

7
3Li � 1

0n S 3
1H � 4

2He � 1
0n (12.32)

In fact, plans for future fusion reactors include lithium blankets that will make the
tritium they need by absorbing neutrons liberated in the fusion reactions.

At the required temperatures, a fusion reactor’s fuel will be in the form of a plasma,
which is a fully ionized gas. Breakeven occurs when the energy produced equals the
energy input to the reacting plasma. Ignition, a more difficult (and perhaps unneces-
sary) target, occurs when enough energy is produced for the reaction to be self-sustaining.

A successful fusion reactor has three basic conditions to meet:

1 The plasma temperature must be high so that an adequate number of the ions have
the speeds needed to come close enough together to react despite their mutual
repulsion. Taking into account that many ions have speeds well above the average and
that tunneling through the potential barrier reduces the ion energy needed, the
minimum temperature for igniting a D-T plasma is about 100 million K, which cor-
responds to an “ion temperature” of kT � 10 keV.
2 The plasma density n (in ions�m3) must be high to ensure that collisions between
nuclei are frequent.
3 The plasma of reacting nuclei must remain together for a sufficiently long time �.
How long depends on the product n�, the confinement quality parameter. In the case
of a D-T plasma with kT � 10 keV, n� must be greater than roughly 1020 s�m3 for
breakeven, more than that for ignition (Fig. 12.29).

Apart from stellar interiors, the combination of temperature, density, and
confinement time needed for fusion thus far has occurred only in the explosion of
fission (“atomic”) bombs. Incorporating the ingredients for fusion reactions in such a
bomb leads to an even more destructive weapon, the “hydrogen” bomb.

Confinement Methods

The approach to the controlled release of fusion energy that has thus far shown the
most promise uses a strong magnetic field to confine the reactive plasma. In the
Russian-designed tokamak scheme, the magnetic field is a modified torus (dough-
nut) in form (Fig. 12.30). (In Russian, tokamak stands for “toroidal magnetic cham-
ber.”) Because the field lines of a purely toroidal field are curved, an ion moving in
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The Joint European Torus is an experimental tokamak fusion reactor at Culham, England. The reactor
has delivered 16 MW with a power input of 25 MW, encouragingly close to breakeven.

Nuclear Transformations 465
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Figure 12.29 Conditions for breakeven (energy output equals energy input) and for ignition (a self-
sustaining reaction) in a fusion reactor. Existing reactors have come close to breakeven; the projected
International Thermonuclear Experimental Reactor is intended to go beyond it.
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a helical path around its field lines will drift across the field and escape. To prevent
this, a tokamak uses a poloidal field whose field lines are circles around the toroid
axis. The poloidal field is produced by a current set up in the plasma itself by the
changing field of an electromagnet in the center of the toroid. This current also heats
the plasma; once the plasma is sufficiently hot, the current needs little help to
continue.

466 Chapter Twelve

ITER

T he planned International Thermonuclear Experimental Reactor (ITER) represents what is
hoped to be the final step before practical fusion energy becomes a reality. ITER is currently

sponsored by Japan and several European countries; the United States pulled out of the project
because of concerns about its original design and cost, and Russia withdrew (except for pro-
viding some staff ) because it cannot afford to participate. The redesigned ITER is expected to
generate 400 MW from deuterium-tritium reactions, to weigh 32,000 tons, to cost $3 billion,
and to take 10 to 15 years to build. Superconducting magnets (a large part of the cost) will keep
the reacting ions in a doughnut-shaped region whose volume is that of a large house. About
80 percent of the energy released will be carried off by the neutrons that are produced, and these
neutrons will be absorbed by lithium pellets in tubes that surround the reaction chamber. Cir-
culating water will carry away the resulting heat; this is the heat that could be used in a commercial
reactor to power turbines connected to electric generators.

Even if ITER works as planned, though, not every pessimistic observer of the fusion program
is likely to become a convert to the cause. Fusion reactors will certainly be enormously com-
plex and expensive and not wholly safe: lithium is an extremely reactive metal that burns or ex-
plodes on contact with water. Also, when lithium absorbs neutrons in the reactions of Eqs.
(12.31) and (12.32), radioactive tritium is produced. Hence an accident could be catastrophic.
Of course, the optimists could turn out to be correct, and fusion will become the preferred en-
ergy source of the future. But even if this happens, many decades lie ahead in which energy
problems will remain. Fission reactors employ an established technology and ways exist to make
them very safe, but memories of Three Mile Island and Chernobyl, plus continuing questions
about the disposal of radioactive wastes, continue to affect their public image. Meanwhile fossil
fuels are being used up and burning them produces enough CO2 to affect weather and climate.
Such “green” energy sources as solar cells and wind turbines are unlikely to provide more than
a small (though welcome) fraction of energy needs. An energy strategy for the world that is both
sensible and widely acceptable is not obvious.

Toroidal magnetic fieldPoloidal
magnetic field

Path of plasma ion

Figure 12.30 In a tokamak, combined toroidal and poloidal magnetic fields confine a plasma.
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The most powerful tokamaks today have attained plasma temperatures of 30 keV
and confinement quality n� values of 2 � 1019 s�m3, but not breakeven. Breakeven
will probably have to wait for the planned International Thermonuclear Experimental
Reactor (ITER).

An entirely different procedure, called inertial confinement, uses energetic beams
to both heat and compress tiny deuterium-tritium pellets by blasting them from all
sides. The result is, in effect, a miniature hydrogen-bomb explosion, and a succession
of them could provide a steady stream of energy. If ten 0.1-mg pellets are ignited every
second, the average thermal output would be about 1 GW and could yield 300 MW
or so of electric power, enough for a city of 175,000 people.

Laser beams have received the most attention for inertial confinement, but electron
and proton beams have promise as well. The beam energy is absorbed in the outer
layer of the fuel pellet, which blows off outward. Conservation of momentum leads to
an inward shock wave that must squeeze the rest of the pellet to about 104 times its
original density to heat the fuel sufficiently to start fusion reactions. The required beam
energy is well beyond the capacity of today’s lasers, though perhaps not of future ones.
Particle beams are closer to reaching the needed energy but are much harder to focus
on the tiny fuel pellets. Research continues, but magnetic confinement seems closer to
the goal of a working fusion reactor.
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The world’s most powerful laser, located at the Lawrence National
Laboratory in California, is used in inertial confinement experi-
ments. Its output of 60 kJ per nanosecond (10�9 s) pulse is divided
into 10 beams that are directed at tiny dueterium-tritium pellets in
an effort to induce fusion reactions in them.
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468 Appendix to Chapter 12

Appendix to  Chapter  12

Theory of Alpha Decay

I n the discussion of the tunnel effect in Sec. 5.10 a beam of particles of kinetic
energy E was considered which was incident on a rectangular potential barrier
whose height U was greater than E. An approximate value of the transmission

probability—the ratio between the number of particles that pass through the barrier
and the number that arrive—was found to be

T � e�2k
2
L (5.60)

where L is the width of the barrier and

k2 � (5.61)

Equation (5.60) was derived for a rectangular potential barrier, whereas an alpha particle
inside a nucleus is faced with a barrier of varying height, as in Figs. 12.8 and 12.31.
It is now our task to adapt Eq. (5.60) to the case of a nuclear alpha particle.

The first step is to rewrite Eq. (5.60) in the form

ln T � �2k2L (12.33)

�2m(U�� E)�
��

�

Wave number
inside barrier

Approximate
transmission
probability

r
R0

0

Energy

E

U = 2Ze2

4π
0r

R = 2Ze2

4π
0E

ψ

Figure 12.31 Alpha decay from the point of view of the quantum mechanics. The kinetic energy of
alpha particle is E.
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Theory of Alpha Decay 469

and then express it as the integral

ln T � �2 �L

0
k2(r) dr � �2 �R

R0
k2(r) dr (12.34)

where R0 is the radius of the nucleus and R is the distance from its center at which 
U � E. The kinetic energy E is greater than the potential energy U for r � R, so if it
can get past R, the alpha particle will have permanently escaped from the nucleus.

The electric potential energy of an alpha particle at the distance r from the center
of a nucleus of charge Ze is given by

U(r) �

Here Ze is the nuclear charge minus the alpha-particle charge of 2e; thus Z is the atomic
number of the daughter nucleus.

We therefore have

k2 � � � �
1�2

� � E�
1�2

Since U � E when r � R,

E � (12.35)

and we can write k2 in the form

k2 � � �
1�2 

� � 1�
1�2

(12.36)

Hence

ln T � �2 �R

R0
k2(r) dr

� �2� �
1�2 �R

R0
� � 1�

1�2

dr

� �2� �
1�2 

R	cos�1 � �
1�2 

� � �
1�2 

�1 � �
1�2


 (12.37)

Because the potential barrier is relatively wide, R �� R0, and

cos�1� �
1�2

� � � �
1�2

�1 � �
1�2

� 1

with the result that

ln T � �2� �
1�2 

R	 � 2� �
1�2
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From Eq. (12.35),

R �

and so

ln T � � �
1�2 

Z1�2R0
1�2 � � �

1�2 
ZE�1�2 (12.38)

The result of evaluating the various constants in Eq. (12.38) is

ln T � 2.97Z1�2R0
1�2 � 3.95ZE�1�2 (12.39)

where E (the alpha-particle kinetic energy) is expressed in MeV, R0 (the nuclear radius)
is expressed in fermis (1 fm � 10�15 m), and Z is the atomic number of the nucleus
minus the alpha particle. Since

log10 A � (log10 e)(ln A) � 0.4343 ln A

we have

log10 T � 1.29Z1�2R0
1�2 � 1.72ZE�1�2 (12.40)

From Eqs. (12.12) and (12.13) the decay constant � is given by

� � �T � T

where � is the alpha-particle velocity. Taking the logarithm of both sides and substi-
tuting for the transmission probability T gives

log10 � � log10 � � � 1.29Z1�2R0
1�2 � 1.72ZE�1�2 (12.14)

This is the formula quoted at the end of Sec. 12.4 and plotted in Fig. 12.9.
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12.2 Half-Life

1. Tritium (3
1H) has a half-life of 12.5 y against beta decay. What

fraction of a sample of tritium will remain undecayed after
25 y?

2. The most probable energy of a thermal neutron is 0.025 eV at
room temperature. In what distance will half of a beam of
0.025-eV neutrons have decayed? The half-life of the neutron is
10.3 min.

3. Find the probability that a particular nucleus of 38Cl will
undergo beta decay in any 1.00-s period. The half-life of 38Cl is
37.2 min.

4. The activity of a certain radionuclide decreases to 15 percent of
its original value in 10 d. Find its half-life.

5. The half-life of 24Na is 15.0 h. How long does it take for 
80 percent of a sample of this nuclide to decay?

6. The radionuclide 24Na beta-decays with a half-life of 15.0 h.
A solution that contains 0.0500 �Ci of 24Na is injected into a
person’s bloodstream. After 4.50 h the activity of a sample of
the person’s blood is found to be 8.00 pCi �cm3. How many
liters of blood does the person’s body contain?

7. One g of 226Ra has an activity of nearly 1 Ci. Determine the
half-life of 226Ra.

E X E R C I S E S

What we have to learn to do, we learn by doing. —Aristotle
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8. The mass of a millicurie of 214Pb is 3.0 � 10�14 kg. Find the
decay constant of 214Pb.

9. The half-life of 238
92U against alpha decay is 4.5 � 109 y. Find

the activity of 1.0 g of 238U.

10. Use the data in the Appendix to this book to verify the
statement at the end of Sec. 12.1 that the activity of ordinary
potassium is about 0.7 �Ci per kilogram due to its 40K content.

11. The half-life of the alpha-emitter 210Po is 138 d. What mass of
210Po is needed for a 10-mCi source?

12. The energy of the alpha particles emitted by 210Po (T1�2 �

138 d) is 5.30 MeV. (a) What mass of 210Po is needed to power
a thermoelectric cell of 1.00-W output if the efficiency of en-
ergy conversion is 8.00 percent? (b) What would the power
output be after 1.00 y?

13. The activity R of a sample of an unknown radionuclide is
measured at hourly intervals. The results, in MBq, are 80.5,
36.2, 16.3, 7.3, and 3.3. Find the half-life of the radionuclide
in the following way. First, show that, in general, ln(R�R0) �
��t. Next, plot ln(R�R0) versus t and find � from the resulting
curve. Finally calculate T1�2 from �.

14. The activity of a sample of an unknown radionuclide is
measured at daily intervals. The results, in MBq, are 32.1,
27.2, 23.0, 19.5, and 16.5. Find the half-life of the
radionuclide.

15. A rock sample contains 1.00 mg of 206Pb and 4.00 mg of 238U,
whose half-life is 4.47 � 109 y. How long ago was the rock
formed?

16. In Example 12.5 it is noted that the present radiocarbon
activity of living things is 16 disintegrations per minute per
gram of their carbon content. From this figure find the ratio of
14C to 12C atoms in the CO2 of the atmosphere.

17. The relative radiocarbon activity in a piece of charcoal from the
remains of an ancient campfire is 0.18 that of a contemporary
specimen. How long ago did the fire occur?

18. Natural thorium consists entirely of the alpha-radioactive
isotope 232Th which has a half-life of 1.4 � 1010 y. If a rock
sample known to have solidified 3.5 billion years ago contains
0.100 percent of 232Th today, what was the percentage of this
nuclide it contained when the rock solidified?

19. As discussed in this chapter, the heaviest nuclides are proba-
bly created in supernova explosions and become distributed
in the galactic matter from which later stars (and their
planets) form. Under the assumption that equal amounts of
the 235U and 238U now in the earth were created in this way
in the same supernova, calculate how long ago this occurred
from their respective observed relative abundances of 0.7
and 99.3 percent and respective half-lives of 7.0 � 108 y 
and 4.5 � 109 y.

12.3 Radioactive Series

20. In the uranium decay series that begins with 238U, 214Bi beta-
decays into 214Po with a half-life of 19.9 min. In turn 214Po
alpha-decays into 210Pb with a half-life of 163 �s, and 210Pb
beta-decays with a half-life of 22.3 y. If these three nuclides are

in radioactive equilibrium in a mineral sample that contains
1.00 g of 210Pb, what are the masses of 214Bi and 214Po in the
sample?

21. The radionuclide 238
92U decays into a lead isotope through the

successive emissions of eight alpha particles and six electrons.
What is the symbol of the lead isotope? What is the total
energy released?

12.4 Alpha Decay

22. The radionuclide 232U alpha-decays into 228Th. (a) Find the
energy released in the decay. (b) Is it possible for 232U to decay
into 231U by emitting a neutron? (c) Is it possible for 232U to
decay into 231Pa by emitting a proton? The atomic masses of
231U and 231Pa are respectively 231.036270 u and
231.035880 u.

23. Derive Eq. (12.11), KE� � (A � 4)Q�A, for the kinetic en-
ergy of the alpha particle released in the decay of a nucleus
of mass number A. Assume that the ratio M��Md between the
mass of an alpha particle and the mass of the daughter
is �4�(A � 4).

24. The energy liberated in the alpha decay of 226Ra is 4.87 MeV.
(a) Identify the daughter nuclide. (b) Find the energy of the
alpha particle and the recoil energy of the daughter atom. (c) If
the alpha particle has the energy in b within the nucleus, how
many of its de Broglie wavelengths fit inside the nucleus?
(d) How many times per second does the alpha particle strike
the nuclear boundary?

12.5 Beta Decay

25. Positron emission resembles electron emission in all respects
except that the shapes of their respective energy spectra are
different: there are many low-energy electrons emitted, but few
low-energy positrons. Thus the average electron energy in beta
decay is about 0.3KEmax, whereas the average positron energy is
about 0.4KEmax. Can you suggest a simple reason for this
difference?

26. By how much must the atomic mass of a parent exceed the
atomic mass of a daughter when (a) an electron is emitted,
(b) a positron is emitted, and (c) an electron is captured?

27. The nuclide 7Be is unstable and decays into 7Li by electron
capture. Why does it not decay by positron emission?

28. Show that it is energetically possible for 64Cu to undergo beta
decay by electron emission, positron emission, and electron
capture and find the energy released in each case.

29. Carry out the calculations of Exercise 28 for 80Br.

30. Calculate the maximum energy of the electrons emitted in the
beta decay of 12B.

31. Find the minimum antineutrino energy needed to produce the
inverse beta-decay reaction p � �� S n � e�.

32. Find the neutrino energy required to initiate the reaction 
� � 37Cl S 37Ar � e� by which solar neutrinos are detected in
Davis’s experiment.

Exercises 471
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12.6 Gamma Decay

33. Determine the ground and lowest excited states of the thirty-
ninth proton in 89Y with the help of Fig. 11.18. Use this
information to explain the isomerism of 89Y together with the
fact, noted in Sec. 6.9, that radiative transitions between states
with very different angular momenta are extremely improbable.

34. When an excited nucleus emits a gamma-ray photon, some of
the excitation energy goes into the kinetic energy of the recoil
of the nucleus. (a) Find the ratio between the recoil energy and
the photon energy when the nucleus of an atom of mass 200 u
emits a 2.0-MeV gamma ray. (b) The lifetime of an excited
nuclear state is typically about 10�14 s. Compare the corre-
sponding uncertainty in the energy of the excited state with the
recoil energy. (See Exercise 53 of Chap. 2 to learn how the
Mössbauer effect can minimize nuclear recoil.)

12.7 Cross Section

35. The cross sections for comparable neutron- and proton-induced
nuclear reactions vary with energy in approximately the manner
shown in Fig.12.32. Why does the neutron cross section
decrease with increasing energy whereas the proton cross
section increases?

36. A slab of absorber is exactly one mean free path thick for a
beam of certain incident particles. What percentage of the
particles will emerge from the slab?

37. The capture cross section of 59Co for thermal neutrons is 37 b.
(a) What percentage of a beam of thermal neutrons will
penetrate a 1.0-mm sheet of 59Co? The density of 59Co is
8.9 � 103 kg �m3. (b) What is the mean free path of thermal
neutrons in 59Co?

38. The cross section for the interaction of a neutrino with matter
is �10�47 m2. Find the mean free path of neutrinos in solid
iron, whose density is 7.8 � 103 kg �m3 and whose average
atomic mass is 55.9 u. Express the answer in light-years, the
distance light travels in free space in a year.

39. The boron isotope 10B captures neutrons in an (n, �)—neutron
in, alpha particle out—reaction whose cross section for thermal
neutrons is 4.0 � 103 b. The density of 10B is 2.2 � 103

kg �m3. What thickness of 10B is needed to absorb 99 percent
of an incident beam of thermal neutrons?

40. There are approximately 6 � 1028 atoms /m3 in solid
aluminum. A beam of 0.5-MeV neutrons is directed at an
aluminum foil 0.1 mm thick. If the capture cross section for
neutrons of this energy in aluminum is 2 � 10�31 m2, find the
fraction of incident neutrons that are captured.

