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Preface

quantization in blackbody radiation, a revolutionary idea soon followed by

Albert Einstein’s equally revolutionary theory of relativity and quantum the-
ory of light. Students today must wonder why the label “modern” remains attached to
this branch of physics. Yet it is not really all that venerable: my father was born in
1900, for instance, and when [ was learning modern physics most of its founders, in-
cluding Einstein, were still alive; I even had the privilege of meeting a number of them,
including Heisenberg, Pauli, and Dirac. Few aspects of contemporary science—indeed,
of contemporary life—are unaffected by the insights into matter and energy provided
by modern physics, which continues as an active discipline as it enters its second
century.

This book is intended to be used with a one-semester course in modern physics for
students who have already had basic physics and calculus courses. Relativity and
quantum ideas are considered first to provide a framework for understanding the
physics of atoms and nuclei. The theory of the atom is then developed with emphasis
on quantum-mechanical notions. Next comes a discussion of the properties of aggre-
gates of atoms, which includes a look at statistical mechanics. Finally atomic nuclei
and elementary particles are examined.

The balance in this book leans more toward ideas than toward experimental meth-
ods and practical applications, because 1 believe that the beginning student is better
served by a conceptual framework than by a mass of details. For a similar reason the
sequence of topics follows a logical rather than strictly historical order. The merits of
this approach have led to the extensive worldwide use of the five previous editions of
Concepts of Modern Physics, including translations into a number of other languages,
since the first edition appeared nearly forty years ago.

Wherever possible, important subjects are introduced on an elementary level, which
enables even relatively unprepared students to understand what is going on from the
start and also encourages the development of physical intuition in readers in whom
the mathematics (rather modest) inspires no terror. More material is included than can
easily be covered in one semester. Both factors give scope to an instructor to fashion
the type of course desired, whether a general survey, a deeper inquiry into selected
subjects, or a combination of both.

Like the text, the exercises are on all levels, from the quite easy (for practice and
reassurance) to those for which real thought is needed (for the joy of discovery). The
exercises are grouped to correspond to sections of the text with answers to the odd-
numbered exercises given at the back of the book. In addition, a Student Solutions
Manual has been prepared by Craig Watkins that contains solutions to the odd-
numbered exercises.

Because the ideas of modern physics represented totally new directions in thought
when first proposed, rather than extensions of previous knowledge, the story of their
development is exceptionally interesting. Although there is no room here for a full ac-
count, bits and pieces are included where appropriate, and thirty-nine brief biogra-
phies of important contributors are sprinkled through the text to help provide a hu-
man persepctive. Many books on the history of modern physics are available for those

M odern physics began in 1900 with Max Planck’s discovery of the role of energy

o
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who wish to go further into this subject; those by Abraham Pais and by Emilio Segré,
themselves distinguished physicists, are especially recommended.

For this edition of Concepts of Modern Physics the treatments of special relativity,
quantum mechanics, and elementary particles received major revisions. In addition,
numerous smaller changes and updates were made throughout the book, and several
new topics were added, for instance Einstein’s derivation of the Planck radiation law.
There is more material on aspects of astrophysics that nicely illustrate important ele-
ments of modern physics, which for this reason are discussed where relevant in the
text rather than being concentrated in a single chapter.

Many students, although able to follow the arguments in the book, nevertheless may
have trouble putting their knowledge to use. To help them, each chapter has a selec-
tion of worked examples. Together with those in the Solutions Manual, over 350 solu-
tions are thus available to problems that span all levels of difficulty. Understanding
these solutions should bring the unsolved even-numbered exercises within reach.

In revising Concepts of Modern Physics for the sixth edition I have had the benefit of
constructive criticism from the following reviewers, whose generous assistance was
of great value: Steven Adams, Widener University; Amitava Bhattacharjee, The Univer-
sity of Iowa; William E. Dieterle, California University of Pennsylvania, Nevin D. Gibson,
Denison University; Asif Khand Ker, Millsaps College; Teresa Larkin-Hein, American
University; Jorge A. Lopez, University of Texas at El Paso; Carl A. Rotter, West Virginia
University; and Daniel Susan, Texas A&M University—Kingsville. T am also grateful to the
following reviewers of previous editions for their critical reviews and comments: Donald
R. Beck, Michigan Technological University, Ronald J. Bieniek, University of Missouri—Rolla;
Lynn R. Cominsky, Sonoma State University; Brent Cornstubble, United States Military
Academy; Richard Gass, University of Cincinnati; Nicole Herbot, Arizona State Univer-
sity; Vladimir Privman, Clarkson University; Arnold Strassenberg, State University of New
York—=Stony Brook; the students at Clarkson and Arizona State Universities who evaluated
an earlier edition from their point of view; and Paul Sokol of Pennsylvania State Uni-
versity who supplied a number of excellent exercises. I am especially indebted to Craig
Watkins of Massachusetts Institute of Technology who went over the manuscript with a
meticulous and skeptical eye and who checked the answers to all the exercises. Finally,
I want to thank my friends at McGraw-Hill for their skilled and enthusiastic help
throughout the project.

Arthur Beiser
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2 Chapter One

n 1905 a young physicist of twenty-six named Albert Einstein showed how meas-

urements of time and space are affected by motion between an observer and what

is being observed. To say that Einstein’s theory of relativity revolutionized science
is no exaggeration. Relativity connects space and time, matter and energy, electricity
and magnetism—Iinks that are crucial to our understanding of the physical universe.
From relativity have come a host of remarkable predictions, all of which have been
confirmed by experiment. For all their profundity, many of the conclusions of relativity
can be reached with only the simplest of mathematics.

1.1 SPECIAL RELATIVITY

All motion is relative; the speed of light in free space is the same for all
observers

When such quantities as length, time interval, and mass are considered in elementary
physics, no special point is made about how they are measured. Since a standard unit
exists for each quantity, who makes a certain determination would not seem to matter—
everybody ought to get the same result. For instance, there is no question of principle
involved in finding the length of an airplane when we are on board. All we have to do
is put one end of a tape measure at the airplane’s nose and look at the number on the
tape at the airplane’s tail.

But what if the airplane is in flight and we are on the ground? It is not hard to de-
termine the length of a distant object with a tape measure to establish a baseline, a
surveyor’s transit to measure angles, and a knowledge of trigonometry. When we meas-
ure the moving airplane from the ground, though, we find it to be shorter than it is
to somebody in the airplane itself. To understand how this unexpected difference arises
we must analyze the process of measurement when motion is involved.

Frames of Reference

The first step is to clarify what we mean by motion. When we say that something is
moving, what we mean is that its position relative to something else is changing. A
passenger moves relative to an airplane; the airplane moves relative to the earth; the
earth moves relative to the sun; the sun moves relative to the galaxy of stars (the Milky
Way) of which it is a member; and so on. In each case a frame of reference is part of
the description of the motion. To say that something is moving always implies a specific
frame of reference.

An inertial frame of reference is one in which Newtons first law of motion holds.
In such a frame, an object at rest remains at rest and an object in motion continues to
move at constant velocity (constant speed and direction) if no force acts on it. Any
frame of reference that moves at constant velocity relative to an inertial frame is itself
an inertial frame.

All inertial frames are equally valid. Suppose we see something changing its posi-
tion with respect to us at constant velocity. Is it moving or are we moving? Suppose
we are in a closed laboratory in which Newton first law holds. Is the laboratory mov-
ing or is it at rest? These questions are meaningless because all constant-velocity motion
is relative. There is no universal frame of reference that can be used everywhere, no
such thing as “absolute motion.”

The theory of relativity deals with the consequences of the lack of a universal frame
of reference. Special relativity, which is what Einstein published in 1905, treats

o
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problems that involve inertial frames of reference. General relativity, published by
Einstein a decade later, describes the relationship between gravity and the geometrical
structure of space and time. The special theory has had an enormous impact on much
of physics, and we shall concentrate on it here.

Postulates of Special Relativity
Two postulates underlie special relativity. The first, the principle of relativity, states:
The laws of physics are the same in all inertial frames of reference.

This postulate follows from the absence of a universal frame of reference. If the laws
of physics were different for different observers in relative motion, the observers could
find from these differences which of them were “stationary” in space and which were
“moving.” But such a distinction does not exist, and the principle of relativity expresses
this fact.

The second postulate is based on the results of many experiments:

The speed of light in free space has the same value in all inertial frames of
reference.

This speed is 2.998 X 10° m/s to four significant figures.

To appreciate how remarkable these postulates are, let us look at a hypothetical
experiment basically no different from actual ones that have been carried out in a
number of ways. Suppose I turn on a searchlight just as you fly past in a spacecraft
at a speed of 2 X 10% m/s (Fig. 1.1). We both measure the speed of the light waves
from the searchlight using identical instruments. From the ground I find their speed
to be 3 X 10° m/s as usual. “Common sense” tells me that you ought to find a speed
of 3 — 2) X 10® m/s, or only 1 X 10® m/s, for the same light waves. But you also
find their speed to be 3 X 10% m/s, even though to me you seem to be moving parallel
to the waves at 2 X 10° m/s.