41. Natural cobalt consists entirely of the isotope 59Co whose
cross section for thermal neutron capture is 37 b. When 59Co
absorbs a neutron, it becomes 60Co, which is gamma-
radioactive with a half-life of 5.27 y. If a 10.0-g cobalt
sample is exposed to a thermal-neutron flux of 5.00 � 1017

neutrons �m2 � s for 10.0 h, what is the activity of the sample
afterward?

42. Natural sodium consists entirely of the isotope 23Na whose
cross section for thermal neutron capture is 0.53 b. When 23Na
absorbs a neutron, it becomes 24Na, which is beta-radioactive
with a half-life of 15.0 h. A sample of a material that contains
sodium is placed in a thermal neutron beam whose flux is
2.0 � 1018 neutrons�m2 � s for 1.00 h. The activity of the sam-
ple is then 5.0 �Ci. How much sodium was present in the
sample? (This is an example of neutron activation analysis, a
very sensitive technique.)

12.8 Nuclear Reactions

43. Complete these nuclear reactions:
6
3Li � ? S 7

4Be � 1
0n

35
17Cl � ? S 32

16S � 4
2He

9
4Be � 4

2He S 3 4
2He � ?

79
35Br � 2

1H S ? � 2 1
0n

44. Find the minimum energy in the laboratory system that a neu-
tron must have in order to initiate the reaction

1
0n � 16

8O � 2.20 MeV → 13
6C � 4

2He

45. Find the minimum energy in the laboratory system that a
proton must have in order to initiate the reaction

p � d � 2.22 MeV → p � p � n

46. Find the minimum kinetic energy in the laboratory system a
proton must have to initiate the reaction 15N (p, n)15O.

47. A 5-MeV alpha particle strikes a stationary 16
8O target. Find the

speed of the center of mass of the system and the kinetic
energy of the particles relative to the center of mass.

48. A thermal neutron induces the reaction of Exercise 39. Find the
kinetic energy of the alpha particle.

49. An alpha particle collides elastically with a stationary nucleus
and continues on at an angle of 60� with respect to its original
direction of motion. The nucleus recoils at an angle of 30� with
respect to this direction. What is the mass number of the
nucleus?
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Figure 12.32 Cross sections for neutron and proton capture vary
differently with particle energy.
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200 MeV, how many fissions occur per second to yield this
power level?

59. A particle of mass m1 and kinetic energy KE1 collides head on
with a stationary particle of mass m2. The two particles then
move apart with the target particle having the kinetic energy
KE�2. (a) Use conservation of momentum and conservation of
kinetic energy in a non-relativistic calculation to show that
KE�2�KE1 � 4(m2�m1)�(1 � m2�m1)2, which is what is plotted
in Fig. 12.22. (b) What percentage of its initial KE does a neu-
tron lose when it collides head on with a proton? With a
deuteron? With a 12C nucleus? With a 238U nucleus? (Ordinary
water, heavy water, and carbon in the form of graphite have all
been used as moderators in nuclear reactors.)

12.11 Nuclear Fusion in Stars

60. In their old age, heavy stars obtain part of their energy by the
reaction

4
2He � 12

6C → 16
8O

How much energy does each such event give off?

61. The initial reaction in the carbon cycle from which stars hotter
than the sun obtain their energy is

1
1H � 12

6C → 13
7N � �

Find the minimum energy the proton must have to come in
contact with the 12

6C nucleus.

62. Find the energy released in each step of the carbon cycle shown
in Fig. 12.27 and add them up to find the total. Neglect the
kinetic energies of the reacting particles, which are small com-
pared with the Q values of the reactions. (Hint: Watch the
electrons!)

12.12 Fusion Reactors

63. The electric repulsion between deuterons is a maximum when
they are �5 fm apart. (a) Find the temperature at which the
deuterons in a plasma have average energies sufficient to
surmount this potential barrier. (b) Fusion reactions between
deuterons can take place at temperatures considerably below
this figure. Can you think of two reasons why?

64. Show that the fusion energy that could be liberated in 2
1H � 

2
1H from the deuterium in 1.0 kg of seawater is about 600
times greater than the 47 MJ�kg heat of combustion of gasoline.
About 0.015 percent by mass of the hydrogen content of
seawater is deuterium.

50. Neutrons were discovered with the help of the reaction
9
4 Be(�, n) 6

12C that occurs when alpha particles of 5.30 MeV
energy (in the lab system) from the decay of the polonium
isotope 210Po are incident on 9Be nuclei (see Fig. 11.2). What
is the energy available for the reaction in the center-of-mass
system?

51. (a) A particle of mass mA and kinetic energy KEA strikes a sta-
tionary nucleus of mass mB to produce a compound nucleus of
mass mC. Express the excitation energy of the compound nu-
cleus in terms of mA, mC, KEA, and the Q value of the reaction.
(Note: 
Q
 �� mc2.) (b) An excited state in 16O occurs at an en-
ergy of 16.2 MeV. Find the kinetic energy needed by a proton
to produce a 16O nucleus in this state by reaction with a
stationary 15N nucleus.

52. (a) Find the minimum kinetic energy in the laboratory system a
proton must have to react with 65

29Cu to produce 65
30Zn and a

neutron. (b) Find the minimum kinetic energy a proton must
have to come in contact with a 65

29Cu nucleus. (c) If the energy
in b is greater than the energy in a, is there any way in which a
proton with the energy in a can react with 65

29Cu?

12.9 Nuclear Fission

53. When fission occurs, several neutrons are released and the
fission fragments are beta-radioactive. Why?

54. 235U loses about 0.1 percent of its mass when it undergoes
fission. (a) How much energy is released when 1 kg of 235U
undergoes fission? (b) One ton of TNT releases about 4 GJ
when it is detonated. How many tons of TNT are equivalent in
destructive power to a bomb that contains 1 kg of 235U?

55. Assume that immediately after the fission event shown in
Fig. 12.17 the fission fragment nuclei are spherical and in con-
tact. What is the potential energy of this system?

56. Use the semiempirical binding-energy formula of Eq. (11.18) to
calculate the energy that would be released if a 238U nucleus
were to split into two identical fragments.

12.10 Nuclear Reactors

57. What is the limitation on the fuel that can be used in a reactor
whose moderator is ordinary water? Why is the situation differ-
ent if the moderator is heavy water?

58. (a) How much mass is lost per day by a nuclear reactor oper-
ated at a 1.0-GW power level? (b) If each fission releases
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CHAPTER 13

Elementary Particles

Aerial view of CERN, the European particle physics laboratory near Geneva,
Switzerland, where many important discoveries were made. A tunnel 27 km in
circumference under the large circle will contain the new Large Hadron Collider in
which protons and antiprotons will move in opposite  directions as they are accelerated
to the highest energies yet achieved in the laboratory. It is hoped that their interactions
will shed light on the process that gives particles mass. The smaller circle marks an
earlier proton-antiproton collider.

13.1 INTERACTIONS AND PARTICLES
Which affects which

13.2 LEPTONS
Three pairs of truly elementary particles

13.3 HADRONS
Particles subject to the strong interaction

13.4 ELEMENTARY PARTICLE QUANTUM
NUMBERS

Finding order in apparent chaos

13.5 QUARKS
The ultimate constituents of hadrons

13.6 FIELD BOSONS
Carriers of the interactions

13.7 THE STANDARD MODEL AND BEYOND
Putting it all together

13.8 HISTORY OF THE UNIVERSE
It began with a bang

13.9 THE FUTURE
“In my beginning is my end.” (T. S. Eliot, Four
Quartets)
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O rdinary matter is composed of protons, neutrons, and electrons, and at first
glance these particles seem enough to account for the structure of the universe
around us. Not all nuclides are stable, however, and neutrinos are needed for

beta decay to take place—indeed, without neutrinos the reaction sequences that power
the stars and that lead to the creation of elements heavier than hydrogen could not
occur. Furthermore, as discussed in Sec. 11.7, the electromagnetic interaction between
charged particles requires photons as its carrier, and the specifically nuclear interac-
tion between nucleons requires pions for the same purpose. Even so, only a few par-
ticles seem to be needed, all of them with clearly defined roles to play.

But things are not nearly so straightforward. Hundreds of other “elementary” particles
have been discovered, all of which decay rapidly after being created in high-energy
collisions between other particles. It has become clear that some of these particles
(called leptons) are more elementary than the others, and that the others (called
hadrons) are composites of a far smaller number of rather unusual particles called
quarks that have not been detected in isolation (and probably will never be).

13.1 INTERACTIONS AND PARTICLES

Which affects which

The four interactions we already know about—strong, electromagnetic, weak, and
gravitational—are apparently enough to account for all the physical processes and struc-
tures in the universe on all scales of size from atoms and nuclei to galaxies of stars.
The basic characteristics of these interactions are given in Table 13.1.

The list of fundamental interactions has changed over the years. Long ago, the strong
and weak interactions were unknown and it was not even clear that the gravity that
pulls things down to the earth, which we might call terrestrial gravity, is the same as
the gravity that holds the planets to their orbits around the sun. One of Newton’s great
accomplishments was to show that both terrestrial and astronomical gravity are the
same. Another notable unification was made by Maxwell when he demonstrated that
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Table 13.1 The Four Fundamental Interactions. The graviton has not been experimentally detected as yet.

Relative Particles
Interaction Particles Affected Range Strength Exchanged Role in Universe

Quarks Gluons Holds quarks together to form
Strong �10�15 m 1 nucleons

Hadrons Mesons Holds nucleons together to form 
atomic nuclei

Electromagnetic Charged particles � �10�2 Photons Determines structures of atoms,
molecules, solids, and liquids; is
important factor in astronomical
universe

Weak Quarks and leptons �10�18 m �10�5 Intermediate Mediates transformations of
bosons quarks and leptons; helps

determine compositions of
atomic nuclei

Gravitational All � �10�39 Gravitons Assembles matter into planets,
stars, and galaxies
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electric and magnetic forces can both be traced to a single interaction between charged
particles.

As we shall see, the electromagnetic and weak interactions turn out to be different
manifestations of a single electroweak interaction. This in turn seems to have links to
the strong interaction, though the details of the relationship are still not entirely clear.
The final step in understanding how nature operates would be a single picture that in-
cludes gravitation, and there are strong hints that such a Theory of Everything is not
beyond reach (Fig. 13.1).

The relative strengths of the various interactions span 39 powers of 10 and the dis-
tances through which they are effective are also very different. While the strong force
between nearby nucleons completely overwhelms the gravitational force between them,
when they are a millimeter apart the reverse is true. The structures of nuclei are de-
termined by the properties of the strong interaction, while the structures of atoms are
determined by those of the electromagnetic interaction. Matter in bulk is electrically
neutral, and the strong and weak interactions are severely limited in range. Hence the
gravitational interaction, utterly insignificant on a small scale, becomes the dominant
one on a large scale. The role of the weak force in the structure of matter is apparently
that of a minor perturbation that sees to it that nuclei with inappropriate neutron/
proton ratios undergo corrective beta decays.

The universe would be very different if the strengths of the various interactions
had other values. For instance, as mentioned in Sec. 11.4, if the strong interaction
were more than a trifle stronger, the universe would be filled with diprotons and the
fusion reactions that give energy to the stars and create the chemical elements could
not take place. If the strong interaction were weaker, protons could not combine with
neutrons, also eliminating the exothermic fusion path to helium and heavier ele-
ments. The gravitational interaction is in a similar state of balance. If it were more
powerful, stellar interiors would be hotter, their fusion reactions would occur more
often, and stars would burn out sooner—perhaps too soon for life to have developed
on their planets. Significantly weaker gravity, on the other hand, would not have
clumped matter into stars to begin with. One of the tasks of a Theory of Everything
is to establish why the fundamental interactions and the particles they affect have
the properties they do.
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Universal
interaction

Electricity Magnetism

Electroweak
interaction

Terrestrial
gravity

Astronomical
gravity

Strong
interaction

Electromagnetic
interaction

Grand unified
interaction

Gravitational
interaction

Weak
interaction

Figure 13.1 One of the goals of physics is a single theoretical picture that unites all the ways in which
particles of matter interact with each other. Much progress has been made, but the task is not finished. 
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Leptons and Hadrons

Elementary particles fall into two classes, leptons and hadrons, depending on whether
they respond to the strong interaction (hadrons) or do not (leptons).

The simplest particles are the leptons (Greek: “light,” “swift”), which seem to be
truly elementary with no hint of internal structures or even of extension in space.
Leptons are affected only by the electromagnetic (if charged), weak, and gravitational
interactions. Of the particles to which we have already been introduced, the electron
and the neutrino are leptons; there are four other types.

Hadrons (Greek: “heavy,” “strong”) are subject to the strong interaction as well as
to the others. They also differ from leptons in that they occupy space, rather than be-
ing infinitesimal in size: hadrons seem to be a little over 1 fm (10�15 m) across. Hadrons
are composed of either two or three quarks, which, like leptons, are structureless and
as close to being point particles as present measurements can establish. Hadrons that
consist of three quarks, such as the proton and neutron, are called baryons; mesons,
such as the pion, consist of two quarks. Like nothing else in nature, quarks have charges
of ��

1
3

�e or ��
2
3

�e, and their combination in hadrons is always such that the hadron charges
are either 0 or �e. Quarks have never been observed outside of hadrons, but, as we
shall see, there is convincing evidence that they do exist. The strong force that acts
between hadrons is the external manifestation of the more basic interactions among
the quarks they contain and is mediated by the exchange of mesons, as described in
Sec.11.7.

13.2 LEPTONS

Three pairs of truly elementary particles

Table 13.2 lists the six known leptons and their antiparticles. Because the neutrinos
involved in beta decays, which were discussed in Chap. 12, are associated with elec-
trons, their proper symbol is �e.

The electron was the first elementary particle for which a satisfactory theory was
developed. This theory was proposed in 1928 by Paul A. M. Dirac, who obtained a
relativistically correct wave equation for a charged particle in an electromagnetic field.
When the observed mass and charge of the electron are inserted in the solutions of
this equation, the intrinsic angular momentum of the electron is found to be �

1
2

�� (that
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Table 13.2 Leptons. All are unaffected by the strong interaction and are
fermions. The neutrinos are uncharged; their masses are unknown but 
unlikely to exceed a few eV�c2.

Lepton Symbol Antiparticle Mass, MeV/c2 Mean Life, s Spin

Electron e� e� 0.511 Stable �
1
2

�

e-neutrino � e ��e Very small Stable �
1
2

�

Muon �� �� 106 2.2 � 10�6
�
1
2

�

�-neutrino �� ��� Very small Stable �
1
2

�

Tau �� �� 1777 2.9 � 10�23
�
1
2

�

�-neutrino �� ��� Very small Stable �
1
2

�
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Figure 13.2 Electron-positron pair
production. (a) A photon of en-
ergy h� 	 2mc2 (	1.02 MeV) is
absorbed by a negative-energy
electron, which gives the electron
a positive energy. (b) The result-
ing hole in the negative-energy
electron sea behaves like an elec-
tron of positive charge. 

is, spin �
1
2

�) and its magnetic moment is found to be e��2m, one Bohr magneton. These
predictions agree with experiment, and the agreement is strong evidence for the cor-
rectness of the Dirac theory.

An unexpected result of Dirac’s theory was its requirement that an electron can have
negative as well as positive energies. That is, when the relativistic formula for total
energy

E 
 �m2c4 �� p2c2�

is applied to electrons, both the negative and positive roots are acceptable solutions.
But if negative energy states going all the way to E 
 �� are possible, what keeps all
the electrons in the universe from ending up with negative energies? The existence of
stable atoms is by itself evidence that electrons are not subject to such a fate.

Dirac rescued his theory by suggesting that all negative energy states are normally
filled. The Pauli exclusion principle then prevents any other electrons from dropping
into the negative states. But if an electron in the sea of filled negative states is given
enough energy, say by absorbing a photon of energy h� 	 2mc2, it can jump out of this
sea and become an electron with a positive energy (Fig. 13.2). This process leaves be-
hind a hole in the negative-energy electron sea which, just like a hole in a semicon-
ductor energy band, behaves as if it is a particle of positive charge—a positron. The re-
sult is the materialization of the photon into an electron-positron pair, � → e� � e�, as
described in Sec. 2.8.

When Dirac developed his theory, the positron was unknown, and it was specu-
lated that the proton might be the positive counterpart of the electron despite their dif-
ference in mass. Finally, in 1932, Carl Anderson unambiguously detected a positron
in the stream of secondary particles that result from collisions between cosmic rays and
atomic nuclei in the atmosphere.

The positron is the antiparticle of the electron. All other elementary particles also
have antiparticles; a few, such as the neutral pion, are their own antiparticles. The an-
tiparticle of a particle has the same mass, spin, and lifetime if unstable, but its charge
(if any) has the opposite sign. The alignment or antialignment between its spin and
magnetic moment is also opposite to that of the particle.

Neutrinos and Antineutrinos

The distinction between the neutrino � and the antineutrino �� is a particularly inter-
esting one. The spin of the neutrino is opposite in direction to the direction of its

478 Chapter Thirteen

T here seems to be no reason why atoms could not be composed of antiprotons, antineu-
trons, and positrons. Such antimatter ought to behave exactly like ordinary matter. If

galaxies of antimatter stars existed, their spectra would not differ from the spectra of galaxies
of matter stars. Thus we have no way to distinguish between the two kinds of galaxies—except
when antimatter from one comes in contact with matter from the other. Mutual annihilation
would then occur with the release of an immense amount of energy. (A postage stamp of
antimatter annihilating a postage stamp of matter would give enough energy to send the space
shuttle into orbit.) But the gamma rays of characteristic energies that such an event would create
have never been observed, nor have antiparticles ever been identified in the cosmic rays that
reach the earth from space. It seems the universe consists entirely of ordinary matter.

Antimatter
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Neutrino

Antineutrino

Figure 13.3 Neutrinos and anti-
neutrinos have opposite direc-
tions of spin.

motion; viewed from behind, as in Fig. 13.3, the neutrino spins counterclockwise. The
spin of the antineutrino, on the other hand, is in the same direction as its direction of
motion; viewed from behind, it spins clockwise. Thus the neutrino moves through
space in the manner of a left-handed screw, while the antineutrino does so in the
manner of a right-handed screw.

Prior to 1956 it had been universally assumed that neutrinos could be either left-
handed or right-handed. This implied that, since no difference was possible between
them except one of spin direction, the neutrino and antineutrino are identical. The as-
sumption had roots going all the way back to Leibniz, Newton’s contemporary and an
independent inventor of calculus. The argument is as follows. If we observe an object
or a physical process of some kind both directly and in a mirror, we cannot ideally
distinguish which object or process is being viewed directly and which by reflection.
By definition, distinctions in physical reality must be capable of discernment or they
are meaningless. But the only difference between something seen directly and the same
thing seen in a mirror is the interchange of right-handedness and left-handedness, and
so all objects and processes must occur with equal probability with right and left
interchanged.

This plausible doctrine is indeed experimentally valid for the strong and electro-
magnetic interactions. However, until 1956 its applicability to neutrinos, which are
subject only to the weak interaction, had never been actually tested. In that year Tsung
Dao Lee and Chen Ning Yang suggested that several serious theoretical discrepancies
would be removed if neutrinos and antineutrinos have different handedness, even
though it meant that neither particle could therefore be reflected in a mirror.
Experiments performed soon after their proposal showed unequivocally that neutrinos
and antineutrinos are distinguishable, having left-handed and right-handed spins
respectively.

Other Leptons

The muon, �, and its associated neutrino �� were first discovered in the decays of
charged pions:

Charged pion decay �� → �� � �� �� → �� � ��� (13.1)

The pion was discussed in Sec. 11.7 in connection with the strong force between
nucleons, which it mediates. The pion’s mass is intermediate between those of
the electron and the proton, and it is unstable with a mean life of 2.6 � 10�8 s for
��. The neutral pion has a mean life of 8.7 � 10�17 s and decays into two gamma
rays:

Neutral pion decay �0 → � � � (13.2)

The neutrinos involved in pion decays are not the same as those involved in beta
decay. The existence of another class of neutrino was established in 1962. A metal
target was bombarded with high-energy protons, and pions were created in profusion.
Inverse reactions traceable to the neutrinos from the decay of these pions produced
muons only, and no electrons. Hence these neutrinos must be different in some way
from those associated with beta decay.

Positive and negative muons have the same rest mass of 106 MeV/c2 (207 me) and
the same spin of �

1
2

�. Both decay with a relatively long mean life of 2.2 � 10�6 s into
electrons and neutrino-antineutrino pairs:
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Muon decay �� → e� � �e � ��� �� → e� � �� � ��e (13.3)

As with electrons, the positive-charge state of the muon represents the antiparticle.
There is no neutral muon.

Because the decay of the muon is relatively slow and because, like all leptons, it is
not subject to the strong interaction, muons readily penetrate considerable amounts of
matter. The great majority of cosmic-ray secondary particles at sea level are muons.
The muon lifetime is long enough for a negative muon sometimes to temporarily replace
an atomic-electron to form a muonic atom (see Example 4.7).

The final pair of leptons is the tau, �, which was discovered in 1975, and its
associated neutrino �� whose existence was not confirmed experimentally until 2000.
The mass of the tau is 1777 MeV/c2, almost double that of the proton, and its mean
life is very short, only 2.9 � 10�23 s. All taus are charged and decay into electrons,
muons, or pions along with appropriate neutrinos.

A n immense number of neutrinos are produced in the sun and other stars in the course of
the nuclear reactions that occur within them, and these neutrinos are apparently able to

travel freely throughout the universe. Several percent of the energy released in such reactions is
carried away by the neutrinos.

In the case of the sun, its observed luminosity implies a neutrino production rate of around
2 � 1038 per second, which means that 60 billion or so neutrinos should pass through each
square centimeter of the earth’s surface per second. To detect the most energetic of these neu-
trons, Raymond Davis installed a detector in an abandoned gold mine 1.5 km underground in
South Dakota to prevent interference from cosmic rays. The detector contained 600 tons of the
dry-cleaning liquid perchlorethylene, C2Cl4, and the reaction

�e � 37
17Cl → 37

18Ar � e�

was looked for. The argon isotope 37
18Ar remains in the liquid as a dissolved gas and can be

separated out and identified by its beta decay back to 37
17Cl.

During eighteen years of operation only about a quarter as many neutrino interactions were
observed (less than one per day) as were expected on the basis of an otherwise plausible model
of the solar interior. The discrepancy was well beyond uncertainties in the measurements and
in the calculations. More recent work with methods that respond to lower-energy neutrinos
showed a smaller discrepancy, but still a major one. Something serious was wrong either with
the theory of how stars produce energy, which in all other respects agrees well with observa-
tions, or with theories of how neutrinos come into being, travel through space, and interact with
matter, which have also proved successful in their other predictions.

One speculation was based on the existence of muon and tau neutrinos as well as electron
neutrinos. If neutrinos have masses (very little is needed), then after its creation a neutrino of one
type (or flavor) could oscillate between that flavor and another one or perhaps both others.
Since the sun gives off only electron neutrinos, if some of them have a different flavor when they
reach the earth, the number of electron neutrinos recorded here will be less than the number
expected. We can think of each neutrino flavor not as a particle with a distinct identity but as a
mixture of mass states whose waves travel with different velocities. The waves interfere, and as
time goes on the likelihood of being observed fluctuates in amplitude among the various flavors.

This hypothesis was confirmed in 1998 in measurements made in Japan with the Super
Kamiokanda detector, which monitored the Cerenkov radiation (see Sec. 1.2) given off by the
debris of interactions between incoming neutrinos and nuclei present in a tank of 50,000 tons
of water. The results indicated that muon neutrinos (produced in the decays of cosmic-ray pions

The Solar Neutrino Mystery
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Table 13.3 Some hadrons and their properties. The symbol S stands for strangeness number, discussed in
Sec. 13.4. Antiparticles have strangeness numbers the negative of those shown.

Mass, Mean
Class Particle Symbol Antiparticle MeV/c2 Life, s Spin S

�� �� 140 2.6 � 10�8

Mesons Pion �0 Self 135 8.7 � 10�17 0 0
�� �� 140 2.6 � 10�8

K� K� 494 1.2 � 10�8

Kaon KS
0 KK�S�0� 498 8.9 � 10�11 0 �1

KL
0 K�L�0� 498 5.2 � 10�8

Eta
�0 Self 549 5 � 10�19

0 0
�� Self 958 2.2 � 10�21

Baryons Nucleon Proton p p� 938.3 Stable
�
1
2

� 0
Neutron n n� 939.6 889

Lambda 
0 
�0� 1116 2.6 � 10�10
�
1
2

� �1

�� ���� 1189 8.0 � 10�11

Sigma �0 ��0� 1193 6 � 10�20
�
1
2

� �1
�� ���� 1197 1.5 � 10�10

Xi �0 ��0� 1315 2.9 � 10�10

�� �� 1321 1.6 � 10�10
�
1
2

� �2

Omega �� �� 1672 8.2 � 10�11
�
3
2

� �3

�

and muons in the earth’s atmosphere) indeed metamorphose to and from tau neutrinos. Further
experiments will no doubt provide a definitive answer to whether electron neutrinos also
undergo oscillations into another flavor or flavors. In the meantime the solar neutrino mystery
no longer seems so mysterious and it appears that neutrinos do have mass, settling a question
seventy years old.

13.3 HADRONS

Particles subject to the strong interaction

Unlike leptons, hadrons are subject to the strong interaction. Table 13.3 lists the hadrons
with the longest lifetimes against decay into other particles. Mesons are bosons and
consist of a quark and an antiquark; about 140 types are known. The lightest meson
is the pion, with other meson masses ranging beyond the proton mass. Baryons are
fermions and consist of three quarks; about 120 types are known. Of the hadrons listed,
the �0 and �0 are their own antiparticles. The charged pions differ in charge, so they
are antiparticles of each other, but have no other attributes that are different, so each
is both a particle and an antiparticle.

The lightest baryon is the proton, which is also the only hadron stable in free space.
Or apparently stable—current theories call for the proton to decay with a very long
lifetime, perhaps longer than the experimentally determined lower limit of 1032 years.
Hence the ultimate stability of the proton is still an open question. (For comparison,
the age of the universe is a little over 1010 years.) The neutron, although stable inside
a nucleus, beta-decays in free space into a proton, an electron, and an antineutrino
with a mean life of 14 min 49 s.
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All baryons other than nucleons decay with mean lives of less than 10�9 s in a
variety of ways, but the end result is always a proton or neutron. For example, here is
one sequence which the �� baryon can follow in its decay:

�� → �0 � ��


0 � �0

p� � ��

The �0 and 
0 particles are successively lighter baryons than the ��. The �� and �0

mesons themselves decay as described earlier, so the final result of the decay of the
�� is a proton, two electrons, four neutrinos, and two photons.

Resonance Particles

Most of the particles in Table 13.3 exist long enough to travel as distinct entities along
paths of measurable length, and their modes of decay can be observed in various devices.

482 Chapter Thirteen

One of the accelerator sections of a proton-antiproton collider at CERN. In these sections protons and
antiprotons are accelerated by alternating electric fields. Magnetic fields are used to focus the parti-
cles and to keep them in circular paths during the millions of orbits during which they gain energy. 
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Collisions between high-energy protons and antiprotons produce a
variety of elementary particles whose properties and decay schemes can
be studied with the giant UAI detector at CERN.

A large body of experimental evidence also points to the existence of many hadrons
whose lifetimes may be only about 10�23 s. What can be meant by the idea of a par-
ticle that is in being for so brief an interval? Indeed, how can a time of 10�23 s be 
measured?

Ultra-short-lived particles cannot be detected by recording their creation and
subsequent decay because the distance they cover in �10�23 s is only �3 � 10�15 m
even if they move at nearly the velocity of light—a length characteristic of hadron
dimensions. Instead, such particles appear as resonant states in the interactions of
longer-lived (and hence more readily observable) particles. Resonant states occur in
atoms as energy levels; in Sec. 4.8 we reviewed the Franck-Hertz experiment, which
demonstrated the existence of atomic energy levels by showing that inelastic electron
scattering from atoms occurs only at certain energies.

An atom in a certain excited state is not the same as that atom in its ground state
or in another excited state. However, such an excited atom is not spoken of as though
it is a member of a special species only because the electromagnetic interaction that
gives rise to the excited state is well understood. The situation is somewhat different
for elementary particles because the weak and strong interactions that also govern them
are more complicated and were not really understood until relatively recently.
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Figure 13.4 Resonant states in the reaction �� � p → �� � p � �� � �� � �0 occur at effective
masses of 549 and 783 MeV/c2. By effective mass is meant the total energy, including mass energy, of
the three new mesons relative to their center of mass.

Let us see what is involved in a resonance in the case of elementary particles. An
experiment is performed, for instance the bombardment of protons by energetic ��

mesons, and a certain reaction is studied, for instance

�� � p → �� � p � �� � �� � �0

The effect of the interaction of the �� and the proton is the creation of three new
pions. In each such reaction the new mesons have a certain total energy that consists
of their rest energies plus their kinetic energies relative to their center of mass.

If we plot the number of events observed versus the total energy of the new mesons
in each event, we obtain a graph like that of Fig. 13.4. Evidently there is a strong
tendency for the total meson energy to be 783 MeV and a somewhat weaker tendency
for it to be 549 MeV. We can say that the reaction exhibits resonances at 549 and 
783 MeV or, equivalently, we can say that this reaction proceeds via the creation of an
intermediate particle which can be either one whose mass is 549 MeV/c2 or one whose
mass is 783 MeV/c2.

From Fig. 13.4 we can even estimate the mean lifetimes of these uncharged
intermediate particles, which are known respectively as the � and � mesons. In Chap. 12
we used the formula

Mean lifetime � 
 (12.23)

to relate the mean lifetime � of an excited nuclear state to the width � at half-maximum
of the corresponding resonance peak. Applying the same formula here gives a mean
lifetime of 5 � 10�19 s for the � meson and one of 7 � 10�25 s for the � meson.

�
�
�
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13.4 ELEMENTARY PARTICLE QUANTUM NUMBERS

Finding order in apparent chaos

The interactions and decays of the hundreds of known elementary particles and reso-
nances form what seems to be a bewildering array. Order can be brought into this
situation by assigning certain quantum numbers to each entity and establishing which
of these numbers are conserved and which can change in a given process. We are
already familiar with two such quantum numbers, namely those that describe a particle’s
charge and spin. These quantum numbers are always conserved. In this section we
shall look at some of the other quantum numbers that have proved useful in under-
standing the behavior of elementary particles.

Baryon and Lepton Numbers

One set of quantum numbers is used to characterize baryons and the three families of
leptons. The baryon number B 
 1 is assigned to all baryons, and B 
 �1 to all
antibaryons; all other particles have B 
 0. The lepton number Le 
 1 is assigned to
the electron and the e-neutrino, and Le 
 �1 to their antiparticles; all other particles
have Le 
 0. In a similar way the lepton number L� 
 1 is assigned to the muon and
the �-neutrino, and the lepton number L � 
 1 to the tau lepton and its neutrino.

The significance of these numbers is that, in every process of whatever kind, the total
values of B, Le, L�, and L� separately remain constant: the number of baryons and of
each kind of lepton, reckoning a particle as � and its antiparticles as �, never changes.

An example of particle-number conservation is the decay of the neutron, in which
B 
 1 and Le 
 0 before and after:

n0 → p� � e� � ��e

Neutron decay Le: 0 0 �1 �1
B: �1 �1 0 0

This is the only way in which the neutron can decay and still conserve both energy and
baryon number B. The apparent stability of the proton is also a consequence of the need
to conserve these quantities: there are no baryons of smaller mass, hence it cannot decay.

Example 13.1

Show that pion decay, muon decay, and pair production conserve the lepton numbers Le and L�.

Solution

Pion decay �� → �� � ���

L�: 0 �1 �1

Muon decay �� → e� � �� � ��e

Le: 0 �1 0 �1

L�: �1 0 �1 0

Pair production � → e� �e�

Le: 0 �1 �1
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Strangeness

Introducing baryon and lepton numbers still left some loose ends in the world of
elementary particles. In particular, a number of particles were discovered that behaved
so unexpectedly that they were called “strange particles.” They were only created in
pairs, for instance, and decayed only in certain ways but not in others that were al-
lowed by existing conservation rules. To clarify the observations, M. Gell-Mann and,
independently, K. Nishijina introduced the strangeness number S, whose assignments
for the particles of Table 13.3 are shown there.

Strangeness number S is conserved in all processes mediated by the strong and
electromagnetic interactions. The multiple creation of particles with S � 0 is the result
of this conservation principle. An example is the result of this proton-proton collision:

p� � p� → 
0 � K0 � p� � ��

S: 0 0 �1 � 1 0 0

On the other hand, S can change in an event mediated by the weak interaction.
Decays that proceed via the weak interaction are relatively slow, a billion or more times
slower than decays that proceed via the strong interaction (such as those of resonance
particles). Even the weak interaction does not allow S to change by more than �1 in
a decay. Thus the �� baryon does not decay directly into a neutron since

�� → n0 � �
S: �2 0 0

but instead via the two steps

�� → 
0 � �� 
0 → n0 � �0

S: �2 �1 0 �1 0 0

A remarkable theorem discovered early in this century by the German mathematician Emmy
Noether states that

Every conservation principle corresponds to a symmetry in nature.

What is meant by a “symmetry”? In general, a symmetry of a particular kind exists when a cer-
tain operation leaves something unchanged. A candle is symmetric about a vertical axis because
it can be rotated about that axis without changing in appearance or any other feature; it is also
symmetric with respect to reflection in a mirror.

The simplest symmetry operation is translation in space, which means that the laws of
physics do not depend on where we choose the origin of our coordinate system to be. Noe-
ther showed that the invariance of the description of nature to translations in space has as a
consequence the conservation of linear momentum. Another simple symmetry operation is
translation in time, which means that the laws of physics do not depend on when we choose
t 
 0 to be, and this invariance has as a consequence the conservation of energy. Invariance
under rotations in space,  which means that the laws of physics do not depend on the orien-
tation of the coordinate system in which they are expressed, has as a consequence the
conservation of angular momentum. 

Conservation of electric charge is related to gauge transformations, which are shifts in the
zeros of the scalar and vector electromagnetic potentials V and A. (As elaborated in

Symmetries and Conservation Principles
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electromagnetic theory, the electromagnetic field can be described in terms of the potentials
V and A instead of in terms of E and B, where the two descriptions are related by the vector
calculus formulas E 
 ��V and B 
 � � A.) Gauge transformations leave E and B unaffected
since the latter are obtained by differentiating the potentials, and this invariance leads to charge
conservation.

The interchange of identical particles in a system is a type of symmetry operation which leads
to the preservation of the character of the wave function of a system. The wave function may be
symmetric under such an interchange, in which case the particles do not obey the exclusion prin-
ciple and the system follows Bose-Einstein statistics, or it may be antisymmetric, in which case
the particles obey the exclusion principle and the system follows Fermi-Dirac statistics.
Conservation of statistics (or, equivalently, of wave-function symmetry or antisymmetry) signifies
that no process occurring within an isolated system can change the statistical behavior of that
system. A system exhibiting Bose-Einstein statistical behavior cannot spontaneously alter itself to
exhibit Fermi-Dirac statistical behavior, or vice versa. This conservation principle has applications
in nuclear physics, where it is found that nuclei that contain an odd number of nucleons (odd
mass number A) obey Fermi-Dirac statistics while those with even A obey Bose-Einstein statistics.
Conservation of statistics is thus a further condition a nuclear reaction must observe.

More subtle and abstract than those mentioned above are the symmetries associated with the
conservation of such quantities as baryon and lepton numbers and strangeness. These symme-
tries were important in the thinking that led to current theories of elementary particles, notably
the quark model of hadrons.

The Eightfold Way

From Table 13.3 we can see that there are hadron families whose members have similar
masses but different charges. These families are called multiplets, and it is natural to
think of the members of a multiplet as representing different charge states of a single
fundamental entity.

A classification system for hadrons, called the eightfold way, was proposed
independently by Murray Gell-Mann and Yuval Ne’eman to encompass the many short-
lived resonance particles as well as the relatively stable hadrons of Table 13.3. This
scheme collects multiplets into supermultiplets whose members have the same spin
but differ in charge and strangeness. The two supermultiplets shown in Figs. 13.5 and
13.6 consist respectively of spin �

1
2

� baryons and spin 0 mesons, all stable against decay
by the strong interaction. The supermultiplet of Fig. 13.7 consists of spin �

3
2

� baryons
which, except for the ��, are resonance particles. The �� was unknown when this
supermultiplet was worked out, and its later discovery confirmed the validity of this
classification method.
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Emmy Noether (1882–1935) was
born in Germany and grew up
among mathematicians, who in-
cluded her father and brother. Her
own mathematical work, mainly in
algebra, was brilliant and original,
and her papers and teaching had
considerable influence. The atmos-
phere at the University of Göttin-

gen, an outstanding center of mathematics where she went in

1919, was hostile to women, and she found it difficult to ob-
tain a position there despite an appeal by the great mathemati-
cian David Hilbert: “I do not see why the sex of the candidate
should be an argument against her appointment as Privatdo-
cent; after all, we are not a bathhouse.” The rise of Nazism in
Germany led to her leaving in 1933 for the United States, where,
after a period at the Institute for Advanced Study in Princeton,
she became a professor at Bryn Mawr. Complications after what
had seemed a successful operation ended her life at fifty-three
while she was still full of ideas and energy.
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Liquid hydrogen bubble chamber photograph showing the production of a �� baryon by the 
interaction of a K� meson (moving upward from the bottom) with a proton together with the 
sebsequent decay of the �� into a �0 baryon and a �� meson. The sketch shows the identities of
the charged particles that caused each track; the dashed lines indicate the paths of neutral particles
that leave no tracks. A magnetic field deflected the paths of the charged particles and enabled their
momenta to be determined. The �� baryon was predicted theoretically before its discovery in 1964.
(Courtesy Brookhaven National Laboratory)
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Figure 13.6 Supermultiplet of spin 0 mesons.Figure 13.5 Supermultiplet of spin �
1
2

� baryons on a plot of strange-
ness S versus charge Q (in units of e).
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Figure 13.8 Origin of the baryon supermultiplet shown in Fig. 13.5.Figure 13.7 Baryon supermultiplet whose members have spin �
3
2

� and
(except ��), are short-lived resonance particles. The �* and �*

particles here are heavier and have different spins from the ones in
Table 13.3. The �� particle was predicted from this scheme.
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Murray Gell-Mann (1929– ) was
born in New York and entered Yale
University at fifteen. After obtain-
ing his Ph.D. from the Massachu-
setts Institute of Technology in
1951 he was at the Institute
for Advanced Study in Princeton
and at the University of Chicago
before joining the faculty of the

California Institute of Technology. In 1953 Gell-Mann intro-
duced strangeness number and its conservation in certain
interactions to help understand the properties of elementary
particles. In 1961 he formulated a method of classifying
elementary particles that enabled him to predict the ��

particle, which was later discovered. Two years later Gell-Mann
came up with the idea of quarks, the ultimate entities from
which particles subject to the strong interaction are composed.
He received the Nobel Prize in Physics in 1969.