Q

v=2X10% mss T
¢=3X10%mss

— ™
— ™

(@) (b) ()

Figure 1.1 The speed of light is the same to all observers.
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Albert A. Michelson (1852-1931)
was born in Germany but came to the
United States at the age of two with
his parents, who settled in Nevada. He
attended the U.S. Naval Academy at
Annapolis where, after two years of sea
duty, he became a science instructor.
To improve his knowledge of optics,
in which he wanted to specialize,
Michelson went to Europe and stud-
ied in Berlin and Paris. Then he left
the Navy to work first at the Case School of Applied Science in
Ohio, then at Clark University in Massachusetts, and finally at
the University of Chicago, where he headed the physics de-
partment from 1892 to 1929. Michelson’s speciality was high-
precision measurement, and for many decades his successive
figures for the speed of light were the best available. He rede-
fined the meter in terms of wavelengths of a particular spectral
line and devised an interferometer that could determine the
diameter of a star (stars appear as points of light in even the
most powerful telescopes).

Michelsons most significant achievement, carried out in
1887 in collaboration with Edward Morley, was an experiment
to measure the motion of the earth through the “ether,” a hy-
pothetical medium pervading the universe in which light waves
were supposed to occur. The notion of the ether was a hang-
over from the days before light waves were recognized as elec-
tromagnetic, but nobody at the time seemed willing to discard
the idea that light propagates relative to some sort of universal
frame of reference.

To look for the earth’s motion through the ether, Michelson
and Morley used a pair of light beams formed by a half-silvered
mirror, as in Fig. 1.2. One light beam is directed to a mirror
along a path perpendicular to the ether current, and the other
goes to a mirror along a path parallel to the ether current. Both
beams end up at the same viewing screen. The clear glass plate
ensures that both beams pass through the same thicknesses of
air and glass. If the transit times of the two beams are the same,
they will arrive at the screen in phase and will interfere con-
structively. An ether current due to the earth’s motion parallel
to one of the beams, however, would cause the beams to have
different transit times and the result would be destructive in-
terference at the screen. This is the essence of the experiment.

Although the experiment was sensitive enough to detect the
expected ether drift, to everyone’s surprise none was found.
The negative result had two consequences. First, it showed that
the ether does not exist and so there is no such thing as “ab-
solute motion” relative to the ether: all motion is relative to a
specified frame of reference, not to a universal one. Second, the
result showed that the speed of light is the same for all ob-
servers, which is not true of waves that need a material medium
in which to occur (such as sound and water waves).

The Michelson-Morley experiment set the stage for Einstein’s
1905 special theory of relativity, a theory that Michelson him-
self was reluctant to accept. Indeed, not long before the flow-
ering of relativity and quantum theory revolutionized physics,
Michelson announced that “physical discoveries in the future
are a matter of the sixth decimal place.” This was a common
opinion of the time. Michelson received a Nobel Prize in 1907,
the first American to do so.

Mirror A

Path A

Parallel light
from
single source

Half-silvered mirror

Glass plate

Path B j Mirror B

v_ Hypothetical

—
ether current

Figure 1.2 The Michelson-Morley experiment.

Viewing screen
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There is only one way to account for these results without violating the principle of
relativity. It must be true that measurements of space and time are not absolute but de-
pend on the relative motion between an observer and what is being observed. If T were
to measure from the ground the rate at which your clock ticks and the length of your
meter stick, I would find that the clock ticks more slowly than it did at rest on the ground
and that the meter stick is shorter in the direction of motion of the spacecraft. To you,
your clock and meter stick are the same as they were on the ground before you took off.
To me they are different because of the relative motion, different in such a way that the
speed of light you measure is the same 3 X 10® m/s I measure. Time intervals and lengths
are relative quantities, but the speed of light in free space is the same to all observers.

Before Einstein’s work, a conflict had existed between the principles of mechanics,
which were then based on Newton’s laws of motion, and those of electricity and
magnetism, which had been developed into a unified theory by Maxwell. Newtonian
mechanics had worked well for over two centuries. Maxwell’s theory not only covered
all that was then known about electric and magnetic phenomena but had also pre-
dicted that electromagnetic waves exist and identified light as an example of them.
However, the equations of Newtonian mechanics and those of electromagnetism differ
in the way they relate measurements made in one inertial frame with those made in a
different inertial frame.

Einstein showed that Maxwell’s theory is consistent with special relativity whereas
Newtonian mechanics is not, and his modification of mechanics brought these branches
of physics into accord. As we will find, relativistic and Newtonian mechanics agree for
relative speeds much lower than the speed of light, which is why Newtonian mechanics
seemed correct for so long. At higher speeds Newtonian mechanics fails and must be
replaced by the relativistic version.

1.2 TIME DILATION

A moving clock ticks more slowly than a clock at rest

Measurements of time intervals are affected by relative motion between an observer
and what is observed. As a result, a clock that moves with respect to an observer ticks
more slowly than it does without such motion, and all processes (including those of
life) occur more slowly to an observer when they take place in a different inertial frame.

If someone in a moving spacecraft finds that the time interval between two events
in the spacecraft is t5, we on the ground would find that the same interval has the
longer duration t. The quantity t,, which is determined by events that occur at the same
place in an observer’s frame of reference, is called the proper time of the interval
between the events. When witnessed from the ground, the events that mark the be-
ginning and end of the time interval occur at different places, and in consequence the
duration of the interval appears longer than the proper time. This effect is called time
dilation (to dilate is to become larger).

To see how time dilation comes about, let us consider two clocks, both of the par-
ticularly simple kind shown in Fig. 1.3. In each clock a pulse of light is reflected back
and forth between two mirrors Ly apart. Whenever the light strikes the lower mirror,
an electric signal is produced that marks the recording tape. Each mark corresponds
to the tick of an ordinary clock.

One clock is at rest in a laboratory on the ground and the other is in a spacecraft
that moves at the speed v relative to the ground. An observer in the laboratory watches
both clocks: does she find that they tick at the same rate?

o
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L Recording device
.
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<[ Ticks
: Light pulse
B ] Mirror
Photosensitive surface
Figure 1.3 A simple clock. Each “tick” corresponds to a round trip of the light pulse from the lower
mirror to the upper one and back.
0 Figure 1.4 shows the laboratory clock in operation. The time interval between ticks
| ; is the proper time t, and the time needed for the light pulse to travel between the
3 | mirrors at the speed of light ¢ is t,/2. Hence to/2 = Ly/c and
t
2L,
—/1 —/1 to= — (1.1
¢

—

Figure 1.4 A light-pulse clock at
rest on the ground as seen by an
observer on the ground. The dial
represents a conventional clock on
the ground.

Figure 1.5 shows the moving clock with its mirrors perpendicular to the direction
of motion relative to the ground. The time interval between ticks is t. Because the clock
is moving, the light pulse, as seen from the ground, follows a zigzag path. On its way
from the lower mirror to the upper one in the time t/2, the pulse travels a horizontal
distance of v(t/2) and a total distance of ¢(t/2). Since L, is the vertical distance between
the mirrors,

tZ
?(C2 —v) =1}
2o 415 QLyY?
2 —v? A1 — v
- 2Ly/c
1 - vz/c2 -2

But 2Lo/c is the time interval ty between ticks on the clock on the ground, as in
Eq. (1.1), and so

o
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Figure 1.5 A light-pulse clock in a spacecraft as seen by an observer on the ground. The mirrors are
parallel to the direction of motion of the spacecraft. The dial represents a conventional clock on the
ground.

to

Time dilation t= ﬁ (1.3)

Here is a reminder of what the symbols in Eq. (1.4) represent:

to = time interval on clock at rest relative to an observer = proper time
t = time interval on clock in motion relative to an observer

v = speed of relative motion

¢ = speed of light

Because the quantity V' 1 — v?/c? is always smaller than 1 for a moving object, t is
always greater than to. The moving clock in the spacecraft appears to tick at a slower
rate than the stationary one on the ground, as seen by an observer on the ground.

Exactly the same analysis holds for measurements of the clock on the ground by
the pilot of the spacecraft. To him, the light pulse of the ground clock follows a zigzag
path that requires a total time ¢ per round trip. His own clock, at rest in the spacecraft,
ticks at intervals of t,. He too finds that

to

V1 —v%c?

so the effect is reciprocal: every observer finds that clocks in motion relative to him
tick more slowly than clocks at rest relative to him.