The members of each supermultiplet would all be the same in the absence of any
interactions, which are responsible for the differences that occur. Figure 13.8 shows
how this idea applies to the baryon supermultiplet of Fig. 13.5. The strong interaction
splits the basic baryon state into the four components �, �, �, and N (for nucleon),
and the electromagnetic interaction further splits the �, �, and N components into
multiplets. Because the strong interaction is more powerful than the electromagnetic
one, the mass differences between multiplets are greater than those between members
of a multiplet. Thus there is only 1.3-MeV difference between the p and n masses, but
176 MeV separates them from the � mass.

13.5   QUARKS

The ultimate constituents of hadrons

An effort to explain why only certain hadron families, such as those shown in 
Figs. 13.5, 13.6, and 13.7, occur but not others led Gell-Mann and, independently,
George Zweig to propose in 1963 that all baryons consist of three still more fundamental
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particles. Gell-Mann called these particles quarks from the phrase “three quarks for
Muster Mark” that appears in James Joyce’s novel Finnegan’s Wake. The original three
quarks were called up (symbol u), down (d), and strange (s); whereas u and d quarks
have the strangeness number S � 0, the s quark has S � �1 (Table 13.4).

Because each baryon (B � 1) is made up of three quarks, the baryon number of a
quark must be B � �

1
3

�. Antibaryons (B � �1) are made up of three antiquarks, so the
baryon number of an antiquark must be B � ��

1
3

�. Mesons, for which B � 0, consist
of a quark and an antiquark. Quarks all have spins of �

1
2

�, which accounts for the observed
half-integral spins of baryons and the 0 or integral spins of mesons.

In order for hadrons to have charges of 0 or integral multiples of 	e, the various
quarks must have the fractional charges shown in Table 13.4. No other particles in
nature have fractional charges, which made the quark hypothesis hard to accept at first,
but soon the evidence for it proved overwhelming. The most direct experiments that
point to the reality of quarks involved the scattering of high-energy (hence short-
wavelength) electrons by protons, which revealed that there are indeed three pointlike
concentrations of charge inside a proton. Quarks are thought to be elementary in the
same sense as leptons, essentially point particles with no internal structures. Figure 13.9
shows the quark compositions of the hadrons of Fig. 13.5 and Table 13.5 details how
the properties of several hadrons are derived from those of the quarks they contain.
Figure 13.10 illustrates the quark models of nucleons and antinucleons.
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Table 13.4 Quarks. All have spin �
1
2

� and baryon number B � �
1
3

�. Antiquarks have
charges that are the negatives of those shown and baryon number B � ��

1
3

�. 
The strange antiquark has a strangeness number of S � 1.

Quark Symbol Mass, GeV/c 2 Charge, e Strangeness

Up u 0.3 
�
2
3

� 0
Down d 0.3 ��

1
3

� 0

Strange s 0.5 ��
1
3

� �1
Charmed c 1.5 
�

2
3

� 0

Top t 174 
�
2
3

� 0
Bottom b 4.3 ��

1
3

� 0

u
d d

d
u u

s
u u

s
u d

s
u d

u
s s

d
s s

s
d d−1

0

s

−2

  −1 0 +1Q 

Figure 13.9 Quark compositions of the spin �
1
2

� baryons shown in Fig. 13.5.
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Table 13.5 Compositions of some hadrons according to the quark model

Quark Baryon
Hadron Content Number Charge, e Spin Strangeness

�� ud� �
1
3

� � �
1
3

� 
 0 � �
2
3

� � �
1
3

� 
 �1 ↑ ↓ 
 0 0 � 0 
 0
K� us� �

1
3

� � �
1
3

� 
 0 � �
2
3

� � �
1
3

� 
 �1 ↑ ↓ 
 0 0 � 1 
 �1
p� uud �

1
3

� � �
1
3

� � �
1
3

� 
 �1 ��
2
3

� � �
2
3

� � �
1
3

� 
 �1 ↑ ↑ ↓ 
 �
1
2

� 0 � 0 � 0 
 0
n0 ddu �

1
3

� � �
1
3

� � �
1
3

� 
 �1 ��
1
3

�   � �
1
3

� � �
2
3

� 
 0 ↓ ↓ ↑ 
 �
1
2

� 0 � 0 � 0 
 0
�� sss �

1
3

� � �
1
3

� � �
1
3

� 
 �1 ��
1
3

�  � �
1
3

� � �
1
3

� 
 �1 ↑ ↑ ↑ 
 �
3
2

� �1 � 1 � 1 
 �3

+ 2–
   

3

=

Antineutron

=

Antiproton

– 2–
   

3
– 2–
   

3

=

u u

d

Proton

– 1–
   

3
+ 2–
   

3

=

d d

u

Neutron

+ 2–
   

3
– 1–
   

3
– 1–
   

3

u u

d + 1–
   

3

d d

u – 2–
   

3
+ 1–
   

3
+ 1–
   

3

+1

0 0

–1

Figure 13.10 Quark models of the
proton, antiproton, neutron, and
antineutron. Electric charges are
given in units of e.

Color

A serious problem with the idea that baryons are composed of quarks was that the
presence of two or three quarks of the same kind in a particular particle (for instance,
two u quarks in a proton, three s quarks in an �� baryon) violates the exclusion
principle. Quarks ought to be subject to this principle since they are fermions with
spins of �

1
2

�. To get around this problem, it was suggested that quarks and antiquarks
have an additional property of some kind that can be manifested in a total of six
different ways, rather as electric charge is a property that can be manifested in the
two different ways that have come to be called positive and negative. In the case of
quarks, this property became known as “color,” and its three possibilities were called
red, green, and blue. The antiquark colors are antired, antigreen, and antiblue.

According to the color hypothesis, all three quarks in a baryon have different colors,
which satisfies the exclusion principle since all are then in different states even if two
or three are otherwise identical. Such a combination can be thought of as white by
analogy with the way red, green, and blue light combine to make white light (but
there is no connection whatever except on this metaphorical level between quark
colors and actual visual colors). Similarly, an antibaryon consists of an antired, an
antigreen, and an antiblue quark. A meson consists of a quark of one color and an
antiquark of the corresponding anticolor, which has the effect of canceling out the
color. The result is that

Hadrons and antihadrons are colorless.

Quark color is thus a property that is significant within hadrons but is never directly
observable in the outside world.

The notion of quark color is more than just a way around the exclusion principle.
For one thing, it has turned out to be the key to explaining why the neutral pion has
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its observed lifetime. On a deeper level, the strong interaction can be considered as
being based on quark color, just as the electromagnetic interaction is based on electric
charge.

Flavor

Not only do quarks come in three colors, but additional varieties (or “flavors”) of quarks
have had to be included in the scheme to supplement the original u, d, and s trio; see
Table 13.4. The first of the new ones, the charm quark c, was proposed largely by
analogy with the existence of lepton pairs: if quarks are elementary particles in the
same sense as leptons, then there ought to be pairs of them, too. This may not appear
to be very much of an argument, but so significant have symmetries of various kinds
proved to be in physics that it is actually quite reasonable. Such a quark has a charge
of ��

2
3

�e and a charm quantum number of �1; other quarks have 0 charm. Charm ap-
parently influences the likelihood of certain hadron decays, and both charmed baryons
and mesons that contain c and c� quarks have been found.

Amazingly, all the properties of ordinary matter can be understood on the basis of
only two leptons, the electron and its associated neutrino, and two quarks, up and
down, which constitute the first generation of Table 13.6.

The second generation of two leptons and two quarks—the muon and its neu-
trino, the charm and strange quarks—is responsible for most of the unstable parti-
cles and resonances created in high-energy collisions, all of which decay into mem-
bers of the first generation. In the third generation the leptons are the tau meson,
whose mass of 1.74 GeV is nearly twice that of the proton, and its neutrino. The
quarks are called top and bottom. Both are extremely heavy, many times the proton
mass, which is why hadrons that contain them can be produced only in the highest-
energy events. The existence of the bottom quark was verified in 1977, that of the
top quark not until 1995.

Are there further generations? Apparently not. Experiments sensitive to the number
of generations of leptons and quarks unambiguously point to exactly three generations.

Quark Confinement

But for all the persuasiveness of the quark model of hadrons, and for all the searching
that has gone on since 1963, no quark has ever been isolated. The present status of
quarks may seem like that of neutrinos for twenty-five years after they were proposed:
their reality is suggested by a wealth of indirect evidence, but something in their basic
character impedes their detection. The parallel is not really accurate, however. The
elusiveness of the neutrino was due merely to its feeble interaction with matter. On
the other hand, a fundamental aspect of the color force seems to prevent quarks from
existing independently outside hadrons. Indeed, the detection of a free quark would
represent a failure of the theory, called quantum chromodynamics, that describes them
and their behavior.

The explanation for quark confinement begins with the idea that, as though they
were connected by a spring, the attractive force between two quarks goes up as the
quarks move apart from their normal spacing. This means that more and more energy
is needed to increase their separation. But with enough energy added, instead of a
quark breaking free from the others in a hadron, the excess energy goes into produc-
ing a quark-antiquark pair. This results in a meson that does escape. To illustrate the
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Table 13.6 Quarks and leptons and the interactions that affect them. Ordinary
matter involves only the first generation. For each quark and lepton there is an
antiquark and antilepton.

Quarks Leptons

First Up Down Electron e-neutrino
u d e �e

Second Charm Strange Muon �-neutrino
c s � ��

Third
Top Bottom Tau �-neutrino

t b � ��

Electric ��
2
3

� ��
1
3

� �1 0

Red

Color Green Colorless
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Color
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magnetic

Weak
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en

er
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n
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e

In
te
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n

effect, Fig. 13.11 shows what happens when an energetic gamma-ray photon impinges
on a neutron (composition udd) and causes a uu� quark-antiquark pair to come into
being. The quarks udd � uu� then rearrange themselves into a proton (duu) and a
negative pion (u�d), so that the net reaction is

� � n0 → p� � ��
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Figure 13.11 No matter how much energy is imparted to a hadron, an individual quark never emerges.
Here energy is given to a neutron by a photon, and the result is a quark-antiquark pair created inside
the neutron. The various quarks may then rearrange themselves into a proton and a negative pion.
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Quark confinement is not the only example in physics of things that cannot be
separated—the north and south poles of a magnet cannot be freed from each other
either. If we pull apart a magnet so that it breaks we then have two magnets, each
having a north and a south pole, instead of independent north and south poles.

13.6   FIELD BOSONS

Carriers of the interactions

As we saw in Sec. 11.7, the mutual forces between two particles can be regarded as
being transmitted by the exchange of other particles between them. This concept ap-
plies to all the fundamental interactions. The particles exchanged, which are all bosons,
are listed in Table 13.1. The graviton is the carrier of the gravitational field. The gravi-
ton should be massless and stable, have a spin of 2, and travel with the speed of light.
Its zero mass can be inferred from the unlimited range of gravitational forces. If en-
ergy is to be conserved, the uncertainty principle requires that the range of the forces
be inversely proportional to the mass of the particles being exchanged (see Eq. 11.19).
Hence the gravitational interaction can have an infinite range only if the graviton mass
is zero. The interaction of the graviton with matter should be quite feeble, making it
extremely hard to detect. There is no definite experimental evidence either for or against
the existence of the graviton.

The carriers of the weak interaction are called intermediate vector bosons, of
which there are two kinds. Because the weak interaction has so short a range, the
masses of such particles are large. One kind, called W, has a spin of 1 and a charge
of �e and is responsible for ordinary beta decays. Its mass is 85 times the proton
mass. The other kind, called Z, also has a spin of 1 but is electrically neutral and
heavier than the W (97mp); its effects seem confined to certain high-energy events.
Both decay in �10�25 s. Although the W particle is a natural concomitant of the weak
interaction and was proposed many years ago, the idea of the Z particle originated
more recently in a theory that unites the weak and electromagnetic interactions, and
its discovery helped confirm the theory.

The connection between the weak and electromagnetic interactions was independ-
ently developed in the 1960s by Steven Weinberg and Abdus Salam. The key problem
to be overcome in constructing the theory was that the carriers of the weak force have
mass whereas the carriers of the electromagnetic force, namely photons, are massless.
What Weinberg and Salam did was to show that, at a certain primitive level, both forces
are aspects of a single interaction mediated by four massless bosons. Through a sub-
tle process called spontaneous symmetry breaking, three of the bosons acquired mass
and became the W and Z particles, with a consequent reduction in the range of what
now appears as the weak part of the total interaction. One way to look at the situa-
tion is to regard the masses of the W and Z bosons as being attributes of the states
they happen to occupy rather than as intrinsic attributes. The fourth electroweak bo-
son, the photon, remained massless and the range of the electromagnetic part of the
total interaction accordingly stayed infinite.

Since hadrons seem to be composed of quarks, the strong interaction between
hadrons should ultimately be traceable to an interaction between quarks. The parti-
cles that quarks exchange to produce this interaction are called gluons, of which
eight have been postulated. Gluons are massless and travel at the speed of light, and
each one carries a color and an anticolor. The emission or absorption of a gluon by
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Computer reconstruction of the results of a proton-antiproton collision in which a W boson was cre-
ated. The UAI detector is outlined in the display. The W boson, one of the “carriers” of the weak force,
was first identified at CERN in 1983.
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Sheldon Lee Glashow (1932– )
grew up in New York City and re-
ceived his Ph.D. in 1958 from Har-
vard University, where he is now
professor of Physics. Glashow was
a student of Julian Schwinger, one
of the pioneers of quantum elec-
trodynamics, who had become in-
terested in the weak interaction
and its possible connection with
the electromagnetic interaction. In

1961 Glashow took the first step in what was to prove the cor-
rect path to unifying these interactions, which was finally done

in 1967 by Steven Weinberg and Abdus Salam working inde-
pendently. All three received the Nobel Prize in 1979 for their
contributions to the electroweak theory, which was given its
final confirmation in 1983 when the predicted W and Z “car-
riers” of the weak interaction were experimentally observed at
the CERN laboratory in Geneva. In 1970 Glashow and two
collaborators proposed the existence of the charm quark; the
discovery of particles that contain charm quarks and antiquarks
followed a few years later. What is now called the Standard
Model combining the strong and electroweak interactions that
Glashow and Howard Georgi pioneered in 1974 accounts
reasonably well for a number of otherwise unexplained
observations.
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a quark changes the quark’s color. For instance, a blue quark that emits a blue-antired
gluon becomes a red quark, and a red quark that absorbs this gluon becomes a blue
quark. Because gluons have color changes, they should be able to interact with one
another to form separate particles—“glueballs.” The search for glueballs has thus far
been fruitless, however.

13.7   THE STANDARD MODEL AND BEYOND

Putting it all together

The theory of how quarks interact with one another is known as quantum chromo-
dynamics because it is modeled on quantum electrodynamics, the well-established
theory of how charged particles interact, with quark color taking the place of electric
charge. Quantum chromodynamics attempts to explain how quarks endow hadrons
with their properties and has predicted a number of effects that have been observed
in high-energy particle experiments.

The theory of the strong interaction has been added to that of the electroweak in-
teraction to make a composite picture called the Standard Model that describes the
structure of matter down to 10�18 m. It includes all the known constituents of matter—
six leptons and six quarks—and the three strongest of the four forces that govern their
behavior. As its name suggests, the Standard Model has been a considerable success,
and its founders received over twenty Nobel Prizes over the years for their work.

But the Standard Model contains too many loose ends to be the last word. To be-
gin with, important elements of the model have to be inserted arbitrarily. Instead of
telling us the values of 18 basic quantities, such as the masses of the leptons and quarks,
the model requires us to measure them ourselves; indeed, the essential fact that there
are exactly three generations of leptons and quarks comes from experiment, not the-
ory. The strong force that binds nucleons into nuclei and is mediated by meson ex-
change is the external manifestation of the color force between quarks in the nucleons
that is mediated by gluon exchange, but nobody has been able to actually derive the
details of the strong hadron force from the color quark force.

I n order for the Standard Model of leptons and quarks to be mathematically consistent, the
Scottish physicist Peter Higgs showed that a field, now called the Higgs field, must exist

everywhere in space. The Higgs field has an additional significance: by interacting with it, particles
acquire their characteristic masses. The stronger the interaction, the greater the mass. We can
think of the Higgs field as exerting a kind of viscous drag on particles that move through it; this
drag appears as inertia, the defining property of mass.

As with other fields, a particle—here the Higgs boson—mediates the action of the Higgs
field. The mass of the Higgs boson cannot be predicted from the Standard Model, but it is thought
to be substantial, perhaps as much as 1 TeV/c2, a thousand times the proton mass. Finding the
Higgs boson would be a major step in validating the Standard Model, and knowing its mass and
behavior would help to tie up loose ends in the model. Looking for the Higgs boson is one of
the motivations for building particle accelerators more powerful than existing ones, which are
inadequate for this search. Of course, nobody really knows what such accelerators will turn up—
which is the best reason to build them. One such new machine, the 4-billon-dollar Large Hadron
Collider at CERN in Switzerland, is planned to be operating in 2005. Another, an upgraded
accelerator called the Tevatron at the Fermi National Laboratory near Chicago, ought to be ready
earlier, but it will be less powerful. (The top quark was discovered with the help of the original
Tevatron.)

The Higgs Boson
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The next step is to weave together the electroweak and color interactions into a
grand unified theory (GUT) that reveals the exact relationship between leptons and
quarks. Among other things, a valid GUT should explain why the electron, a lepton,
and the proton, a composite of quarks, have electric charges of the same magnitude.
In order to do this, proposed GUTs require the existence of a lepton-quark interaction
that would eventually cause protons to decay with a half-life of 1030 to 1033 years,
which means that today’s matter is inherently unstable. As mentioned earlier, experi-
ments show that the proton half-life is at least 1032 years, so the question of ultimate
proton stability has no answer as yet.

The search for a satisfactory GUT has led to a new symmetry principle called 
supersymmetry. If the universe is supersymmetric, it turns out that every particle
must have a supersymmetric counterpart—a sparticle—whose spin differs from its
own by �

1
2

�. Thus every fermion must be paired with a boson and every boson with a
fermion. The boson superpartners of the fermion leptons and quarks are called
sleptons and squarks, and the fermion superpartners of the field bosons �, W�, and
gluons are called photinos, winos, and gluinos. The two salient aspects of super-
symmetry (apart from the fun of naming the supposed new particles) are first, it
integrates the separate theories in the Standard Model to form a much more satis-
factory whole and second, no sparticle has ever been found despite much searching.
Sparticles may well be too massive to be created in existing accelerators, and future
accelerators may be able to produce them. And it is conceivable that the “missing”
mass in the universe discussed in Sec. 13.9 consists of sparticles, though there has
been no sign of them thus far.

A long-standing issue, one of the most basic in contemporary physics, is how grav-
itation connects with the other fundamental interactions. General relativity accounts
for gravity in terms of the properties of spacetime and its conclusions have been verified
whenever they have been tested. But general relativity is not a quantum-mechanical
theory, unlike the components of the Standard Model and the proposed GUTs, so it
cannot hold in its present form on very small scales of size.

According to its proponents, string theory can come to the rescue and be the ba-
sis of a final Theory of Everything. In this theory, leptons, quarks, and field bosons are
not points in the four dimensions (x, y, z, t) of spacetime but vibrating loops of string
in a space of ten dimensions. Each particle type represents a different mode of vibration
of the string loops, which are supposed to be only about 10�35 m across and so appear
as point particles to us. We are unaware of the additional six space dimensions because
they are somehow “rolled up” by analogy with the way a two-dimensional surface (such
as a sheet of paper) can be curled tightly to become a one-dimensional line. String
theory, which is mathematically very difficult, incorporates the main features of GUTs,
including in particular supersymmetry.

The notion that there may be additional hidden space dimensions goes all the way
back to 1919, when the Polish mathematician Theodor Kaluza came close to success-
fully extending general relativity to include electromagnetism by postulating an extra
dimension to provide a structure to every point in ordinary space. Kaluza’s proposal
was further developed by the Swedish physicist Oskar Klein, but some conclusions of
the resulting theory, such as the ratio between the charge and mass of the electron,
disagreed with measurements. With the ferment in physics in the 1920s that accom-
panied the advent of quantum mechanics, the Kaluza-Klein idea faded away until reborn
and expanded into string theory starting over half a century later.

String theory has many attractive elements, notably that general relativity emerges
from it in a natural way. An enormous amount of research into strings has been car-
ried out, with results that encourage in many physicists a belief that it represents the
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road to a Theory of Everything. But thus far its predictions cannot be directly con-
fronted with the results of experiment, so there is no way to know whether minute
loops of string in ten dimensions actually exist with their vibrations making up the
world we see around us.

13.8   HISTORY OF THE UNIVERSE

It began with a bang

The observed uniform expansion of the universe points to a Big Bang around 13 bil-
lion years ago that started from a singularity in spacetime, a point whose energy den-
sity and spacetime curvature were both infinite. In the absence of a quantum-mechanical
theory of gravity, nothing can be said about the immediate aftermath of the Big Bang.
After 10�43 s, however, the theory that ties together the strong, electromagnetic, and
weak interactions, even though incomplete, permits a general picture to be sketched
of what may well have happened.

As the initial compact, intensely hot fireball of matter and radiation from the Big
Bang expanded, it cooled and underwent a series of transitions at specific tempera-
tures. An analogy is with the cooling of steam, which becomes water and then ice as
its temperature falls. Figure 13.12 shows the different phases of the universe on a graph
of temperature (actually kT) versus time, both on logarithmic scales. The unit of kT
here is the electronvolt, where 10�4 eV corresponds to �1 K.
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Figure 13.12 Thermal history of the universe on the basis of current theories. Nothing can be said about
the state of the universe until 10�43 s after the Big Bang in the absence of a quantum-mechanical theory
of gravity.
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From 10�43 to 10�35 s the universe cooled from 1028 to 1023 eV. At energies like
these the strong, electromagnetic, and weak interactions are merged into a single
interaction mediated by extremely heavy field particles, the X bosons. Quarks and
leptons are not distinguished from one another. At 10�35 s, however, particle energies
became too low for free X bosons to be created any longer and the strong interaction
became separated from the electroweak interaction. At this time the universe was only
about a millimeter across. Quarks and leptons now became independent. Up to this
time the amounts of matter and antimatter had been equal, but the decay of the field
bosons was not symmetric and resulted in a slight excess of matter over antimatter—
perhaps one part in 30 billion. As time went on, matter and antimatter annihilated
each other to leave a universe containing only matter.

From 10�35 to 10�10 s the universe consisted of a dense soup of quarks and lep-
tons whose behavior was controlled by the strong, electroweak, and gravitational in-
teractions. At 10�10 s the cooling had progressed to the point where the electroweak
interaction became separated into the electromagnetic and weak components we ob-
serve today. No longer were particle collisions energetic enough to create the free W
and Z bosons characteristic of the electroweak interaction, and they disappeared as the
X bosons of the unified interaction had done earlier.

Somewhere around 10�6 s the quarks condensed into hadrons. At about 1 s neu-
trino energies fell sufficiently for them to be unable to interact with the hadron-lepton
soup—the “freezing out” of the weak interaction. The neutrinos and antineutrinos that
existed remained in the universe but did not participate any further in its evolution.
From then on protons could no longer be transformed into neutrons by inverse beta-
decay events, but the free neutrons could beta-decay into protons. However, nuclear
reactions were starting to occur that managed to incorporate many of the neutrons into
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T wo fundamental constants are involved in general relativity: the gravitational constant G
and the speed of light c. Similarly, Planck’s constant h is the fundamental constant of quan-

tum theory. We can combine G, c, and h to arrive at a “natural” unit of length, called the Planck
length �P, given by

	P 
 �	 
 4.05 � 10�35 m

The Planck length is significant because, at shorter distances, quantum fluctuations allowed by
the uncertainty principle disrupt the smooth geometry of space that is central to general rela-
tivity. On larger scales of length, quantum theory and general relativity each describe well dif-
ferent aspects of physical reality. For lengths less than about 	P, however, both fail, leaving us
ignorant about structures and events in this realm of size.

The time needed by something moving at the speed of light to travel 	P is the Planck time
tP, given by

tP 
 
 �	 
 1.35 � 10�43 s

To deal with time intervals smaller than tP we also require a theory that unifies quantum theory
and general relativity. No such theory is yet adequate for such a purpose. What this lack means
is that today we have no way at all to inquire into what the universe was like earlier than about
10�43 s after the Big Bang.

Gh
�
t5

	P
�c

Planck time

Gh
�
c3

Planck length

Planck Length and Time
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helium nuclei before their decay. Nuclear synthesis stopped at about T 
 5 min when
the ratio of helium mass to total mass should have been, according to theory, between
23 and 24 percent, which is indeed the ratio in most of the universe today. No stars
or galaxies or gas clouds have been found with less than this proportion of helium. As
a star ages, of course, its helium content increases as the result of nuclear reactions; in
the sun’s outer layers, which are accessible to measurement, the helium proportion is
close to 28 percent. To be sure, some 2H and 3He were originally left over from in-
complete synthesis of 4He, and a little lithium also was produced, but 1H and 4He have
been by far the main constituents of the universe after the first 5 min.

From 5 min to around 100,000 years after the Big Bang, the universe consisted of
a plasma of hydrogen and helium nuclei and electrons in thermal equilibrium with
radiation. Once the temperature fell below 13.6 eV, the ionization energy of hydrogen,
hydrogen atoms could form and not be disrupted. Now matter and radiation were
decoupled and the universe became transparent. The electromagnetic interaction was
frozen out, as the strong and weak interactions had been before: photons had too little
energy to materialize into particle-antiparticle pairs and, in a universe of neutral atoms,
bremsstrahlung could not be produced by accelerated ions.

The radiation left behind then continued to spread out with the rest of the universe,
undergoing doppler shifts to longer and longer wavelengths. An observer today would
expect this remnant radiation to come equally strongly from all directions and to have
a spectrum like that of a blackbody at 2.7 K—and such radiation has actually been
found in microwave measurements made from the earth and from satellites. Thus we
have three observations that strongly support Big-Bang cosmology:

1 The uniform expansion of the universe
2 The relative abundances of hydrogen and helium in the universe
3 The cosmic background radiation

500 Chapter Thirteen

Radio waves thought to have originated in the primeval fireball that marked
the start of the expansion of the universe were first detected by Arno Penzias
and Robert Wilson with a sensitive receiver attached to this 15-m-long antenna
at Holmdel, New Jersey.
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Once matter and radiation were decoupled, gravity became the dominant influence
on the evolution of the universe. Density fluctuations (whose existence is confirmed
by irregularities—“ripples”—in the sea of 2.7-K radiation that were discovered in 1992)
led to the formation of the galaxies and stars that adorn the night sky. Early super-
novas spewed out the various elements heavier than helium that later became incor-
porated in other stars and in their satellite planets. Living things developed on at least
one of these planets, and quite possibly on a great many others as well, which brings
us to the present.

13.9   THE FUTURE

“In my beginning is my end.” (T. S. Eliot, Four Quartets)

Will the universe continue to expand forever? This depends on how much matter the
universe contains and on how fast it is expanding. There are three possibilities:

1 If the average density 
 of the universe is smaller than a certain critical density 
c

that is a function of the expansion rate, the universe is open and the expansion will
never stop (Fig. 13.13). Eventually new galaxies and stars will cease to form and existing
ones will end up as black dwarfs, neutron stars, and black holes—an icy death.
2 If 
 is greater than 
c, the universe is closed and sooner or later gravity will stop
the expansion. The universe will then begin to contract. The progression of events will
be the reverse of those that took place after the Big Bang, with an ultimate Big Crunch—
a fiery death. And after that another Big Bang? If so, then the universe is cyclic, with
no beginning and no end.
3 If 
 
 
c, the expansion will continue at an ever-decreasing rate but the universe
will not contract. In this case the universe is said to be flat because of the geometry
of space in such a universe (Fig. 13.14). If 
 � 
c, space is negatively curved; a two-
dimensional analogy is a saddle. If 
 	 
c, space is positively curved; a two-dimensional
analogy is the surface of a sphere. In all cases, however, spacetime is curved (Sec. 1.10).
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Figure 13.13 Three cosmological models that follow from the equations of general relativity. The quan-
tity 
 is the average density of the universe and 
c, the critical density, is in the neighborhood of
9 � 10�27 kg/m3, equivalent to about 5 hydrogen atoms per cubic meter.
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To find the value of the critical density 
c we begin the same way we would to find
the escape velocity from the earth. The gravitational potential energy U of a spacecraft
of mass m on the surface of the earth, whose mass is M and radius is R, is U 

�GmM�R. (A negative potential energy corresponds to an attractive force.) To escape
permanently from the earth, the spacecraft must have a minimum kinetic energy �

1
2

�m�2

such that its total energy E is 0:

E 
 KE � U 
 m�2 � 
 0 (13.9)

This gives � 
 �2GM�R� 
 11.2 km/s for the escape velocity.
Now we consider a spherical volume of the universe of radius R whose center is the

earth. Only the mass inside this volume affects the motion of a galaxy on the surface
of the sphere provided the distribution of matter in the universe is uniform, which it
seems to be on a large enough scale. If the density of matter inside this volume is 
,
the volume contains a total mass of M 
 �

4
3

��R3
. According to Hubble’s law (Sec. 1.3),
the outward velocity � of a galaxy R from the earth due to the expansion of the uni-
verse is proportional to R. Hence � 
 HR, where H is Hubble’s parameter. Calling the
galaxy’s mass m, if it has just enough speed never to return, we have from Eq. (13.9)

m�2 


m(HR)2 
 
 �R3
c�

Critical density 
c 
 (13.10)
3H2

�
8�G
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�
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�

R

1
�
2

GmM
�

R

1
�
2

GmM
�

R
1
�
2

502 Chapter Thirteen

Open, 
 < 
c

Flat,  
 = 
c

Closed,  
 > 
c

Figure 13.14 Two-dimensional analogies of the geometry of space in open, flat, and closed universes.
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The critical density for a flat universe depends only on Hubble’s parameter H, which is
not accurately known. A reasonable value for H is 21 km/s per million light-years, which
gives 
c 
 8.9 � 10�27 kg/m3. The mass of a hydrogen atom is 1.67 � 10�27 kg, so the
critical density is equivalent to somewhere near 5.3 hydrogen atoms per cubic meter.

Dark Matter

The actual density of the luminous matter in the universe is just a few percent of 
c.
Adding in the mass equivalent of the radiation in the universe increases the density
only a little. But is luminous matter—the stars and galaxies we see in the sky—the
only matter in the universe? Apparently not. Very strong evidence indicates that a large
amount of dark matter is also present; so much, in fact, that at least 90 percent of all
matter in the universe is nonluminous. For instance, the rotation speeds of the outer
stars in spiral galaxies are unexpectedly high, which suggest that a spherical halo of
invisible matter must surround each galaxy. Similarly, the motions of individual galax-
ies in clusters of them imply gravitational fields about 10 times more powerful than
the visible matter of the galaxies provides. Still other observations support the idea of
a preponderance of dark matter in the universe.

What can the dark matter be? The most obvious candidate is ordinary matter in
various established forms, ranging from planetlike lumps too small to support the fu-
sion reactions that would make them stars, through burnt-out dwarf stars, to black
holes. The snag here is that, in the required numbers, such objects would certainly
have been detected already. Another possibility rooted in what we already know is the
sea of neutrinos (over 100 million per cubic meter) that pervades space. Neutrinos ap-
pear to have mass, but very little, nowhere near enough to account for all the dark
matter. Indeed, if neutrinos were responsible for the dark matter, the universe could
not have evolved to what it is today; galaxies, for example, would have to be much
younger than they are. So neutrinos, too, may be part of the answer, but only part.

There is no shortage of other possibilities, all classed as cold dark matter. “Cold”
means that the particles involved are relatively slow-moving, unlike, say, neutrinos,
which constitute hot dark matter. Two main kinds of cold dark matter have been
proposed, WIMPs and axions. WIMPs (weakly interacting massive particles) are hy-
pothetical leftovers from the early moments of the universe. An example is the
photino, one of the particles predicted by the supersymmetry approach to elemen-
tary particles. The photino is supposed to be stable and to have a mass of between
10 and 103 GeV/c2, much more than the proton mass of 0.938 GeV/c2. Axions are
weakly interacting bosons associated with a field introduced to solve a major diffi-
culty in the Standard Model. WIMPs and axions are being sought experimentally,
thus far without success.

The dark matter needed to account for the motions of stars in galaxies and of galax-
ies in galactic clusters brings the total density of the universe up to about 0.1
c. There
may be still more dark matter, however. In 1980 the American physicist Alan Guth
proposed that, 10�35 s after the Big Bang, the universe underwent an extremely rapid
expansion triggered by the separation of the single unified interaction into the strong
and electroweak interactions. During the expansion the universe blew up from smaller
than a proton to about a grapefruit in size in 10�30 s (Fig. 13.15). The inflationary
universe automatically takes care of a number of previously troublesome problems in
the Big Bang picture, and its basic concept is widely accepted. One of Guth’s conclu-
sions was that the density of matter in the universe must be exactly the critical den-
sity 
c. If the inflationary scenario is correct, then, the universe is not only perfectly
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flat but as much as perhaps 99 percent, not merely 90 percent, of the matter in it is
dark matter. Finding the nature of the dark matter is clearly one of the most funda-
mental of all outstanding scientific problems.
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E X E R C I S E S

I have yet to see any problem, however complicated, which, when you looked at it in the right way, did not become still
more complicated.—Poul Anderson

13.3 Hadrons

3. Find the energy of the photon emitted in the decay �
0 →


0 � �.

4. Find the energy of each of the gamma-ray photons produced in
the decay of a neutral pion at rest. Why must their energies be
the same?

5. Show that 4mec
2, where me is the electron mass, is the mini-

mum energy needed by a photon to produce an electron-
positron pair when it collides with an electron in the process
� � e� → e� � e� � e�.

6. The �0 meson has neither charge nor magnetic moment, which
makes it hard to understand how it can decay into a pair of
electromagnetic quanta. One way to account for this process is
to assume that the �0 first becomes a “virtual” nucleon-
antinucleon pair, the members of which then interact electro-
magnetically to yield two photons whose energies total the mass

13.2 Leptons

1. The interaction of one photon with another can be understood
by assuming that each photon can temporarily become a “vir-
tual” electron-positron pair in free space, and the respective
pairs can then interact electromagnetically. (a) How long does
the uncertainty principle allow a virtual electron-positron pair
to exist if h� �� 2mc2, where m is the electron mass? (b) If
h� 	 2mc2, can you use the notion of virtual electron-positron
pairs to explain the role of a nucleus in the production of an
actual pair, apart from its function in ensuring the conservation
of both energy and momentum?

2. The �� lepton can decay in any of the following ways:

�� → e�� �e � ���

�� → �� � �� � ���

�� → �� � ���

Why is only one neutrino emitted when the �� decays into a pion?
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Figure 13.15 The inflationary universe.
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Exercises 505

energy of the �0. How long does the uncertainty principle
allow the virtual nucleon-antinucleon pair to exist? Is this long
enough for the process to be observed?

7. A neutral pion whose kinetic energy is equal to its rest energy
decays in flight. Find the angle between the two gamma-ray
photons that are produced if their energies are the same.

13.4 Elementary Particle Quantum Numbers

8. Why does a free neutron not decay into an electron and a
positron? Into a proton-antiproton pair?

9. Which of the following reactions can occur? State the conser-
vation principles violated by the others.

(a) 
0 → �� � ��

(b) �� � p → n � �0

(c) �� � p → �� � p � �� � �0

(d) � � n → �� � p

10. Which of the following reactions can occur? State the conserva-
tion principles violated by the others.

(a) p � p → n � p � ��

(b) p � p → p � 
0 � ��

(c) e� � e� → �� � ��

(d) p � p → p � �� � K0 � 
0

11. According to the theory of the continuous creation of matter
(which has turned out to be inconsistent with astronomical
observations), the evolution of the universe can be traced
to the spontaneous appearance of neutrons and antineutrons in
free space. Which conservation law(s) would this process
violate?

12. The products of a collision between a fast proton and a neutron
are a neutron, a �0 particle, and another particle. What is the
other particle?

13. A �� muon collides with a proton, and a neutron plus another
particle are created. What is the other particle?

14. A positive pion collides with a proton and two protons plus an-
other particle are created. What is the other particle?

15. A negative kaon collides with a proton and a positive kaon and
another particle are created. What is the other particle?

16. The hypercharge Y of a particle is defined as the sum of its
strangeness and baryon numbers: Y 
 S � B. Verify from
Table 13.3 that the hypercharge Y of each hadron group is
equal to twice the average charge (in units of e) of the members
of the group.

13.5 Quarks

17. Why must the quarks in a hadron have different colors? Would
they have to have different colors if their spins were 0 or 1
rather than �

1

2
�?