Our discussion has been based on a somewhat unusual clock. Do the same conclusions
apply to ordinary clocks that use machinery—spring-controlled escapements, tuning
forks, vibrating quartz crystals, or whatever—to produce ticks at constant time intervals?
The answer must be yes, since if a mirror clock and a conventional clock in the space-
craft agree with each other on the ground but not when in flight, the disagreement
between then could be used to find the speed of the spacecraft independently of any
outside frame of reference—which contradicts the principle that all motion is relative.

t =

o
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The Ultimate Speed Limit

he earth and the other planets of the solar system seem to be natural products of the evolu-

tion of the sun. Since the sun is a rather ordinary star in other ways, it is not surprising that
other stars have been found to have planetary systems around them as well. Life developed here
on earth, and there is no known reason why it should not also have done so on some of these
planets. Can we expect ever to be able to visit them and meet our fellow citizens of the universe?
The trouble is that nearly all stars are very far away—thousands or millions of light-years away. (A
light-year, the distance light travels in a year, is 9.46 X 10" m.) But if we can build a spacecraft
whose speed is thousands or millions of times greater than the speed of light ¢, such distances
would not be an obstacle.

Alas, a simple argument based on Einstein’s postulates shows that nothing can move faster
than ¢. Suppose you are in a spacecraft traveling at a constant speed v relative to the earth that
is greater than c. As I watch from the earth, the lamps in the spacecraft suddenly go out. You
switch on a flashlight to find the fuse box at the front of the spacecraft and change the blown
fuse (Fig. 1.6a). The lamps go on again.

From the ground, though, I would see something quite different. To me, since your speed v
is greater than c, the light from your flashlight illuminates the back of the spacecraft (Fig. 1.6b).
I can only conclude that the laws of physics are different in your inertial frame from what they
are in my inertial frame—which contradicts the principle of relativity. The only way to avoid
this contradiction is to assume that nothing can move faster than the speed of light. This as-
sumption has been tested experimentally many times and has always been found to be correct.

The speed of light ¢ in relativity is always its value in free space of 3.00 X 10% m/s. In all ma-
terial media, such as air, water, or glass, light travels more slowly than this, and atomic particles
are able to move faster in such media than does light. When an electrically charged particle moves
through a transparent substance at a speed exceeding that of light in the substance, a cone of light
waves is emitted that corresponds to the bow wave produced by a ship moving through the water
faster than water waves do. These light waves are known as Cerenkov radiation and form the
basis of a method of determining the speeds of such particles. The minimum speed a particle must
have to emit Cerenkov radiation is ¢/n in a medium whose index of refraction is n. Cerenkov ra-
diation is visible as a bluish glow when an intense beam of particles is involved.

(@) (b)

Figure 1.6 A person switches on a flashlight in a spacecraft assumed to be moving relative to the earth
faster than light. (a) In the spacecraft frame, the light goes to the front of the spacecraft. (b) In the
earth frame, the light goes to the back of the spacecraft. Because observers in the spacecraft and on
the earth would see different events, the principle of relativity would be violated. The conclusion is
that the spacecraft cannot be moving faster than light relative to the earth (or relative to anything else).

o



bei48482 ch0l.gxd 1/15/02 1:21 AM Page 9

o

Relativity 9

Albert Einstein (1879-1955), bitterly
unhappy with the rigid discipline of
the schools of his native Germany,
went at sixteen to Switzerland to com-
plete his education, and later got a job
examining patent applications at the
i Swiss Patent Office. Then, in 1905,

ideas that had been germinating in his

mind for years when he should have
L been paying attention to other matters
(one of his math teachers called
Einstein a “lazy dog”) blossomed into
three short papers that were to change decisively the course not
only of physics but of modern civilization as well.

The first paper, on the photoelectric effect, proposed that light
has a dual character with both particle and wave properties. The
subject of the second paper was Brownian motion, the irregular
zigzag movement of tiny bits of suspended matter, such as pollen
grains in water. Einstein showed that Brownian motion results
from the bombardment of the particles by randomly moving mol-
ecules in the fluid in which they are suspended. This provided
the long-awaited definite link with experiment that convinced
the remaining doubters of the molecular theory of matter. The
third paper introduced the special theory of relativity.

Although much of the world of physics was originally either
indifferent or skeptical, even the most unexpected of Einstein’s
conclusions were soon confirmed and the development of what
is now called modern physics began in earnest. After university
posts in Switzerland and Czechoslovakia, in 1913 he took up an

e
1

(AIP Niels Bohr Library)

Example 1.1

appointment at the Kaiser Wilhelm Institute in Berlin that left him
able to do research free of financial worries and routine duties.
Einstein’s interest was now mainly in gravitation, and he started
where Newton had left off more than two centuries earlier.

Einstein’s general theory of relativity, published in 1916, re-
lated gravity to the structure of space and time. In this theory
the force of gravity can be thought of as arising from a warp-
ing of spacetime around a body of matter so that a nearby mass
tends to move toward it, much as a marble rolls toward the bot-
tom of a saucer-shaped hole. From general relativity came a
number of remarkable predictions, such as that light should be
subject to gravity, all of which were verified experimentally. The
later discovery that the universe is expanding fit neatly into the
theory. In 1917 Einstein introduced the idea of stimulated emis-
sion of radiation, an idea that bore fruit forty years later in the
invention of the laser.

The development of quantum mechanics in the 1920s dis-
turbed Einstein, who never accepted its probabilistic rather than
deterministic view of events on an atomic scale. “God does not
play dice with the world,” he said, but for once his physical in-
tuition seemed to be leading him in the wrong direction.

Einstein, by now a world celebrity, left Germany in 1933 af-
ter Hitler came to power and spent the rest of his life at the In-
stitute for Advanced Study in Princeton, New Jersey, thereby
escaping the fate of millions of other European Jews at the hands
of the Germans. His last years were spent in an unsuccessful
search for a theory that would bring gravitation and electro-
magnetism together into a single picture, a problem worthy of
his gifts but one that remains unsolved to this day.

A spacecraft is moving relative to the earth. An observer on the earth finds that, between 1 p.um.
and 2 p.m. according to her clock, 3601 s elapse on the spacecraft’s clock. What is the space-

crafts speed relative to the earth?

Solution

Here to = 3600 s is the proper time interval on the earth and t = 3601 s is the time interval in
the moving frame as measured from the earth. We proceed as follows:

to

t= —
1—v2/c2

o \2 . 3600 s \2
v=c [1—[—] =2.998 X 10°m/s) |1 —
t 3601 s

=7.1X10°m/s

Today’s spacecraft are much slower than this. For instance, the highest speed of the Apollo 11 space-
craft that went to the moon was only 10,840 m/s, and its clocks differed from those on the earth
by less than one part in 10°. Most of the experiments that have confirmed time dilation made use
of unstable nuclei and elementary particles which readily attain speeds not far from that of light.

o
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Apollo 11 lifts off its pad to begin the first human
visit to the moon. At its highest speed of 10.8 km/s
relative to the earth, its clocks differed from those on
the earth by less than one part in a billion.

Although time is a relative quantity, not all the notions of time formed by every-
day experience are incorrect. Time does not run backward to any observer, for in-
stance. A sequence of events that occur at some particular point at ty, t, ts, . . . will
appear in the same order to all observers everywhere, though not necessarily with the
same time intervals t; — t1, t; — t5, . . . between each pair of events. Similarly, no
distant observer, regardless of his or her state of motion, can see an event before it
happens—more precisely, before a nearby observer sees it—since the speed of light
is finite and signals require the minimum period of time L/c to travel a distance L.
There is no way to peer into the future, although past events may appear different to
different observers.

1.3 DOPPLER EFFECT

Why the universe is believed to be expanding

We are all familiar with the increase in pitch of a sound when its source approaches
us (or we approach the source) and the decrease in pitch when the source recedes from
us (or we recede from the source). These changes in frequency constitute the doppler
effect, whose origin is straightforward. For instance, successive waves emitted by a
source moving toward an observer are closer together than normal because of the
advance of the source; because the separation of the waves is the wavelength of the
sound, the corresponding frequency is higher. The relationship between the source
frequency v, and the observed frequency v is

o
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Doppler effect i
oppler ellect in V:VO<1 +v/c> 14

sound 1—V/c

where ¢ = speed of sound

v = speed of observer (+ for motion toward the source, — for motion away
from it)

V = speed of the source (+ for motion toward the observer, — for motion
away from him)

If the observer is stationary, v = 0, and if the source is stationary, V = 0.

The doppler effect in sound varies depending on whether the source, or the observer,
or both are moving. This appears to violate the principle of relativity: all that should
count is the relative motion of source and observer. But sound waves occur only in a
material medium such as air or water, and this medium is itself a frame of reference
with respect to which motions of source and observer are measurable. Hence there is
no contradiction. In the case of light, however, no medium is involved and only rela-
tive motion of source and observer is meaningful. The doppler effect in light must
therefore differ from that in sound.

We can analyze the doppler effect in light by considering a light source as a clock
that ticks v, times per second and emits a wave of light with each tick. We will examine
the three situations shown in Fig. 1.7.

1 Observer moving perpendicular to a line between him and the light source. The proper
time between ticks is t, = 1/vy, so between one tick and the next the time
t =t/ V1 — v’ elapses in the reference frame of the observer. The frequency he

finds is accordingly
V1 —v%e?

1
v(transverse) = — =
t to

Transverse
doppler effect v=v,V1—v?/’ (1.5)
in light

The observed frequency v is always lower than the source frequency vq.

2 Observer receding from the light source. Now the observer travels the distance vt away
from the source between ticks, which means that the light wave from a given tick takes

Observer

v
M w
1 ) 3)

Figure 1.7 The frequency of the light seen by an observer depends on the direction and speed of the
observer’s motion relative to its source.

o
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vt/c longer to reach him than the previous one. Hence the total time between the arrival
of successive waves is

vt 1+v/ V1+v/cV1+v/c [1+v/c
T=t+ — = to = to = to
c 1 —v?/c? V1+v/cV1—v/c 1 —v/c
and the observed frequency is

R S T & Sl /S § Sl 744
v(receding) = - AR =1 1+ v/c (1.6)

The observed frequency v is lower than the source frequency v,. Unlike the case of
sound waves, which propagate relative to a material medium it makes no difference
whether the observer is moving away from the source or the source is moving away
from the observer.

3 Observer approaching the light source. The observer here travels the distance vt toward
the source between ticks, so each light wave takes vt/c less time to arrive than the
previous one. In this case T = t — vt/c and the result is

1+U/C

1 —v/c (1.7)

v(approaching) = v,

A\4415.1 \4526.6
|

Spectra of the double star Mizar, which consists of two stars that circle their center of mass, taken
2 days apart. In a the stars are in line with no motion toward or away from the earth, so their
spectral lines are superimposed. In b one star is moving toward the earth and the other is mov-
ing away from the earth, so the spectral lines of the former are doppler-shifted toward the blue
end of the spectrum and those of the latter are shifted toward the red end.

The observed frequency is higher than the source frequency. Again, the same formula
holds for motion of the source toward the observer.
Equations (1.6) and (1.7) can be combined in the single formula

Longitudinal -y
doppler effect v =1, /ﬂ (1.8)
in light L —v/c

by adopting the convention that vis + for source and observer approaching each other
and — for source and observer receding from each other.

o
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Example 1.2

A driver is caught going through a red light. The driver claims to the judge that the color she
actually saw was green (v = 5.60 X 10'* Hz) and not red (v, = 4.80 X 10'* Hz) because of
the doppler effect. The judge accepts this explanation and instead fines her for speeding at the
rate of $1 for each km/h she exceeded the speed limit of 80 km/h. What was the fine?

Solution

Solving Eq. (1.8) for v gives

2 2
v-+ v5

2 _ .2 2 _ 2
v = c<7v Yo ) = (3.00 X 10° m/s)[—(j(so) (4.80) ]

(5.60)% + (4.80)?
=459 X 10" m/s = 1.65 X 10°® km/h

since 1 m/s = 3.6 km/h. The fine is therefore $(1.65 X 10 — 80) = $164,999,920.

Visible light consists of electromagnetic waves in a frequency band to which the eye
is sensitive. Other electromagnetic waves, such as those used in radar and in radio
communications, also exhibit the doppler effect in accord with Eq. (1.8). Doppler shifts
in radar waves are used by police to measure vehicle speeds, and doppler shifts in the
radio waves emitted by a set of earth satellites formed the basis of the highly accurate
Transit system of marine navigation.

The Expanding Universe

The doppler effect in light is an important tool in astronomy. Stars emit light of cer-
tain characteristic frequencies called spectral lines, and motion of a star toward or away
from the earth shows up as a doppler shift in these frequencies. The spectral lines of
distant galaxies of stars are all shifted toward the low-frequency (red) end of the
spectrum and hence are called “red shifts.” Such shifts indicate that the galaxies are re-
ceding from us and from one another. The speeds of recession are observed to be

Edwin Hubble (1889- At Mt. Wilson Observatory in California, Hubble made

1953) was born in Missouri
and, although always inter-
ested in astronomy, pursued
a variety of other subjects
as well at the University of
Chicago. He then went as a
Rhodes Scholar to Oxford
University in England where
he concentrated on law,
Spanish, and heavyweight
boxing. After two years of
teaching at an Indiana high
school, Hubble realized
what his true vocation was
and returned to the University of Chicago to study astronomy.

the first accurate measurements of the distances of spiral
galaxies which showed that they are far away in space from
our own Milky Way galaxy. It had been known for some time
that such galaxies have red shifts in their spectra that indi-
cate motion away from the Milky Way, and Hubble joined his
distance figures with the observed red shifts to conclude that
the recession speeds were proportional to distance. This im-
plies that the universe is expanding, a remarkable discovery
that has led to the modern picture of the universe. Hubble
was the first to use the 200-inch telescope, for many years
the world’s largest, at Mt. Palomar in California, in 1949. In
his later work Hubble tried to determine the structure of the
universe by finding how the concentration of remote galax-
ies varies with distance, a very difficult task that only today
is being accomplished.

o
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(a)

(b)

Figure 1.8 (a) Graph of recession speed versus distance for distant galaxies. The speed of recession
averages about 21 km/s per million light-years. (b) Two-dimensional analogy of the expanding uni-
verse. As the balloon is inflated, the spots on it become farther apart. A bug on the balloon would
find that the farther away a spot is from its location, the faster the spot seems to be moving away;
this is true no matter where the bug is. In the case of the universe, the more distant a galaxy is from
us, the faster it is moving away, which means that the universe is expanding uniformly.

proportional to distance, which suggests that the entire universe is expanding (Fig. 1.8).
This proportionality is called Hubble’s law.

The expansion apparently began about 13 billion years ago when a very small, in-
tensely hot mass of primeval matter exploded, an event usually called the Big Bang.
As described in Chap. 13, the matter soon turned into the electrons, protons, and neu-
trons of which the present universe is composed. Individual aggregates that formed
during the expansion became the galaxies of today. Present data suggest that the current
expansion will continue forever.

Example 1.3

A distant galaxy in the constellation Hydra is receding from the earth at 6.12 X 10" m/s. By
how much is a green spectral line of wavelength 500 nm (1 nm = 1077 m) emitted by this
galaxy shifted toward the red end of the spectrum?

o
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Solution

Since A = C/V and Ay = C/VO, from Eq. (1.6) we have

1+ v/
1 —v/

)\ZAO

Here v = 0.204¢ and Ao = 500 nm, so

1+ 0.204
A=500nm .| ———— =615nm
1 —0.204

which is in the orange part of the spectrum. The shiftisA — Ay = 115 nm. This galaxy is believed
to be 2.9 billion light-years away.

1.4 LENGTH CONTRACTION

Faster means shorter

Measurements of lengths as well as of time intervals are affected by relative motion.
The length L of an object in motion with respect to an observer always appears to the
observer to be shorter than its length Ly when it is at rest with respect to him. This
contraction occurs only in the direction of the relative motion. The length L, of an
object in its rest frame is called its proper length. (We note that in Fig. 1.5 the clock
is moving perpendicular to v, hence L = L, there.)

The length contraction can be derived in a number of ways. Perhaps the simplest
is based on time dilation and the principle of relativity. Let us consider what happens
to unstable particles called muons that are created at high altitudes by fast cosmic-ray
particles (largely protons) from space when they collide with atomic nuclei in the earth’s
atmosphere. A muon has a mass 207 times that of the electron and has a charge of
either +e or —e; it decays into an electron or a positron after an average lifetime of
22 us 22 X 107%%).

Cosmic-ray muons have speeds of about 2.994 X 108 m/s (0.998¢) and reach sea
level in profusion—one of them passes through each square centimeter of the earth’s
surface on the average slightly more often than once a minute. But in t5 = 2.2 us,
their average lifetime, muons can travel a distance of only

vty = (2.994 X 108 m/s)(2.2 X 107 °%s) = 6.6 X 10°m = 0.66 km

before decaying, whereas they are actually created at altitudes of 6 km or more.

To resolve the paradox, we note that the muon lifetime of ty = 2.2 us is what an
observer at rest with respect to a muon would find. Because the muons are hurtling
toward us at the considerable speed of 0.998¢, their lifetimes are extended in our frame
of reference by time dilation to

B to . 22X10 °%s
V1-v¥2  V1-(09980)%3

t = 348X 10"%s =348 us

The moving muons have lifetimes almost 16 times longer than those at rest. In a time
interval of 34.8 us, a muon whose speed is 0.998¢ can cover the distance

vt =(2.994 X 10®° m/s)(34.8 X 107 °s) = 1.04 X 10" m = 10.4 km

o
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As found by observer  As found by an observer

on the ground, the moving with the muon, the

muon altitude is L. ground is L below it, which is
a shorter distance than L.