18. The 
 particle consists of a u quark, a d quark, and an s quark.
What is its charge?

19. A member of the � group of particles consists of two u quarks
and an s quark. What is its charge?

20. Which quarks make up the negative pion? The �� hyperon?

21. What particle in Table 13.3 corresponds to the quark composi-
tions uus?

22. One kind of D meson consists of a c and a u� quark. What is its
spin? Its charge? Its baryon number? Its strangeness? Its charm?

13.6 Fundamental Interactions

23. All resonance particles have very short lifetimes. Why does this
suggest they must be hadrons?

24. The gravitational interaction is the weakest of all by far, yet it
alone governs the motions of the planets around the sun and the
motions of the stars of a galaxy around the galactic center. Why?

25. The initial reaction of the proton-proton cycle that provides
most of the sun’s energy is

1
1H � 1

1H → 2
1H � e� � �

This reacton occurs relatively infrequently in the sun for two
reasons, one of which is the coulomb “barrier” the protons
must overcome if they are to get close enough together to react.
What do you think the other reason is?

26. The “carriers” of the weak interaction are the W�, whose mass
is 82 GeV/c2, and the Z0, whose mass is 93 GeV/c2. Use the
method of Sec. 11.7 to find an approximate figure for the range
of the weak interaction.

13.9 The Future

27. Figure 1.8 shows the expanding-balloon analogy of the expand-
ing universe. As the balloon expands, the angular separations of
the spots (as measured from the center of the balloon) remain
constant. (a) If s is the distance between any two spots, show
that the recession speed ds�dt is proportional to s, which is the
equivalent of Hubble’s law in this situation. (b) Find an expres-
sion for Hubble’s parameter H for the expanding balloon. Is H
necessarily constant?
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APPENDIX

Atomic Masses

T
he masses of neutral atoms of all stable and some unstable nuclides are given
here together with the relative abundances of nuclides found in nature and the
half-lives of the listed radionuclides. Many other radionuclides are known.

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life

0 Neutron n 1 1.008 665 10.6 min

1 Hydrogen H 1 1.007 825 99.985
2 2.014 102 0.015
3 3.016 050 12.3 y

2 Helium He 3 3.016 029 0.0001
4 4.002 603 99.9999
6 6.018 891 805 ms

3 Lithium Li 6 6.015 123 7.5
7 7.016 004 92.5
8 8.022 487 844 ms

4 Beryllium Be 7 7.016 930 53.3 d
8 8.005 305 6.7 � 10�17 s
9 9.012 182 100

10 10.013 535 1.6 � 106 y

5 Boron B 10 10.012 938 20
11 11.009 305 80
12 12.014 353 20.4 ms

6 Carbon C 10 10.016 858 19.3 s
11 11.011 433 20.3 min
12 12.000 000 98.89
13 13.003 355 1.11
14 14.003 242 5760 y
15 15.010 599 2.45 s

7 Nitrogen N 12 12.018 613 11.0 ms
13 13.005 739 9.97 min
14 14.003 074 99.63
15 15.000 109 0.37
16 16.006 099 7.10 s
17 17.008 449 4.17 s

8 Oxygen O 14 14.008 597 70.5 s
15 15.003 065 122 s
16 15.994 915 99.758
17 16.999 131 0.038
18 17.999 159 0.204
19 19.003 576 26.8 s
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Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life

9 Fluorine F 17 17.002 095 64.5 s
18 18.000 937 109.8 min
19 18.998 403 100
20 19.999 982 11.0 s
21 20.999 949 4.33 s

10 Neon Ne 18 18.005 710 1.67 s
19 19.001 880 17.2 s
20 19.992 439 90.51
21 20.993 845 0.57
22 21.991 384 9.22
23 22.994 466 37.5 s
24 23.993 613 3.38 min

11 Sodium Na 22 21.994 435 2.60 y
23 22.989 770 100
24 23.990 963 15.0 h

12 Magnesium Mg 23 22.994 127 11.3 s
24 23.985 045 78.99
25 24.985 839 10.00
26 25.982 595 11.01

13 Aluminum Al 27 26.981 541 100

14 Silicon Si 28 27.976 928 92.23
29 28.976 496 4.67
30 29.973 772 3.10

15 Phosphorus P 30 29.978 310 2.50 min
31 30.973 763 100

16 Sulfur S 32 31.972 072 95.02
33 32.971 459 0.75
34 33.967 868 4.21
35 34.969 032 87.2 d
36 35.967 079 0.017

17 Chlorine Cl 35 34.968 853 75.77
36 35.968 307 3.01 � 105 y
37 36.965 903 24.23

18 Argon Ar 36 35.967 546 0.337
37 36.966 776 34.8 d
38 37.962 732 0.063
39 38.964 315 269 y
40 39.962 383 99.60

19 Potassium K 39 38.963 708 93.26
40 39.963 999 0.01 1.28 � 109 y
41 40.961 825 6.73

20 Calcium Ca 40 39.962 591 96.94
41 40.962 278 1.3 � 105 y
42 41.958 622 0.647
43 42.958 770 0.135
44 43.955 485 2.09
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45 44.956 189 163 d
46 45.953 689 0.0035
47 46.954 543 4.5 d
48 47.952 532 0.187

21 Scandium Sc 45 44.955 914 100

22 Titanium Ti 46 45.952 633 8.25
47 46.951 765 7.45
48 47.947 947 73.7
49 48.947 871 5.4
50 49.944 786 5.2

23 Vanadium V 48 47.952 257 16 d
50 49.947 161 0.25 � 1017 y
51 50.943 962 99.75

24 Chromium Cr 48 47.954 033 21.6 h
50 49.946 046 4.35
52 51.940 510 83.79
53 52.940 651 9.50
54 53.938 882 2.36

25 Manganese Mn 54 53.940 360 312.5 d
55 54.938 046 100

26 Iron Fe 54 53.939 612 5.8
56 55.934 939 91.8
57 56.935 396 2.1
58 57.933 278 0.3
59 58.934 878 44.6 d

27 Cobalt Co 58 57.935 755 70.8 d
59 58.933 198 100
60 59.933 820 5.3 y

28 Nickel Ni 58 57.935 347 68.3
60 59.930 789 26.1
61 60.931 059 1.1
62 61.928 346 3.6
64 63.927 968 0.9

29 Copper Cu 63 62.929 599 69.2
64 63.929 766 12.7 h
65 64.927 792 30.8

30 Zinc Zn 64 63.929 145 48.6
65 64.929 244 244 d
66 65.926 035 27.9
67 66.927 129 4.1
68 67.924 846 18.8
70 69.925 325 0.6

31 Gallium Ga 69 68.925 581 60.1
71 70.924 701 39.9

32 Germanium Ge 70 69.924 250 20.5
72 71.922 080 27.4

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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73 72.923 464 7.8
74 73.921 179 36.5
76 75.921 403 7.8

33 Arsenic As 74 73.923 930 17.8 d
75 74.921 596 100

34 Selenium Se 74 73.922 477 0.9
76 75.919 207 9.0
77 76.919 908 7.6
78 77.917 304 23.5
80 79.916 520 49.8
82 81.916 709 9.2

35 Bromine Br 79 78.918 336 50.7
80 79.918 528 17.7 min
81 80.916 290 49.3

36 Krypton Kr 78 77.920 397 0.35
80 79.916 375 2.25
81 80.916 578 2.1 � 105 y
82 81.913 483 11.6
83 82.914 134 11.5
84 83.911 506 57.0
86 85.910 614 17.3

37 Rubidium Rb 85 84.911 800 72.2
87 86.909 184 27.8 4.9 � 1010 y

38 Strontium Sr 84 83.913 428 0.6
86 85.909 273 9.8
87 86.908 890 7.0
88 87.905 625 82.6

39 Yttrium Y 89 88.905 856 100

40 Zirconium Zr 90 89.904 708 51.5
91 90.905 644 11.2
92 91.905 039 17.1
94 93.906 319 17.4
96 95.908 272 2.8

41 Niobium Nb 93 92.906 378 100

42 Molybdenum Mo 92 91.906 809 14.8
94 93.905 086 9.3
95 94.905 838 15.9
96 95.904 675 16.7
97 96.906 018 9.6
98 97.905 405 24.1

100 99.907 473 9.6

43 Technetium Tc 99 98.906 252 2.1 � 105 y

44 Ruthenium Ru 96 95.907 596 5.5
98 97.905 287 1.9
99 98.905 937 12.7

100 99.904 217 12.6

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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101 100.905 581 17.0
102 101.904 347 31.6
104 103.905 422 18.7

45 Rhodium Rh 103 102.905 503 100

46 Palladium Pd 102 101.905 609 1.0
104 103.904 026 11.0
105 104.905 075 22.2
106 105.903 475 27.3
108 107.903 894 26.7
110 109.905 169 11.8

47 Silver Ag 107 106.905 095 51.8
108 107.905 956 2.41 min
109 108.904 754 48.2

48 Cadmium Cd 106 105.906 461 1.3
108 107.904 186 0.9
110 109.903 007 12.5
111 110.904 182 12.8
112 111.902 761 24.1
113 112.904 401 12.2 9 � 1015 y
114 113.903 361 28.7
116 115.904 758 7.5

49 Indium In 113 112.904 056 4.3
115 114.903 875 95.7 5 � 1014 y

50 Tin Sn 112 111.904 823 1.0
114 113.902 781 0.7
115 114.903 344 0.4
116 115.901 743 14.7
117 116.902 954 7.7
118 117.901 607 24.3
119 118.903 310 8.6
120 119.902 199 32.4
122 121.903 440 4.6
124 123.905 271 5.6

51 Antimony Sb 121 120.903 824 57.3
123 122.904 222 42.7

52 Tellerium Te 120 119.904 021 0.1
122 121.903 055 2.5
123 122.904 278 0.9 � 1.2 � 1013 y
124 123.902 825 4.6
125 124.904 435 7.0
126 125.903 310 18.7
127 126.905 222 9.4 h
128 127.904 464 31.7
130 129.906 229 34.5

53 Iodine I 127 126.904 477 100
131 130.906 119 8.0 d

54 Xenon Xe 124 123.906 12 0.1
126 125.904 281 0.1

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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128 127.903 531 1.9
129 128.904 780 26.4
130 129.903 509 4.1
131 130.905 076 21.2
132 131.904 148 26.9
134 133.905 395 10.4
136 135.907 219 8.9

55 Cesium Cs 133 132.905 433 100

56 Barium Ba 130 129.906 277 0.1
132 131.905 042 0.1
134 133.904 490 2.4
135 134.905 668 6.6
136 135.904 556 7.9
137 136.905 816 11.2
138 137.905 236 71.7

57 Lanthanum La 138 137.907 114 0.1 1 � 1011 y
139 138.906 355 99.9

58 Cerium Ce 136 135.907 14 0.2
138 137.905 996 0.2
140 139.905 442 88.5
142 141.909 249 11.1 5 � 1016 y

59 Praseodymium Pr 141 140.907 657 100

60 Neodymium Nd 142 141.907 731 27.2
143 142.909 823 12.2
144 143.910 096 23.8 2.1 � 1015 y
145 144.912 582 8.3 � 1017 y
146 145.913 126 17.2
148 147.916 901 5.7
150 149.920 900 5.6

61 Promethium Pm 147 146.915 148 2.6 yr

62 Samarium Sm 144 143.912 009 3.1
147 146.914 907 15.1 1.1 � 1011 y
148 147.914 832 11.3 8 � 1015 y
149 148.917 193 13.9 � 1016 y
150 149.917 285 7.4
152 151.919 741 26.7
154 153.922 218 22.6

63 Europium Eu 151 150.919 860 47.9
153 152.921 243 52.1

64 Gadolinium Gd 152 151.919 803 0.2 1.1 � 1014 y
154 153.920 876 2.1
155 154.922 629 14.8
156 155.922 130 20.6
157 156.923 967 15.7
158 157.924 111 24.8
160 159.927 061 21.8

65 Terbium Tb 159 158.925 350 100

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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66 Dysprosium Dy 156 155.924 287 0.1 � 1 � 1018 y
158 157.924 412 0.1
160 159.925 203 2.3
161 160.926 939 19.0
162 161.926 805 25.5
163 162.928 737 24.9
164 163.929 183 28.1

67 Holmium Ho 165 164.930 332 100

68 Erbium Er 162 161.928 787 0.1
164 163.929 211 1.6
166 165.930 305 33.4
167 166.932 061 22.9
168 167.932 383 27.1
170 169.935 476 14.9

69 Thulium Tm 169 168.934 225 100

70 Ytterbium Yb 168 167.933 908 0.1
170 169.934 774 3.2
171 170.936 338 14.4
172 171.936 393 21.9
173 172.938 222 16.2
174 173.938 873 31.6
176 175.942 576 12.6

71 Lutetium Lu 175 174.940 785 97.4
176 175.942 694 2.6 2.9 � 1010 y

72 Hafnium Hf 174 173.940 065 0.2 2.0 � 1015 y
176 175.941 420 5.2
177 176.943 233 18.6
178 177.943 710 27.1
179 178.945 827 13.7
180 179.946 561 35.2

73 Tantalum Ta 180 179.947 489 0.01 � 1.6 � 1013 y
181 180.948 014 99.99

74 Tungsten W 180 179.946 727 0.1
182 181.948 225 26.3
183 182.950 245 14.3
184 183.950 953 30.7
186 185.954 377 28.6

75 Rhenium Re 185 184.952 977 37.4
187 186.955 765 62.6 5 � 1010 y

76 Osmium Os 184 183.952 514 0.02
186 185.953 852 1.6 2 � 1015 y
187 186.955 762 1.6
188 187.955 850 13.3
189 188.958 156 16.1
190 189.958 455 26.4
192 191.961 487 41.0

77 Iridium Ir 191 190.960 603 37.3
193 192.962 942 62.7

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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78 Platinum Pt 190 189.959 937 0.01 6.1 � 1011 y
192 191.961 049 0.79
194 193.962 679 32.9
195 194.964 785 33.8
196 195.964 947 25.3
198 197.967 879 7.2

79 Gold Au 197 196.966 560 100

80 Mercury Hg 196 195.965 812 0.2
198 197.966 760 10.0
199 198.968 269 16.8
200 199.968 316 23.1
201 200.970 293 13.2
202 201.970 632 29.8
204 203.973 481 6.9

81 Thallium TI 203 202.972 336 29.5
205 204.974 410 70.5

82 Lead Pb 204 203.973 037 1.4 1.4 � 1017 y
206 205.974 455 24.1
207 206.975 885 22.1
208 207.976 641 52.4
210 209.984 178 22.3 y
214 213.999 764 26.8 min

83 Bismuth Bi 209 208.980 388 100
212 211.991 267 60.6 min

84 Polonium Po 210 209.982 876 138 d
214 213.995 191 0.16 ms
216 216.001 790 0.15 s
218 218.008 930 3.05 min

85 Astatine At 218 218.008 607 1.3 s

86 Radon Rn 220 220.011 401 56 s
222 222.017 574 3.824 d

87 Francium Fr 223 223.019 73 22 min

88 Radium Ra 226 226.025 406 1.60 � 103 y

89 Actinium Ac 227 227.027 751 21.8 y

90 Thorium Th 228 228.028 750 1.9 y
230 230.033 131 7.7 � 104 y
232 232.038 054 100 1.4 � 1010 y
233 233.041 580 22.2 min

91 Protactinium Pa 233 233.040 244 27 d

92 Uranium U 232 232.037 168 72 y
233 233.039 629 1.6 � 105 y
234 234.040 947 2.4 � 105 y
235 235.043 925 0.72 7.04 � 108 y
238 238.050 786 99.28 4.47 � 109 y

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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93 Neptunium Np 237 237.048 169 2.14 � 106 y
239 239.052 932 2.4 d

94 Plutonium Pu 239 239.052 158 2.4 � 104 y
240 240.053 809 6.6 � 103 y

95 Americium Am 243 243.061 374 7.7 � 103 y

96 Curium Cm 247 247.070 349 1.6 � 107 y

97 Berkelium Bk 247 247.070 300 1.4 � 103 y

98 Californium Cf 251 251.079 581 900 y

99 Einsteinium Es 252 252.082 82 472 d

100 Fermium Fm 257 257.095 103 100.5 d

101 Mendelevium Md 258 258.098 57 56 d

102 Nobelium No 259 259.100 941 58 m

103 Lawrencium Lr 260 260.105 36 3.0 m

104 Rutherfordium Rf 261 261.108 69 1.1 m

105 Dubnium Db 262 262.114 370 0.7 m

106 Seaborgium Sg 263 263.118 218 0.9 s

107 Nielsbohrium Ns 262 262.123 120 115 ms

108 Hassium Hs 264 264.128 630 0.08 ms

109 Meitnerium Mt 266 266.137 830 3.4 ms

Elements with atomic numbers 110, 111, 112, 114, and 116 have been created in nuclear reactions but
not yet named.

Atomic Relative
Z Element Symbol A Mass, u Abundance, % Half-Life
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Answers to Odd-Numbered Exercises

CHAPTER 1
1. More conspicuous.
3. No, because the observer in the spacecraft will find a longer time interval than

an observer on the ground, not a shorter time interval.
5. (a) 3.93 s. (b) To B, A’s watch runs slow.
7. 2.6 � 108 m/s.
9. 210 m.

11. 578 nm.
13. 1.34 � 104 m/s.
17. 6 ft; 2.6 ft.
19. 3.32 � 10�8 s.
21. 14°.
23. 5.0 y.
25. If p � mv, an event that conserves momentum in one inertial frame would not

conserve momentum to observers in other inertial frames in relative motion, so
momentum would not then be a useful quantity in physics.

27. 6.0 � 10�11.
29. (�3��2)c.
31. 1.88 � 108 m/s; 1.64 � 108 m/s.
33. 0.9989c.
35. 0.294 MeV.
41. �1019 eV; �105 y.
43. 0.383 MeV/c.
45. 885 keV/c.
47. 0.963c; 3.372 GeV/c.
49. 874 MeV/c2; 0.37c.
51. 1.97 ms.
53. (a) �� � tan�1 .

(b) As � → c, tan�� → 0 and �� → 0. This means that the stars appear farther
forward in the field of view of the porthole than they do when � � 0.

55. (a) 0.800c; 0.988c. (b) 0.900c; 0.988c.

CHAPTER 2
1. Less conspicuous.
3. KEmax is proportional to 	 minus the threshold frequency 	0.
5. 1.77 eV.
7. 1.72 � 1030 photons/s.
9. (a) 4.2 � 1021 photons/m2. (b) 4.0 � 1026 W; 1.2 � 1045 photons/s.

(c) 1.4 � 1013 photons/m3.
11. 180 nm.
13. 539 nm; 3.9 eV.
15. 0.48 
A.
17. 6.64 � 10�34 J � s; 3.0 eV.
19. In the reference frame of the electron at rest, the photon momentum must equal

the final electron momentum p. The corresponding photon energy is pc but the

sin� �1 � �2��c2�
��

cos� 
 ��c
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electron’s final kinetic energy is �p2c2 
� m2c4� � mc2 � pc, so the process can-
not occur while conserving both momentum and energy.

21. 2.4 � 1018 Hz; x-rays.
23. 2.9°.
25. 5.0 � 1018 Hz.
27. �C � 5.8 � 10�8 nm �� 0.1 nm.
29. 1.5 pm.
31. 2.4 � 1019 Hz.
33. 64°.
37. 335 keV.
39. 0.821 pm.
43. (b) 2.3�
.
45. 8.9 mm.
47. 11 cm.
49. 0.015 mm.
51. 1.06 pm.
53. (a) 1.9 � 10�3 eV. (b) 1.8 � 10�25 eV. (c) 3.5 � 1018 Hz; 7.6 kHz.
55. (a) �e � �2GM��R�. (b) R � 2GM�c2.

CHAPTER 3
1. The momenta are the same; the particle’s total energy exceeds the photon energy;

the particle’s kinetic energy is less than the photon energy.
3. 3.3 � 10�29 m.
5. 4.8 percent too high.
7. 0.0103 eV; a relativistic calculation is not needed.
9. 5.0 
V.

13. The electron has the longer wavelength. Both particles have the same phase and
group velocities.

17. �p�2.
19. 1.16c; 0.863c.
21. (b) �p � 1.00085c; �g � 0.99915c.
23. Increasing the electron energy increases the electron momentum and so decreases

the de Broglie wavelength, which in turn reduces the scattering angle �.
25. (a) 4.36 � 106 m/s outside; 5.30 � 106 m/s inside. (b) 0.167 nm outside;

0.137 nm inside.
27. 2.05n2 MeV; 2.05 MeV.
29. 45.3 fm.
31. Each atom in a solid is limited to a certain definite region of space—otherwise

the assembly of atoms would not be a solid. The uncertainty in position of
each atom is therefore finite, and its momentum and hence energy cannot be
zero. The position of an ideal-gas molecule is not restricted, so the uncertainty
in its position is effectively infinite and its momentum and hence energy can
be zero.

33. 3.1 percent.
35. 1.44 � 10�13 m.
37. (a) 24 m; 752 waves. (b) 12.5 MHz.

CHAPTER 4
1. Most of an atom consists of empty space.
3. 1.14 � 10�13 m.
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5. 1.46 
m.
7. A negative total energy signifies that the electron is bound to the nucleus; the

kinetic energy of the electron is a positive quantity.
11. 2.6 � 1074.
13. �p calculated in this way is half the electron’s linear momentum in orbit.
15. The Doppler effect shifts the frequencies of the emitted light to both higher and

lower frequencies to produce wider lines than atoms at rest would give rise to.
17. 91.2 nm.
19. 92.1 nm; ultraviolet.
21. 12.1 V.
23. 91.13 nm.
25. n � ��R�(��R � 1)�; ni � 3.
27. (a) Ei � Ef � h	 (1 
 h	�2Mc2). (b) KE�h	 � 1.0 � 10�9, so the effect is neg-

ligible for atomic radiation.
29. fn�	 � (2n2 
 4n 
 2)�(2n2 
 n), which is greater than 1; fn
1�	 � 2n2�(2n2 


3n 
 1), which is less than 1.
31. 0.653 nm; x-ray.
33. 0.238 nm.
35. (a) En � �(m�Z2e4�8�2

0h2)(1�n2).
(b)

H He


n � � ___________________________ E � 0
n � 4 __________ n � 8 __________
n � 3 __________ n � 6 __________

n � 5 __________
n � 2 __________ n � 4 __________ energy

n � 3 __________
n � 1 __________ n � 2 __________

(c) 2.28 � 10�8 m.
37. 3.49 � 1018 ions.
39. Small � implies a large impact parameter, in which case the full nuclear charge

of the target atom is partially screened by its electrons.
41. 10°.
43. 0.84.
45. Hint: f(�60°, �90°)�f(�90°) � [f(�60°) � f(�90°)]�f(�90°), where f(��)

is proportional to cot2 ��2.
47. 0.87�.

CHAPTER 5
1. b is double-valued; c has a discontinuous derivative; d goes to infinity; f is

discontinuous.
3. a and b are discontinuous and become infinite at ��2, 3��2, 5��2, . . . ; c

becomes infinite as x goes to ��.
5. (a) �8�3��. (b) 0.462.
7. The wave function cannot be normalized, so it cannot represent a real particle.

However, a linear superposition of such waves could give a wave group and be
normalizable with � → 0 at both ends of the group. Such a wave group would
correspond to a real particle.

13. Near x � 0 the particle has more kinetic energy, hence more momentum, and �
has a correspondingly shorter wavelength. The particle is less likely to be found
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in this region because of its higher speed, hence � has a smaller amplitude there
than near x � L.

17. L2�3 � L2�2n2�2.
19. 1�n.
21. (2�L)3�2

23. (nx
2 � ny

2 � nz
2)(�2�2�2mL2); E3D � 3E1D.

25. 0.95 eV.
27. The oscillator cannot have zero energy because this would mean it is at rest in

a definite position, whereas according to the uncertainty principle a definite po-
sition corresponds to an infinite momentum (and hence energy) uncertainty.

31. �x� � 0 and �x2� � E�k for both states.
33. (a) 2.07 � 10�15 eV; no. (b) 1.48 � 1028.
37. (a) There is nothing in region II to reflect the particles, hence there is no wave

moving to the left. (b) Hint: Make use of the boundary conditions that �I � �II

and d�I�dx � d�II�dx at x � 0. (c) Transmitted current /incident current � T �
	
8
9

	, hence the transmitted current is 	
8
9

	 mA � 0.889 mA and the reflected current
is 	

1
9

	 mA � 0.111 mA.

CHAPTER 6
1. An atomic electron is free to move in three dimensions; hence, as in the case of

a particle in a three-dimensional box, three quantum numbers are needed to de-
scribe its motion.

7. Bohr model: L � mvr � �. Quantum theory: L � 0.
9. Only when L � 0, since Lz is otherwise always less than L.

11. 0, 
1, 
2, 
3, 
4.
13. 29 percent, 18 percent, 13 percent.
15. Hint: Solve dP�dr � 0 for r.
17. 9a0.
19. 1.85
21. (a) 68 percent. (b) 24 percent.
31. 1.34 T.

CHAPTER 7
1. (a) 1.39 � 10�4 eV (b) 8.93 mm.
3. 54.7°; 125.3°.
5. 4

2He atoms contain even numbers of spin �	
1
2

	 particles, which pair off to give zero
or integral spins for the atoms. Such atoms do not obey the exclusion principle.
3
2He atoms contain odd numbers of spin- 	

1
2

	 particles and so have net spins of 	
1
2

	,
	
3
2

	, or 	
5
2

	, and they obey the exclusion principle.
7. An alkali metal atom has one electron outside closed inner shells; a halogen atom

lacks one electron of having a closed outer shell; an inert gas atom has a closed
outer shell.

9. 14.
11. 182.
13. The outermost of these electrons are, in the stated order, farther and farther from

their respective nuclei with hence less and less tightly bound.
15. (a) �2e, relatively easy. (b) �6e, relatively hard.
17. C1� ions have closed shells, whereas a C1 atom lacks an electron of having a

closed shell and the relatively poorly shielded nuclear charge tends to attract an
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electron from another atom to fill the shell. Na
 ions have closed shells, whereas
a Na atom has a single outer electron that can be detached relatively easily in a
chemical reaction with another atom.

19. The Li atom is larger because the effective nuclear charge acting on its outer elec-
tron is less than that acting on the outer electrons of the F atom. The Na atom
is larger because it has an additional electron shell. The Cl atom is larger because
it has an additional electron shell. The Na atom is larger than the Si atom for the
same reason as given for the Li atom.

21. Only then is it possible for all the electrons to pair off with opposite spins to
leave no net spin to produce an anomalous Zeeman effect.

23. 18.5 T.
25. 2, 3.
27. All its subshells are filled.
29. (a) There are no other allowed states. (b) This state has the lowest possible val-

ues of L and J, and is the only possible ground state.
31. 2P1�2.
33. Since L � n, a D (L � 2) state is impossible for n � 2.
35. (a) �

5
2

�, �
7
2

�; (b) �35� ��2, �63� ��2; (c) 60°, 132°; (d) 2F5�2, 2F7�2.
37. 2J 
 1; �E � gJ
BBMJ.
39. The transitions that give rise to x-ray spectra are the same in all elements since

the transitions involve only inner, closed-shell electrons. Optical spectra, how-
ever, depend upon the possible states of the outermost electrons, which, together
with the transitions permitted for them, are different for atoms of different atomic
number.

41. 1.47 keV; 0.844 nm.
43. In a singlet state, the spins of the outer electrons are antiparallel. In a triplet state,

they are parallel.

CHAPTER 8
1. The additional attractive force of the two protons exceeds the mutual repulsion

of the electrons to increase the binding energy.
3. 3.5 � 104 K.
5. The increase in bond lengths in the molecule increases its moment of inertia and

accordingly decreases the frequencies in its rotational spectrum. In addition, the
higher the quantum number J, the faster the rotation and the greater the cen-
trifugal distortion, so the spectral lines are no longer evenly spaced.

7. 13.
9. 0.129 nm.

11. 0.22 nm.
15. HD has the greater reduced mass, hence the smaller frequency of vibration and

the smaller zero-point energy. HD therefore has the greater binding energy since
its zero-point energy can contribute less energy to the splitting of the molecule.

17. (a) 1.24 � 1014 Hz.
19. 2.1 � 102 N/m.
21. Not very likely since E1 �� kT.

CHAPTER 9
1. 1.43 � 104 K.
3. 4.86 � 10�9.
5. (a) 1 (by definition); 1.68:0.882:0.218:0.0277. (b) Yes; 1.55 � 103 K.
7. 2.00 m/s; 2.24 m/s.
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9. 1.05 � 105 K.
11. 15.4 pm.
13. (1��)av � (1�N) ��

0
(1��)n(�) d�.

15. A fermion gas will exert the greatest pressure because the Fermi distribution has
a larger proportion of high-energy particles than the other distributions; a boson
gas will exert the least pressure because the Bose distribution has a larger pro-
portion of low-energy particles than the others.

17. 2.5 � 106; 2.5 � 102.
19. 1.3 percent.
21. 0.92 kW/m2.
23. 527°C.
25. 51 W.
27. 494 cm2; 6.27 cm.
29. 2.5 percent.
31. 1.0 � 104 K.
33. 2.9 � 102 K; 8.9 � 1011 m.
35. 3.03 � 10�12 J/K.
39. (a) 3.31 eV. (b) 2.56 � 104 K. (c) 1.08 � 106 m/s.
45. 11 eV.
47. 1.43 � 1021 states/eV; yes.
49. At 20°C, A � (Nh3�V)(2�mHekT)�3�2 � 3.56 � 10�6, so A �� 1.
51. At 20°C, A � (Nh3�2V)(2�mekT)�3�2 � 3.50 � 10�3, so A �� 1.
53. (a) 1.78 eV; 128 keV. (b) kT � 862 eV, so the gas of nuclei is nondegenerate

but the electron gas is degenerate.

CHAPTER 10
1. The greater the atomic number Z of a halogen ion, the larger it is, hence the

increase in interionic spacing with Z. The larger the ion spacing, the smaller the
cohesive energy, hence the lower the melting point.

3. (a) 7.29 eV. (b) 9.26.
5. The heat lost by the expanding gas is equal to the work done against the attrac-

tive van der Waals forces between its molecules.
7. (a) Van der Waals forces increase the cohesive energy since they are attractive.

(b) Zero-point oscillations decrease the cohesive energy since they represent a
mode of energy possession present in a solid but not in individual atoms or ions.

9. Only the outer shell electrons in the atoms of a metal are members of its “gas”
of free electrons.

11. 1.64 � 10�8 � � m.
13. In both, a forbidden band separates a filled valence band from the conduction

band above it. In semiconductors the band gap is smaller than in insulators, small
enough so that some valence electrons have enough thermal energy to jump
across the gap to the conduction band.

15. (a) Photons of visible light have energies of 1 � 3 eV, which can be absorbed by
free electrons in a metal without leaving its valence band. Hence metals are
opaque. The forbidden bands in insulators and semiconductors are too wide for
valence electrons to jump across them by absorbing only 1 � 3 eV. Hence such
solids are transparent. (b) Silicon, �1130 nm; diamond, �207 nm.

17. (a) p-type. (b) Aluminum atoms have 3 electrons in their outer shells, germa-
nium atoms have 4. Replacing a germanium atom with an aluminum atom leaves
a hole, so the result is a p-type semiconductor.
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19.
21. (a) 5.0 nm. (b) The ionization energy of the electron is 0.009 eV, which is much

smaller than the energy gap and not very far from the 0.025-eV value of kT at
20°C.

23. (a) 	c � eB�2 �m*. (b) 0.2 me. (c) 3.4 � 10�7 m.
25. 2.4 GHz.

CHAPTER 11
1. 3n, 3p; 12n, 10p; 54n, 40p; 108n, 72p.
3. 177 MeV.
5. 7.9 fm.
7. Electron: 5.8 � 10�6 eV; proton: 8.8 � 10�9 eV.
9. (a) 3.5. (b) 51. (c) Because the populations are so close, induced emission will

nearly equal induced absorption, so there will be very little net absorption of the
radiation. The higher the temperature of the system, the less the absorption. 
(d) Because this is a two-level system, it could not be used as the basis for a laser.

11. The limited range of the strong nuclear interaction.
13. 7

3Li; 13
6C.

15. 8.03 MeV; 8.79 MeV.
17. 20.6 MeV; 5.5 MeV; 2.2 MeV; both calculations give 28.3 MeV.
19. U � 0.85 MeV and �Eb � 0.76 MeV. Since the two figures are so close, nuclear

forces must be very nearly independent of charge.
21. Calculated, 347.95 MeV; actual, 342.05 MeV, which is 1.7 percent less.
23. (a) R � 3Ze2�10��0(�M 
 �m)c2. (b) 3.42 fm.
25. (a) 7.88 MeV; 10.95 MeV; 7.46 MeV. (b) More energy is needed to remove a

neutron from 82Kr because of the tendency of neutrons to pair together.
27. 127

53I is stable; 127
52Te undergoes negative beta decay.

29. Yes. The nucleon kinetic energy that corresponds to the �p implied by �x � 2 fm
is 1.3 MeV, which is consistent with a potential well 35 MeV deep.

Zone 1

Zone 2

Zone 3

Zone 1

Zone 2

Zone 3

Zone 1

Zone 2

Zone 3

Zone 1

Zone 2

Zone 3

Zone 1

Zone 2

Zone 3
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CHAPTER 12
1. 1�4.
3. 3.10 � 10�4.
5. 34.8 h.
7. 1.6 � 103 y.
9. 1.23 � 104 Bq.

11. 2.22 � 10�9 kg.
13. 52 min.
15. 1.64 � 109 y.
17. 1.4 � 104 y.
19. 5.9 � 109 y.
21. 82

206Pb; 48.64 MeV.
25. An electron leaving a nucleus is attracted by the positive nuclear charge, which

reduces its energy. A positron leaving a nucleus, on the other hand, is repelled
and is accordingly accelerated outward.

27. The energy available is less than 2mec
2.

29. 2.01 MeV; 0.85 MeV; 1.87 MeV.
31. 1.80 MeV.
33. The thirty-ninth proton in 89Y is normally in a p1�2 state and the next higher

state available to this proton is a g9�2 state, hence a radiative transition between
them has a low probability.

35. The neutron cross section decreases with increasing E because the likelihood that
a neutron will be captured depends on how much time it spends near a partic-
ular nucleus, which is inversely proportional to its speed. The proton cross section
is smaller at low energies because of the repulsive force exerted by the positive
nuclear charge.

37. (a) 71 percent. (b) 3.0 mm.
39. 0.087 mm.
41. 0.766 Ci.
43. 2

1H; 1
1H; 1

1n; 79
36Kr.

45. 3.33 MeV.
47. 3.1 � 106 m/s; 4 MeV.
49. 4.
51. E* � �Q 
 KEA(1 � mA�mC); 4.34 MeV.
53. The neutron/proton ratio required for stability decreases with decreasing A, hence

there is an excess of neutrons when fission occurs. Some of the excess neutrons
are released directly, and the others change to protons by beta decay in the fission
fragments.

55. 253 MeV.
57. The 1

1H nuclei in ordinary water are protons, which readily capture neutrons to
form 2

1H (deuterium) nuclei. These neutrons cannot contribute to the chain
reaction in a reactor, so a reactor using ordinary water as moderator needs
enriched uranium with a greater content of the fissionable 235U isotope to func-
tion. Deuterium nuclei are less likely to capture neutrons than are protons; hence
a reactor moderated with heavy water can operate with ordinary uranium as fuel.

59. (b) �100 percent; 89 percent; 29 percent; 1.7 percent.
61. 2.37 MeV.
63. (a) 2.2 � 109 K. (b) This temperature corresponds to the average deuteron

energy, but many deuterons have considerably higher energies than the average.
Also, quantum-mechanical tunneling through the potential barrier can occur,
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permitting deuterons to react despite having insufficient energy to come together
classically.

CHAPTER 13
1. (a) 3.22 � 10�22 s. (b) The strong electric field of the nucleus separates the

electron and positron sufficiently so that they cannot recombine afterward to
reconstitute the photon.

3. 74.5 MeV.
7. 60°. (Hint: Use the relativistic expression for KE to find p�.)
9. (a) B not conserved. (b) Can occur. (c) Charge not conserved. (d) Can occur.

11. Conservation of energy.
13. 	�(mu-neutrino).
15. A negative xi particle, Ξ�.
17. In order to obey the exclusion principle; no.
19. 
e.
21. Σ
.
23. Only the strong interaction can produce such rapid decays.
25. Since a positron and a neutrino are emitted, the weak interaction is involved.

Because this is so much feebler than the strong interaction, the reaction has a
low probability even when the protons are energetic enough to overcome the
Coulomb barrier.

27. (a) If r is the radius of the balloon, ds�dt � (1�r)(dr�dt)s where r and dr�dt are
the same for all points on the balloon at any time. (b) H � (1�r)(dr�dt). If dr/dt
is proportional to r, H is constant, otherwise not.
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For Further Study

T
here are many excellent books on every level of difficulty that cover the vari-
ous elements of modern physics. A number written decades ago still have much
of value to say to today’s students. What follows is a brief selection of books

that either treat the material covered in this book on about the same level but from a
different perspective, or are on levels somewhat higher or lower, or give more com-
plete accounts of certain topics. Anyone with access to a college library can easily find
still other books that may serve particular needs even better.

Besides books, two periodicals frequently contain both news and review articles on
modern physics: the monthly Scientific American and the British weekly New Scientist.
Though specializing in current research, these periodicals regularly include interesting
historical and biographical studies as well. The articles in Scientific American are usually
written by the researchers themselves and are always authoritative; those in New Scientist
are more often written by science journalists and now and then are rather speculative.
These periodicals are nonmathematical and many issues from the past have articles
well worth reading by students of modern physics.