Figure 1.9 Muon decay as seen by different observers. The muon size is greatly exaggerated here; in fact,
the muon seems likely to be a point particle with no extension in space.

Although its lifetime is only t, = 2.2 us in its own frame of reference, a muon can
reach the ground from altitudes of as much as 10.4 km because in the frame in which
these altitudes are measured, the muon lifetime is t = 34.8 us.

What if somebody were to accompany a muon in its descent at v = 0.998¢, so that
to him or her the muon is at rest? The observer and the muon are now in the same
frame of reference, and in this frame the muons lifetime is only 2.2 us. To the observer,
the muon can travel only 0.66 km before decaying. The only way to account for the
arrival of the muon at ground level is if the distance it travels, from the point of view
of an observer in the moving frame, is shortened by virtue of its motion (Fig. 1.9). The
principle of relativity tells us the extent of the shortening—it must be by the same

factor of V'1 — v%c? that the muon lifetime is extended from the point of view of a
stationary observer.

We therefore conclude that an altitude we on the ground find to be hy, must appear
in the muon’s frame of reference as the lower altitude

h=ho V1 —v%?
In our frame of reference the muon can travel hy = 10.4 km because of time dilation.

In the muon’s frame of reference, where there is no time dilation, this distance is
abbreviated to

o
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Figure 1.10 Relativistic length contraction. Only lengths in the direction of motion are affected. The
horizontal scale is logarithmic.

h=(10.4 km) V1 — (0.998¢)%/c*> = 0.66 km

As we know, a muon traveling at 0.998¢ goes this far in 2.2 us.
The relativistic shortening of distances is an example of the general contraction of
lengths in the direction of motion:

L h
enst L=L,V1—v?/? (1.9

contraction

Figure 1.10 is a graph of L/L, versus v/c. Clearly the length contraction is most
significant at speeds near that of light. A speed of 1000 km/s seems fast to us, but it
only results in a shortening in the direction of motion to 99.9994 percent of the proper
length of an object moving at this speed. On the other hand, something traveling at
nine-tenths the speed of light is shortened to 44 percent of its proper length, a
significant change.

Like time dilation, the length contraction is a reciprocal effect. To a person in a
spacecralt, objects on the earth appear shorter than they did when he or she was on
the ground by the same factor of V'1 — v*/c* that the spacecraft appears shorter to
somebody at rest. The proper length L, found in the rest frame is the maximum length
any observer will measure. As mentioned earlier, only lengths in the direction of motion
undergo contraction. Thus to an outside observer a spacecraft is shorter in flight than
on the ground, but it is not narrower.

1.5 TWIN PARADOX

A longer life, but it will not seem longer
We are now in a position to understand the famous relativistic effect known as the
twin paradox. This paradox involves two identical clocks, one of which remains on

the earth while the other is taken on a voyage into space at the speed v and eventu-
ally is brought back. It is customary to replace the clocks with the pair of twins Dick and

o
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Jane, a substitution that is perfectly acceptable because the processes of life—heartbeats,
respiration, and so on—constitute biological clocks of reasonable regularity.

Dick is 20 y old when he takes off on a space voyage at a speed of 0.80c to a star
20 light-years away. To Jane, who stays behind, the pace of Dick’s life is slower than
hers by a factor of

V1 =12/ =V1 - (0800%3 = 0.60 = 60%

To Jane, Dick’s heart beats only 3 times for every 5 beats of her heart; Dick takes only
3 breaths for every 5 of hers; Dick thinks only 3 thoughts for every 5 of hers. Finally
Dick returns after 50 years have gone by according to Jane’s calendar, but to Dick the
trip has taken only 30 y. Dick is therefore 50 y old whereas Jane, the twin who stayed
home, is 70 y old (Fig. 1.11).

Where is the paradox? If we consider the situation from the point of view of Dick
in the spacecraft, Jane on the earth is in motion relative to him at a speed of 0.80c.
Should not Jane then be 50 y old when the spacecraft returns, while Dick is then
70—the precise opposite of what was concluded above?

But the two situations are not equivalent. Dick changed from one inertial frame to
a different one when he started out, when he reversed direction to head home, and
when he landed on the earth. Jane, however, remained in the same inertial frame dur-
ing Dick’s whole voyage. The time dilation formula applies to Jane’s observations of
Dick, but not to Dick’s observations of her.

To look at Dick’s voyage from his perspective, we must take into account that the
distance L he covers is shortened to

L=L,V1-—v%* =0 light-years) V' 1 — (0.800)%/c* = 12 light-years

To Dick, time goes by at the usual rate, but his voyage to the star has taken L/v = 15y
and his return voyage another 15y, for a total of 30 y. Of course, Dick’s life span has

O
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Figure 1.11 An astronaut who returns from a space voyage will be younger than his or her twin who
remains on earth. Speeds close to the speed of light (here v = 0.8¢) are needed for this effect to be
conspicuous.
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not been extended to him, because regardless of Janes 50-y wait, he has spent only
30 y on the roundtrip.

The nonsymmetric aging of the twins has been verified by experiments in which
accurate clocks were taken on an airplane trip around the world and then compared
with identical clocks that had been left behind. An observer who departs from an in-
ertial system and then returns after moving relative to that system will always find his
or her clocks slow compared with clocks that stayed in the system.

Example 1.4

Dick and Jane each send out a radio signal once a year while Dick is away. How many signals
does Dick receive? How many does Jane receive?

Solution

On the outward trip, Dick and Jane are being separated at a rate of 0.80c. With the help of the
reasoning used to analyze the doppler effect in Sec. 1.3, we find that each twin receives signals

S 1+v/c_(1> l-i-OASO_3
PTRN T =y T YN 1080 7Y
apart. On the return trip, Dick and Jane are getting closer together at the same rate, and each
receives signals more frequently, namely

S l—v/ci(1> 1-080 1
2Ty Ty Y YN T1v0s80 3
apart.

To Dick, the trip to the star takes 15 y, and he receives 15/3 = 5 signals from Jane. During
the 15 y of the return trip, Dick receives 15/(1/3) = 45 signals from Jane, for a total of 50 sig-
nals. Dick therefore concludes that Jane has aged by 50 y in his absence. Both Dick and Jane
agree that Jane is 70 y old at the end of the voyage.

To Jane, Dick needs Lo /v = 25y for the outward trip. Because the star is 20 light-years away.
Jane on the earth continues to receive Dick’s signals at the original rate of one every 3 y for 20 y
after Dick has arrived at the star. Hence Jane receives signals every 3y for 25y + 20y =45y
to give a total of 45/3 = 15 signals. (These are the 15 signals Dick sent out on the outward
trip.) Then, for the remaining 5 y of what is to Jane a 50-y voyage, signals arrive from Dick at
the shorter intervals of 1/3 y for an additional 5/(1/3) = 15 signals. Jane thus receives 30 sig-
nals in all and concludes that Dick has aged by 30 y during the time he was away—which agrees
with Dicks own figure. Dick is indeed 20 y younger than his twin Jane on his return.

1.6 ELECTRICITY AND MAGNETISM
Relativity is the bridge

One of the puzzles that set Einstein on the trail of special relativity was the connec-
tion between electricity and magnetism, and the ability of his theory to clarify the na-
ture of this connection is one of its triumphs.

Because the moving charges (usually electrons) whose interactions give rise to many
of the magnetic forces familiar to us have speeds far smaller than ¢, it is not obvious
that the operation of an electric motor, say, is based on a relativistic effect. The idea
becomes less implausible, however, when we reflect on the strength of electric forces.
The electric attraction between the electron and proton in a hydrogen atom, for instance,
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is 10°° times greater than the gravitational attraction between them. Thus even a small
change in the character of these forces due to relative motion, which is what magnetic
forces represent, may have large consequences. Furthermore, although the effective
speed of an individual electron in a current-carrying wire (<1 mmy/s) is less than that
of a tired caterpillar, there may be 10*° or more moving electrons per centimeter in
such a wire, so the total effect may be considerable.

Although the full story of how relativity links electricity and magnetism is mathe-
matically complex, some aspects of it are easy to appreciate. An example is the origin
of the magnetic force between two parallel currents. An important point is that, like
the speed of light,

Electric charge is relativistically invariant.

A charge whose magnitude is found to be Q in one frame of reference is also Q in all
other frames.

Let us look at the two idealized conductors shown in Fig. 1.12a. They contain equal
numbers of positive and negative charges at rest that are equally spaced. Because the
conductors are electrically neutral, there is no force between them.

Figure 1.12b shows the same conductors when they carry currents i; and iy in the
same direction. The positive charges move to the right and the negative charges move to
the left, both at the same speed v as seen from the laboratory frame of reference. (Actual
currents in metals consist of flows of negative electrons only, of course, but the electri-
cally equivalent model here is easier to analyze and the results are the same.) Because

the charges are moving, their spacing is smaller than before by the factor V'1 — v%/c*.
Since v is the same for both sets of charges, their spacings shrink by the same amounts,
and both conductors remain neutral to an observer in the laboratory. However, the con-
ductors now attract each other. Why?

Let us look at conductor II from the frame of reference of one of the negative
charges in conductor 1. Because the negative charges in Il appear at rest in this frame,
their spacing is not contracted, as in Fig. 1.12¢. On the other hand, the positive charges
in II now have the velocity 2v, and their spacing is accordingly contracted to a greater
extent than they are in the laboratory frame. Conductor II therefore appears to have
a net positive charge, and an attractive force acts on the negative charge in I.

Next we look at conductor II from the frame of reference of one of the positive
charges in conductor 1. The positive charges in Il are now at rest, and the negative
charges there move to the left at the speed 2v. Hence the negative charges are closer
together than the positive ones, as in Fig. 1.12d, and the entire conductor appears neg-
atively charged. An attractive force therefore acts on the positive charges in L.

Identical arguments show that the negative and positive charges in Il are attracted
to I. Thus all the charges in each conductor experience forces directed toward the other
conductor. To each charge, the force on it is an “ordinary” electric force that arises be-
cause the charges of opposite sign in the other conductor are closer together than
the charges of the same sign, so the other conductor appears to have a net charge.
From the laboratory frame the situation is less straightforward. Both conductors are
electrically neutral in this frame, and it is natural to explain their mutual attraction by
attributing it to a special “magnetic” interaction between the currents.

A similar analysis explains the repulsive force between parallel conductors that carry
currents in opposite directions. Although it is convenient to think of magnetic forces
as being different from electric ones, they both result from a single electromagnetic in-
teraction that occurs between charged particles.

Clearly a current-carrying conductor that is electrically neutral in one frame of
reference might not be neutral in another frame. How can this observation be reconciled
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Figure 1.12 How the magnetic attraction between parallel currents arises. (a) Idealized parallel con-
ductors that contain equal numbers of positive and negative charges. (b) When the conductors carry
currents, the spacing of their moving charges undergoes a relativistic contraction as seen from the lab-
oratory. The conductors attract each other when i; and iy are in the same direction. (¢) As seen by a
negative charge in I, the negative charges in II are at rest whereas the positive charges are in motion.
The contracted spacing of the latter leads to a net positive charge in II that attracts the negative charge
in I. (d) As seen by a positive charges in I, the positive charges in II are at rest whereas the negative
charges are in motion. The contracted spacing of the latter leads to a net negative charge on II that
attrats the positive charge in I. The contracted spacings in b, ¢, and d are greatly exaggerated.

with charge invariance? The answer is that we must consider the entire circuit of which
the conductor is a part. Because the circuit must be closed for a current to occur in it,
for every current element in one direction that a moving observer finds to have, say, a
positive charge, there must be another current element in the opposite direction which
the same observer finds to have a negative charge. Hence magnetic forces always act
between different parts of the same circuit, even though the circuit as a whole appears
electrically neutral to all observers.

The preceding discussion considered only a particular magnetic effect. All other
magnetic phenomena can also be interpreted on the basis of Coulomb’ law, charge in-
variance, and special relativity, although the analysis is usually more complicated.
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1.7 RELATIVISTIC MOMENTUM

Redefining an important quantity

In classical mechanics linear momentum p = mv is a useful quantity because it is con-
served in a system of particles not acted upon by outside forces. When an event such
as a collision or an explosion occurs inside an isolated system, the vector sum of the
momenta of its particles before the event is equal to their vector sum afterward. We
now have to ask whether p = mv is valid as the definition of momentum in inertial
frames in relative motion, and if not, what a relativistically correct definition is.

To start with, we require that p be conserved in a collision for all observers in rel-
ative motion at constant velocity. Also, we know that p = mv holds in classical
mechanics, that is, for v << ¢. Whatever the relativistically correct p is, then, it must
reduce to mv for such velocities.

Let us consider an elastic collision (that is, a collision in which kinetic energy is
conserved) between two particles A and B, as witnessed by observers in the reference
frames S and S’ which are in uniform relative motion. The properties of A and B are
identical when determined in reference frames in which they are at rest. The frames S
and S’ are oriented as in Fig. 1.13, with S" moving in the +x direction with respect
to S at the velocity v.

Before the collision, particle A had been at rest in frame S and particle B in frame
S’. Then, at the same instant, A was thrown in the +y direction at the speed V, while
B was thrown in the —y’ direction at the speed V3, where

Va= Vg (1.10)

Hence the behavior of A as seen from S is exactly the same as the behavior of B as seen
from S'.

When the two patrticles collide, A rebounds in the —y direction at the speed Vj,
while B rebounds in the +y’ direction at the speed Vj. If the particles are thrown from
positions Y apart, an observer in S finds that the collision occurs at y = 7Y and one in
S’ finds that it occurs at y' = y = 3Y. The round-trip time T, for A as measured in
frame S is therefore

Ty = V—i (1.1D)
and it is the same for B in S":
Ty = r
Vi
In S the speed V3 is found from
Y
Ve= (1.12)

where T is the time required for B to make its round trip as measured in S. In S', however,
B trip requires the time T, where

To

T Ne e
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Figure 1.13 An elastic collision as observed in two different frames of reference. The balls are initially
Y apart, which is the same distance in both frames since S" moves only in the x direction.

according to our previous results. Although observers in both frames see the same
event, they disagree about the length of time the particle thrown from the other frame
requires to make the collision and return.

Replacing T in Eq. (1.12) with its equivalent in terms of T,, we have

Y V1 —v?/c?

To

VB =

o
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From Eq. (1.11), Vy= —
To

If we use the classical definition of momentum, p = mv, then in frame S

Y
pa = maVy = my T_
0

Y
pp=mgVg=mg V1 — vz/cz<—)
Ty

This means that, in this frame, momentum will not be conserved if my = mg, where
my4 and my are the masses as measured in S. However, if

my
Mg = ————— (1.149)
1 — v

then momentum will be conserved.

In the collision of Fig. 1.13 both A and B are moving in both frames. Suppose now
that V4 and Vj are very small compared with v, the relative velocity of the two frames.
In this case an observer in S will see B approach A with the velocity v, make a glanc-
ing collision (since Vi << v), and then continue on. In the limit of V,, = 0, if m is the
mass in S of A when A is at rest, then my, = m. In the limit of V; = 0, if m(v) is the
mass in S of B, which is moving at the velocity v, then my = m(v). Hence Eq. (1.14)
becomes

W) = ———
mw) = 1.15
1 - 1)2/62 ( )

We can see that if linear momentum is defined as

Relativistic mv

P (1.16)

momentum
1 - vz/ 2

then conservation of momentum is valid in special relativity. When v << ¢, Eq. (1.16)
becomes just p = mv, the classical momentum, as required. Equation (1.16) is often
written as

Relativistic p=ymv (1.17)
momentum
where
1
T — (1.18)
1 - vz/c2

In this definition, m is the proper mass (or rest mass) of an object, its mass when
measured at rest relative to an observer. (The symbol 7y is the Greek letter gamma.)
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“Relativistic Mass”

W e could alternatively regard the increase in an object’s momentum over the classical value
as being due to an increase in the object’s mass. Then we would call my = m the rest
mass of the object and m = m(v) from Eq. (1.17) its relativistic mass, its mass when moving rel-
ative to an observer, so that p = mv. This is the view often taken in the past, at one time even
by Einstein. However, as Einstein later wrote, the idea of relativistic mass is “not good” because
“no clear definition can be given. It is better to introduce no other mass concept than the ‘rest
mass’ m.” In this book the term mass and the symbol m will always refer to proper (or rest)
mass, which will be considered relativistically invariant.

Figure 1.14 shows how p varies with v/c for both ymv and mv. When v/c is small,
mv and ymv are very nearly the same. (For v = 0.01c, the difference is only 0.005
percent; for v = 0.1¢, it is 0.5 percent, still small). As v approaches ¢, however, the
curve for ymu rises more and more steeply (for v = 0.9¢, the difference is 229 percent).
Ifv=c¢, p = ymv = o, which is impossible. We conclude that no material object can
travel as fast as light.

But what if a spacecraft moving at v; = 0.5¢ relative to the earth fires a projectile
at v, = 0.5¢ in the same direction? We on earth might expect to observe the projec-
tile’s speed as vy + v, = ¢. Actually, as discussed in Appendix I to this chapter, velocity
addition in relativity is not so simple a process, and we would find the projectile’s speed
to be only 0.8¢ in such a case.