General

Other texts at a level comparable with that of this book with similar coverage are:

J. Bernstein, P. M. Fishbane, and S. G. Gasiorowicz. 2000. Modern Physics. Upper Saddle
River, N.J.: Prentice-Hall. 

K. S. Krane. 1996. Modern Physics, 2nd ed. New York: Wiley.
R. A. Serway, C. J. Moses, and C. A. Moger. 1997. Modern Physics, 2nd ed. Fort Worth:

Saunders.
S. T. Thornton and A. Rex. 2000. Modern Physics for Scientists and Engineers, 2nd ed.

Fort Worth: Saunders.
P. A. Tipler and R. A. Llewellen. 1999. Modern Physics, 3rd ed. New York: Freeman.

Three books that give more detail on many of the discussions in this book are:

A. Beiser. 1969. Perspectives of Modern Physics, New York: McGraw-Hill.
R. Eisberg and R. Resnick. 1985. Quantum Physics of Atoms, Molecules, Solids, and

Particles, 2nd ed. New York: Wiley.
F. K. Richtmyer, E. H. Kennard, and J. N. Cooper. 1969. Introduction to Modern Physics,

6th ed. New York: McGraw-Hill.

Relativity

A. P. French. 1968. Special Relativity. New York: Norton.
R. Resnick. 1968. Introduction to Special Relativity. New York: Wiley.
E. F. Taylor and J. A. Wheeler. 1992. Spacetime Physics, 2nd ed. New York: Freeman.

Waves and Particles

D. Bohm. 1951. Quantum Theory. Englewood Cliffs, N.J.: Prentice-Hall.
R. P. Feynman, R. B. Leighton, and M. Sands. 1965. The Feynman Lectures on Physics,

Vol. 3. Reading, Mass.: Addison-Wesley.
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R. Resnick and D. Halliday. 1992. Basic Concepts in Relativity and Early Quantum Theory.
New York: Macmillan.

W. H. Wichman. 1971. Quantum Physics. New York: McGraw-Hill.

Quantum Mechanics

J. Baggott. 1992. The Meaning of Quantum Theory. New York: Oxford University Press.
S. Brandt and H. D. Dahmen. 2001. Picture Book of Quantum Mechanics, 3rd ed. New

York: Springer-Verlag.
A. P. French and E. F. Taylor. 1979. An Introduction to Quantum Physics. New York: Nor-

ton.
D. J. Griffiths. 1995. Introduction to Quantum Mechanics. Upper Saddle River, N.J.:

Prentice-Hall.
M. Morrison. 1990. Understanding Quantum Physics. Upper Saddle River, N.J.: Prentice-

Hall.
L. Pauling and E.B. Wilson. 1935. Introduction to Quantum Mechanics. New York:

McGraw-Hill.

Many-Electron Atoms

G. Herzberg. 1944. Atomic Spectra and Atomic Structure. New York: Dover.
H. Semat and J. R. Albright. 1972. Introduction to Atomic and Nuclear Physics. New York:

Holt, Rinehart and Winston.
H. E. White. 1934. Introduction to Atomic Spectra. New York: McGraw-Hill.

Molecules

G. M. Barrow. 1962. Introduction to Molecular Spectra. New York: McGraw-Hill.
G. Hertzberg. 1950. Molecular Spectra and Molecular Structure. New York: Van Nostrand.
L. Pauling. 1967. The Nature of the Chemical Bond, 3rd ed. Ithaca: Cornell University

Press.

Statistical Mechanics

R. Bowley and M. Sanchez. 1996. Introductory Statistical Mechanics. New York: Oxford
University Press.

C. Kittel and H. Kroemer. 1995. Thermal Physics. New York: Freeman.

The Solid State

C. Kittel. 1996. Introduction to Solid State Physics, 7th ed. New York: Wiley.
M. N. Rudden and J. Wilson. 1993. Elements of Solid State Physics, 2nd ed. New York:

John Wiley & Sons, Inc.
J. Singh. 1999. Modern Physics for Engineers. New York: Wiley.
S. M. Sze. 1981. Physics of Semiconductor Devices, 2nd ed. New York: Wiley.
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Nuclear Physics

M. Harwit. 1998. Astrophysical Concepts, 3rd ed. New York: Springer-Verlag.
I. Kaplan. 1962. Nuclear Physics. Reading, Mass.: Addison-Wesley.
K. Krane. 1987. Introductory Nuclear Physics. New York: Wiley.
M. R. Wehr, J. A. Richards, and T. W. Adair. 1984. Physics of the Atom, 4th ed. Reading,

Mass.: Addison-Wesley.

Elementary Particles and Cosmology

J. Allday. 1998. Quarks, Leptons, and the Big Bang. Philadelphia: Institute of Physics
Publishers.

B. Greene. 2000. The Elegant Universe. New York: W. W. Norton & Co., Inc.
D. Griffiths. 1991. Introduction to Elementary Particles. Upper Saddle River, N.J.:

Prentice-Hall.
A. Liddle. 1999. Introduction to Modern Cosmology. New York: Wiley.
S. Weinberg. 1992. Dreams of a Final Theory. New York: Pantheon.
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See also Spectra
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Rotations about bond axis, 283
Rotella, Frank J., 106
Ruby laser, 148, 149
Ruska, Ernst, 186
Rutherford, Ernest, 120, 121, 256, 389
Rutherford model of atom, 122, 124
Rutherford scattering, 123, 152–157
Rutherford scattering formula, 122, 126, 

154–157
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Rydberg atoms, 135
Rydberg constant, 129

Salam, Abdus, 494, 495
Saturation, 398
Scanning tunneling microscope (STM), 160, 

186, 187
Scattering, 72, 73
Scattering angle, 152–154
Schawlow, Arthur, 147
Schrieffer, J. Robert, 381, 382
Schrödinger, Erwin, 93, 161, 167
Schrödinger equation

fundamental equation of quantum mechanics,
as, 163

hydrogen atom, 201–203
linearity, 169
steady-state form, 174–177
time-dependent form, 166–169

Schultz, Arthur J., 106
Schwarzschild radius, 89
Schwinger, Julian, 222, 495
Scientific American, 525
Screw dislocation, 338
Second Brillouin zone, 371
Selection rules, 220, 221
Semiconductor devices, 361–369
Semiconductor laser, 364, 365
Semiconductor lasers, 151
Semiconductors, 359–361
Semiempirical binding-energy formula, 407
Series limit, 129
Shell, 238–240
Shell model, 408–412
Shockley, William, 382
Short-range order, 336, 337
SI units, 530
Sieverts (Sv), 422
Silicon, 344, 358–361, 364
Silicon carbide, 344
Simultaneity, 44, 45
Singlet, 254
Slow neutron cross sections, 445
Snowflake, 347
Soddy, Frederick, 121
Sodium, 260, 355–357
Sodium chloride, 339
Solar cell, 364
Solar neutrino mystery, 480
Solid state, 335–386

amorphous solids, 336, 337
band theory of solids, 354–361
bound electron pairs, 381–385
buckyballs, 344
conductors, 355–358
covalent crystals, 342–344, 349
crystalline solids, 336–338
energy bands (alternate analysis), 369–376
FET, 367–369
hydrogen bonds, 346, 347

540 Index

insulators, 358, 359
ionic crystals, 338–342, 349
Josephson junctions, 384, 385
junction diode, 362–365
junction transistor, 367
metallic bond, 348–353
nanotubes, 344
Ohm’s law, 350
optical properties of solids, 359
photodiodes, 364
semiconductor devices, 361–369
semiconductors, 359–361
superconductivity, 376–381
tunnel diode, 365, 366
van der Waals bond, 345, 346, 349
Weidemann-Franz law, 354
Zener diode, 366, 367

Source, 368
sp2 hybrids, 279
sp3 hybrids, 279
Space quantization, 210–212
Spacetime, 46–48
Spacetime intervals, 47, 48
Sparticle, 497
Special relativity, 2–5
Specific heats of solids, 320–323
Spectra

absorption line, 128
atomic, 127–130, 259–263
blackbody, 58
electronic, of molecules, 291–293
emission line, 128
energy levels and, 135–138
hydrogen, 136
rotational, 284
vibrational, 288
vibration-rotation, 291
x-ray, 254–258

Spectral series, 129, 130
Spectrometer, 127
Speed limit, 8
Speed of light, 8
Spherical polar coordinates, 201
Spin, 229, 393, 394
Spin angular momentum, 230
Spin-orbit coupling, 247–249
Spontaneous emission, 146, 318
SQUID, 385
Stable nuclei, 396–399, 411
Standard deviation, 110
Standard Model, 496
Stars, 461–463
Statistical distributions, 297, 298
Statistical mechanics, 296–334

black holes, 331
Bose-Einstein condensate, 309
Bose-Einstein distribution function, 307, 

308, 310
bosons/fermions, 306, 307
defined, 297
dying stars, 327–331
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Einstein’s approach, 318–320
electron-energy distribution, 325–327
Fermi-Dirac distribution function, 307, 

308, 310
free electrons in metal, 323–325
Maxwell-Boltzmann distribution function, 

299, 308
Maxwell-Boltzmann statistics, 298–300
molecular energies in ideal gas, 300–305
neuron stars, 329–331
Planck radiation law, 313–318
pulsars, 330, 331
quantum statistics, 305–310
Rayleigh-Jeans formula, 311, 312
specific heats of solids, 320–323
statistical distributions, 297, 298
Stefan-Boltzmann law, 317
white dwarfs, 328, 329
Wien’s displacement law, 316

Steady-state Schrödinger equation, 174–177
Stefan, Josef, 298
Stefan-Boltzmann law, 298, 317
Stefan’s constant, 317
Stern, Otto, 132, 232
Stern-Gerlach experiment, 232
Stimulated absorption, 146
Stimulated emission, 146, 147, 318
STM, 186, 187
Strange, 489, 490
Strange particles, 486
Strangeness number, 486
Strassmann, Fritz, 452
String theory, 497
Strong interaction, 402, 475, 476
Subcritical, 454
Subshell, 239, 240
Summary table, 530
Sun, 460, 461, 480
Superconducting quantum interference device

(SQUID), 385
Superconductivity, 376–383
Supercritical, 454
Supermultiplets, 487–489
Supernova, 329, 463
Superposition, 55, 169, 170
Supersymmetry, 497
Surface energy, 404
Sv, 422
Symmetric wave function, 233–235, 306
Symmetries, 486, 487

Tau, 481
Taylor, Joseph, 36
Teller, Edward, 435
Tensor, 47
Term symbols, 253, 254
Tevatron, 496
Textbooks, 525–527
Thallium, 360
Theorem of equipartition of energy, 59

Index 541

Theory of Everything, 476, 497
Theory of relativity, 2. See also Relativity
Thermal neutron, 444
Thermionic emission, 67
Thermograph, 315
Thioacetic acid, 290
Thomson, G.P., 104
Thomson, J.J., 104, 120, 121
Three Mile Island incident, 459
Three-level laser, 147, 148
3s level, 356
Time dilation, 5–10
Time-dependent Schrödinger equation, 

166–169
Timelike interval, 47
Tokamak, 464–467
Tokamak Fusion Test Reactor, 418
Tomonaga, Sin-Itiro, 222
Top, 490, 492
Total angular momentum, 249–254
Total atomic angular momentum, 250
Total energy, 27, 30
Total-energy operator, 172
Townes, Charles H., 147
Transistor, 367–369
Transition elements, 236, 246
Transuranic elements, 457
Transverse doppler effect in light, 11
Triple-alpha reaction, 462
Triplet, 254
Tritium, 388
Tsung Dao Lee, 479
Tunable dye laser, 290, 291
Tunnel diode, 365, 366
Tunnel effect, 184–186, 193–196
Tunnel theory of alpha decay, 434–436
Twin paradox, 17–19
Two-body oscillator, 286, 287
Type I superconductors, 377, 378
Type II superconductors, 378, 379

u, 390
Uhlenbeck, George, 229, 230, 233
Ultraviolet catastrophe, 59, 60
Uncertainty principle

pion, 414
Uncertainty principles

applying, 114–116
energy and time, 115, 116
principle 1, 108–113
principle 2, 113, 114
space quantization, 211

Universe
future of, 501–504
history of, 498–501

Universe, expanding, 13, 14
Unsöld’s theorem, 227
Up, 489, 490
Uranium, 423
Uranium decay series, 431
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Vacuum fluctuations, 320
Valence, 276
Valence band, 358
van der Waals forces, 345, 346, 349
van der Waals, Johannes, 345
Velocity addition, 43, 44
Vibration-rotation band, 291
Vibration-rotation spectra, 291
Vibrational energy levels, 285–291
Vibrational quantum number, 287
Vibrational spectra, 288
Vibrational states, 282
Video camera, 65
Virtual photon, 415
Volume energy, 404
von Laue, Max, 69, 132
von Weizäcker, C.F., 403, 407
Vulcan, 35

W, 494
Wave equation, 164–166
Wave formula, 98, 99
Wave function, 95, 96, 162, 163. See also

Quantum mechanics
Wave group, 99
Wave number, 99
Wave number of de Broglie waves, 101
Wave packet, 99
Wave propagation, 98
Wave properties of particles, 92–118

angular frequency of de Broglie waves, 101
Davisson-Germer experiment, 104, 105
de Broglie waves, 93–95
energy and time, 115, 116
general formula for waves, 96–99
particle diffraction, 104, 105
particle in a box, 106, 107
phase/group velocities, 99–103
uncertainty principles, 108–116
wave number of de Broglie waves, 101
waves of probability, 95, 96
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Wave theory of light, 67, 68
Wave-particle duality. See Particle properties of

waves, Wave properties of particles
Weak interaction, 402, 439, 475
Weakly interacting massive particles 

(WIMPs), 503
Weidemann-Franz law, 354
Weinberg, Steven, 494, 495
Well-behaved wave function, 163
What Is Life? (Schrödinger), 167
Wheeler, J.A., 33
White dwarf, 88, 328, 329
Wieman, Carl, 309
Wien’s displacement law, 58, 316
Wigner, Eugene, 161
Wilson, Robert, 500
WIMPs, 503
Work function, 64, 65
Work hardening, 338

X-ray, 68–72, 423
X-ray diffraction, 72–75
X-ray production, 71, 72
X-ray spectra, 254–258
X-ray spectrometer, 74
X-ray tube, 69
X-ray wavelengths, 72–75

Young, Thomas, 56, 57
Yukawa, Hideki, 413

Z, 494
Zeeman effect, 200, 223–226, 229
Zeeman, Pieter, 41, 225
Zener breakdown, 367
Zener diode, 366, 367
Zero-point energy, 118, 190, 323
Zweig, George, 489
Zwicky, Fritz, 330
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Physical Constants and Conversion Factors

Atomic mass unit u 1.66054 � 10�27 kg
931.49 MeV�c2

Avogadro’s number N0 6.022 � 1026 kmol�1

Bohr magneton �B 9.274 � 10�24 J�T
5.788 � 10�5 eV/T

Bohr radius a0 5.292 � 10�11 m
Boltzmann’s constant k 1.381 � 10�23 J/K

8.617 � 10�5 eV/K
Compton wavelength of electron �c 2.426 � 10�12 m
Electron charge e 1.602 � 10�19 C
Electron rest mass me 9.1095 � 10�31 kg

5.486 � 10�4 u
0.5110 MeV/c2

Electronvolt eV 1.602 � 10�19 J
eV/c 5.344 � 10�28 kg � m/s
eV/c2 1.783 � 10�30 kg

Hydrogen atom, ground-state energy E1 �2.179 � 10�18 J
�13.61 eV

rest mass mH 1.6736 � 10�27 kg
1.007825 u
938.79 MeV/c2

Joule J 6.242 � 1018 eV
Kelvin K °C � 273.15
Neutron rest mass mn 1.6750 � 10�27 kg

1.008665 u
939.57 MeV/c2

Nuclear magneton �N 5.051 � 10�27 J/T
3.152 � 10�8 eV/T

Permeability of free space �0 4� � 10�7 T � m/A
Permittivity of free space �0 8.854 � 10�12C2/N � m2

1�4��0 8.988 � 109 N � m2/C2

Planck’s constant h 6.626 � 10�34 J � s
4.136 � 10�15 eV � s

	 
 h�2� 1.055 � 10�34 J � s
6.582 � 10�16 eV � s

Proton rest mass mp 1.6726 � 10�27 kg
1.007276 u

938.28 MeV/c2

Rydberg constant R 1.097 � 107 m�1

Speed of light in free space c 2.998 � 108 m/s
Stefan’s constant � 5.670 � 10�8 W/m2 � K4
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Characteristic
Frequency, Photon Wavelength temperature Transition

Hz energy, eV Radiation m h�/k, K type

1022

107 10�13 1011
Nuclear

1021

(1 MeV) 106 (1 pm) 10�12 1010

1020

105 10�11 109 Inner atomic
1019

104 10�10 108 electron
1018

(1 keV) 103 (1 nm) 10�9 107

1017

102 10�8 106

1016

10 10�7 105 Outer atomic 
1015

1 (1 �m) 10�6 104 electron
1014

10�1 10�5 103 Molecular
1013

10�2 10�4 102 vibration
1012

10�3 (1 mm)10�3 10 Molecular
1011

10�4 (1 cm) 10�2 1 rotation
1010

10�5 10�1 10�1

(1 GHz) 109

10�6 1
108

10�7 10
107

10�8 102

(1 MHz) 106

10�9 (1 km) 103

105

10�10 104

104

10�11 105

(1 kHz) 103

U
lt

ra
-

vi
ol

et

X
-r

ay
s

M
ic

ro
- 

w
av

es

R
ad

io

Standard
broadcast

Visible

TV, FM
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Multipliers for SI Units

a atto- 10�18 da deka- 101

f femto- 10�15 h hecto- 102

p pico- 10�12 k kilo- 103

n nano- 10�9 M mega- 106

� micro- 10�6 G giga- 109

m milli- 10�3 T tera- 1012

c centi- 10�2 P peta- 1015

d deci- 10�1 E exa- 1018

Quantum Numbers of an Atomic Electron

Name Symbol Possible Values Quantity Determined

Principal n 1, 2, 3, � � � Electron energy

Orbital l 0, 1, 2, � � � , n � 1 Orbital angular momentum magnitude

Magnetic ml �l, � � � , 0, � � � , �l Orbital angular momentum direction

Spin magnetic ms �

1
2


, �

1
2


 Electron spin direction

ATOMIC SHELLS: n 
 1 2 3 4 5 � � �

K L M N O � � �

ANGULAR MOMENTUM STATES: l 
 0 1 2 3 4 5 � � �

s p d f g h � � �

The Greek Alphabet

Alpha � � Iota � � Rho � �
Beta � � Kappa � � Sigma � �
Gamma � � Lambda � � Tau � �
Delta � � Mu  � Upsilon ! "
Epsilon # $ Nu % � Phi & '
Zeta ( ) Xi * + Chi , -
Eta . / Omicron 0 1 Psi 2 3
Theta 4 5 Pi 6 � Omega 7 8
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