Relativistic Second Law
In relativity Newton’s second law of motion is given by

Relativistic _dp d
second law F= d dt (ymv) (1.19)

This is more complicated than the classical formula F = ma because v is a function
of v. When v < ¢, vy is very nearly equal to 1, and F is very nearly equal to mv, as it
should be.

4me —
S o
g 3mcr Relativistic momentum
jm?
2 ymv
g
% 2me
E
—
<
(9]
£ mcH
—

| Classiclal mom?mum rrILv

0 0.2 0.4 0.6 0.8 1.0
Velocity ratio v/c

Figure 1.14 The momentum of an object moving at the velocity v relative to an observer. The mass
m of the object is its value when it is at rest relative to the observer. The object's velocity can never
reach ¢ because its momentum would then be infinite, which is impossible. The relativistic momen-
tum ymv is always correct; the classical momentum mv is valid for velocities much smaller than c.
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Example 1.5

Find the acceleration of a particle of mass m and velocity v when it is acted upon by the con-
stant force F, where F is parallel to v.

Solution

From Eq. (1.19), since a = dv/dt,

d d v
F=— — S
i 0m =i )
1 " v/ dv
m v
[ 1 -2 (1= v¥)? ] dt
ma
(a1- v2/52)3/2

We note that F is equal to yma, not to yma. Merely replacing m by ym in classical formulas
does not always give a relativistically correct result.
The acceleration of the patrticle is therefore

F
a=—(1 -
m

Even though the force is constant, the acceleration of the particle decreases as its velocity in-
creases. As v— ¢, a— 0, so the particle can never reach the speed of light, a conclusion we
expect.

1.8 MASS AND ENERGY

Where E, = mc* comes from

The most famous relationship Einstein obtained from the postulates of special
relativity—how powerful they turn out to bel—concerns mass and energy. Let us see
how this relationship can be derived from what we already know.

As we recall from elementary physics, the work W done on an object by a con-
stant force of magnitude F that acts through the distance s, where F is in the same
direction as s, is given by W = Fs. If no other forces act on the object and the ob-
ject starts from rest, all the work done on it becomes kinetic energy KE, so KE = Fs.
In the general case where F need not be constant, the formula for kinetic energy is
the integral

KE:des
0

In nonrelativistic physics, the kinetic energy of an object of mass m and speed v is
KE = +mv?. To find the correct relativistic formula for KE we start from the relativistic
form of the second law of motion, Eq. (1.19), which gives

KE = f dlymv) ds = fomvv d(ymv) = fovv d(*mv )

o dt VAl — v
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Integrating by parts (f xdy = xy — [ y dx),
mu? v v dv
KE= ————=——-m f
1 — UZ/CZ 0 1 — ‘UZ/CZ
2
mv v
= + [mc2 V1- vz/cz]
1 — v 0
2
me
= — mc?
1 - vz/c2
Kinetic energy KE = ymc®> — mc> = (y — Dmc? (1.20)

This result states that the kinetic energy of an object is equal to the difference between
ymc? and mc”. Equation (1.20) may be written

Total energy E = ymc* = mc* + KE (1.21)

If we interpret ymc” as the total energy E of the object, we see that when it is at rest
and KE = 0, it nevertheless possesses the energy mc®. Accordingly mc” is called the
rest energy E, of something whose mass is m. We therefore have

E = F, + KE
where
Rest energy Eo = mc® (1.22)
If the object is moving, its total energy is
mc*

Total energy E= 'ymc2 = T (1.23)
1 —v/

Example 1.6

A stationary body explodes into two fragments each of mass 1.0 kg that move apart at speeds
of 0.6¢ relative to the original body. Find the mass of the original body.

Solution

The rest energy of the original body must equal the sum of the total energies of the fragments. Hence

2 2
msc msC

+
\/1 —vi/c? \/1 —v3/c?

2 2 2
Eo = mc™ = ymyc™ + ymyc™ =

and

2)(1.0 k
no B _QUOK

c V1 - (0.60)*

Since mass and energy are not independent entities, their separate conservation prin-
ciples are properly a single one—the principle of conservation of mass energy. Mass
can be created or destroyed, but when this happens, an equivalent amount of energy
simultaneously vanishes or comes into being, and vice versa. Mass and energy are dif-
ferent aspects of the same thing.
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It is worth emphasizing the difference between a conserved quantity, such as total
energy, and an invariant quantity, such as proper mass. Conservation of E means that,
in a given reference frame, the total energy of some isolated system remains the same
regardless of what events occur in the system. However, the total energy may be dif-
ferent as measured from another frame. On the other hand, the invariance of m means
that m has the same value in all inertial frames.

The conversion factor between the unit of mass (the kilogram, kg) and the unit of
energy (the joule, J) is ¢*, so 1 kg of matter—the mass of this book is about that—has
an energy content of me*> = (1 kg)(3 X 10° m/s)* = 9 X 10'° J. This is enough to
send a payload of a million tons to the moon. How is it possible for so much energy
to be bottled up in even a modest amount of matter without anybody having been
aware of it until Einstein’s work?

In fact, processes in which rest energy is liberated are very familiar. It is simply that
we do not usually think of them in such terms. In every chemical reaction that evolves
energy, a certain amount of matter disappears, but the lost mass is so small a fraction
of the total mass of the reacting substances that it is imperceptible. Hence the “law” of
conservation of mass in chemistry. For instance, only about 6 X 107'" kg of matter
vanishes when 1 kg of dynamite explodes, which is impossible to measure directly, but
the more than 5 million joules of energy that is released is hard to avoid noticing.

Example 1.7

Solar energy reaches the earth at the rate of about 1.4 kW per square meter of surface perpen-
dicular to the direction of the sun (Fig. 1.15). By how much does the mass of the sun decrease
per second owing to this energy loss? The mean radius of the earth’s orbit is 1.5 X 10! m.

Solar

Figure 1.15

Solution

The surface area of a sphere of radius ris A = 4arr>. The total power radiated by the sun, which
is equal to the power received by a sphere whose radius is that of the earth’s orbit, is therefore
p p 2 3 2 11 2 26
p= XA = " “@mr?) = (1.4 X 10° WmH(@m)(1.5 X 107" m)* = 4.0 X 107 W

Thus the sun loses E, = 4.0 X 10%°J of rest energy per second, which means that the sun’s rest
mass decreases by

Eo 4.0 X 10%°] 0

m=—2 == —44x%x10°k

& T (3.0 X 10° m/s)? &
per second. Since the sun’s mass is 2.0 X 10°° kg, it is in no immediate danger of running out
of matter. The chief energy-producing process in the sun and most other stars is the conversion
of hydrogen to helium in its interior. The formation of each helium nucleus is accompanied by
the release of 4.0 X 10" J of energy, so 10°” helium nuclei are produced in the sun per second.
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Kinetic Energy at Low Speeds

When the relative speed v is small compared with ¢, the formula for kinetic energy
must reduce to the familiar Jmv?, which has been verified by experiment at such speeds.
Let us see if this is true. The relativistic formula for kinetic energy is

2
Kinetic 2 2 me 2
KE =ymc® — mc" =—F—= — mc (1.20)
energy V1-—- vz/c2

Since v%/c*> << 1, we can use the binomial approximation (1 + x)" = 1 + nx, valid
for |x] < 1, to obtain

1 2
z1+lv_2 v ¢
1 —v¥e? 2 ¢
Thus we have the result
1o\ , 1
KE=(1l+ —— |mc” — mc" = —mv v<<¢
2 c 2

At low speeds the relativistic expression for the kinetic energy of a moving object
does indeed reduce to the classical one. So far as is known, the correct formulation of
mechanics has its basis in relativity, with classical mechanics representing an approxi-
mation that is valid only when v << ¢. Figure 1.16 shows how the kinetic energy of

1.4

1.2

KE = ymc? — mc?

KE =1mp2
1.0

0.8

KE /mc2

0.6

0.4

0.2

0
0 02 04 06 08 10 12 14 16
v/c

Figure 1.16 A comparison between the classical and relativistic formulas for the ratio between kinetic
energy KE of a moving body and its rest energy mc. At low speeds the two formulas give the same
result, but they diverge at speeds approaching that of light. According to relativistic mechanics, a body
would need an infinite kinetic energy to travel with the speed of light, whereas in classical mechan-
ics it would need only a kinetic energy of half its rest energy to have this speed.
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a moving object varies with its speed according to both classical and relativistic
mechanics.

The degree of accuracy required is what determines whether it is more appropri-
ate to use the classical or to use the relativistic formulas for kinetic energy. For in-
stance, when v = 107 m/s (0.033¢), the formula %mv2 understates the true kinetic
energy by only 0.08 percent; when v = 3 X 10" m/s (0.1¢), it understates the true
kinetic energy by 0.8 percent; but when v = 1.5 X 10® m/s (0.5¢), the understate-
ment is a significant 19 percent; and when v = 0.999¢, the understatement is a whop-
ping 4300 percent. Since 10" m/s is about 6310 mi/s, the nonrelativistic formula
!mv? is entirely satisfactory for finding the kinetic energies of ordinary objects, and
it fails only at the extremely high speeds reached by elementary particles under cer-
tain circumstances.

1.9 ENERGY AND MOMENTUM

How they fit together in relativity

Total energy and momentum are conserved in an isolated system, and the rest energy
of a particle is invariant. Hence these quantities are in some sense more fundamental
than velocity or kinetic energy, which are neither. Let us look into how the total en-
ergy, rest energy, and momentum of a particle are related.

We begin with Eq. (1.23) for total energy,

mc
Total energy E= T (1.23)
1 —v/c

and square it to give

2 m2c?t
1 —v?/c?
From Eq. (1.17) for momentum,
M o (1.17)
omentum p= —F— .
1 - vz/c2
we find that
55 m*v’c?

Now we subtract p°c® from E*:

B 22— m’ct —mv’?  m’c*(1 - ved)
pe 1 — v 1 — v
= (mc?)?
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Hence
Energy and E? = (m)? + pc (1.24)
momentum

which is the formula we want. We note that, because mc? is invariant, so is E> — pzczz

this quantity for a particle has the same value in all frames of reference.

For a system of particles rather than a single particle, Eq. (1.24) holds provided
that the rest energy mc>—and hence mass m—is that of the entire system. If the
particles in the system are moving with respect to one another, the sum of their
individual rest energies may not equal the rest energy of the system. We saw this in
Example 1.7 when a stationary body of mass 2.5 kg exploded into two smaller bodies,
each of mass 1.0 kg, that then moved apart. If we were inside the system, we would
interpret the difference of 0.5 kg of mass as representing its conversion into kinetic
energy of the smaller bodies. But seen as a whole, the system is at rest both before
and after the explosion, so the system did not gain kinetic energy. Therefore the rest
energy of the system includes the kinetic energies of its internal motions and it cor-
responds to a mass of 2.5 kg both before and after the explosion.

In a given situation, the rest energy of an isolated system may be greater than, the
same as, or less than the sum of the rest energies of its members. An important case
in which the system rest energy is less than the rest energies of its members is that of
a system of particles held together by attractive forces, such as the neutrons and pro-
tons in an atomic nucleus. The rest energy of a nucleus (except that of ordinary
hydrogen, which is a single proton) is less than the total of the rest energies of its
constituent particles. The difference is called the binding energy of the nucleus. To break
a nucleus up completely calls for an amount of energy at least equal to its binding
energy. This topic will be explored in detail in Sec. 11.4. For the moment it is inter-
esting to note how large nuclear binding energies are—nearly 10'* kJ per kg of
nuclear matter is typical. By comparison, the binding energy of water molecules in lig-
uid water is only 2260 kJ/kg; this is the energy needed to turn 1 kg of water at 100°C
to steam at the same temperature.

Massless Particles

Can a massless particle exist? To be more precise, can a particle exist which has no rest
mass but which nevertheless exhibits such particlelike properties as energy and mo-
mentum? In classical mechanics, a particle must have rest mass in order to have en-
ergy and momentum, but in relativistic mechanics this requirement does not hold.

From Egs. (1.17) and (1.23), when m = 0 and v <<, it is clear that E = p = 0.
A massless particle with a speed less than that of light can have neither energy nor mo-
mentum. However, when m = 0 and v = ¢, E = 0/0 and p = 0/0, which are inde-
terminate: E and p can have any values. Thus Eqs. (1.17) and (1.23) are consistent
with the existence of massless particles that possess energy and momentum provided
that they travel with the speed of light.

Equation (1.24) gives us the relationship between E and p for a particle with m = 0:

Massless particle E=pc (1.25)

The conclusion is not that massless particles necessarily occur, only that the laws
of physics do not exclude the possibility as long as v = ¢ and E = pc for them. In fact,
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a massless particle—the photon—indeed exists and its behavior is as expected, as we
shall find in Chap. 2.

Electronvolts

In atomic physics the usual unit of energy is the electronvolt (eV), where 1 eV is the
energy gained by an electron accelerated through a potential difference of 1 volt. Since
W =9V,

1eV=(1.602 X 10" C)(1.000 V) = 1.602 X 10~ ']

Two quantities normally expressed in electronvolts are the ionization energy of an atom
(the work needed to remove one of its electrons) and the binding energy of a mole-
cule (the energy needed to break it apart into separate atoms). Thus the ionization
energy of nitrogen is 14.5 eV and the binding energy of the hydrogen molecule H, is
4.5 eV. Higher energies in the atomic realm are expressed in kiloelectronvolts (keV),
where 1 keV = 10° eV.

In nuclear and elementary-particle physics even the keV is too small a unit in most
cases, and the megaelectronvolt (MeV) and gigaelectronvolt (GeV) are more appro-
priate, where

1 MeV = 10%eV 1 GeV = 10 eV

An example of a quantity expressed in MeV is the energy liberated when the nucleus
of a certain type of uranium atom splits into two parts. Each such fission event releases
about 200 MeV; this is the process that powers nuclear reactors and weapons.

The rest energies of elementary particles are often expressed in MeV and GeV and
the corresponding rest masses in MeV/c* and GeV/c>. The advantage of the latter units
is that the rest energy equivalent to a rest mass of, say, 0.938 GeV/c* (the rest mass of
the proton) is just Ey = mc> = 0.938 GeV. If the proton’ kinetic energy is 5.000 GeV,
finding its total energy is simple:

E = Ey + KE = (0.938 + 5.000) GeV = 5.938 GeV

In a similar way the MeV/c and GeV/c are sometimes convenient units of linear mo-
mentum. Suppose we want to know the momentum of a proton whose speed is 0.800c.
From Eq. (1.17) we have

mv (0.938 GeV/c*)(0.8000)
p = =
1 — v%c? V1 — (0.8000)%/c*
0.750 GeV/c
= ———— =125 GeV/
0.600

Example 1.8

An electron (m = 0.511 MeV/c?) and a photon (m = 0) both have momenta of 2.000 MeV/c.
Find the total energy of each.
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Solution

(@) From Eq. (1.24) the electron’s total energy is

E=Vm+ Pt = V(0511 MeV/c?)?c* + (2.000 MeV/e)*c>
= V(0,511 MeV)? + (2.000 MeV)? = 2.064 MeV

(b) From Eq. (1.25) the photon’s total energy is

E = pc = (2.000 MeV/c)c = 2.000 MeV

1.10 GENERAL RELATIVITY

Gravity is a warping of spacetime

Special relativity is concerned only with inertial frames of reference, that is, frames that

are not accelerated. Einsteins 1916 general theory of relativity goes further by in-

cluding the effects of accelerations on what we observe. Its essential conclusion is that

the force of gravity arises from a warping of spacetime around a body of matter

(Fig. 1.17). As a result, an object moving through such a region of space in general

follows a curved path rather than a straight one, and may even be trapped there.
The principle of equivalence is central to general relativity:

An observer in a closed laboratory cannot distinguish between the effects pro-
duced by a gravitational field and those produced by an acceleration of the
laboratory.

This principle follows from the experimental observation (to better than 1 part in 10*?)
that the inertial mass of an object, which governs the object’s acceleration when a force
acts on it, is always equal to its gravitational mass, which governs the gravitational
force another object exerts on it. (The two masses are actually proportional; the con-
stant of proportionality is set equal to 1 by an appropriate choice of the constant of
gravitation G.)

Figure 1.17 General relativity pictures gravity as a warping of spacetime due to the presence of a body
of matter. An object nearby experiences an attractive force as a result of this distortion, much as a
marble rolls toward the bottom of a depression in a rubber sheet. To paraphrase J. A. Wheeler, space-
time tells mass how to move, and mass tells spacetime how to curve.
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Laboratory in Accelerated laboratory
gravitational field

Figure 1.18 According to the principle of equivalence, events that take place in an accelerated
laboratory cannot be distinguished from those which take place in a gravitational field. Hence the
deflection of a light beam relative to an observer in an accelerated laboratory means that light must
be similarly deflected in a gravitational field.

Gravity and Light

It follows from the principle of equivalence that light should be subject to gravity. If a
light beam is directed across an accelerated laboratory, as in Fig. 1.18, its path relative
to the laboratory will be curved. This means that, if the light beam is subject to the
gravitational field to which the laboratory’s acceleration is equivalent, the beam would
follow the same curved path.

According to general relativity, light rays that graze the sun should have their paths
bent toward it by 0.005°—the diameter of a dime seen from a mile away. This pre-
diction was first confirmed in 1919 by photographs of stars that appeared in the sky
near the sun during an eclipse, when they could be seen because the sun’s disk was
covered by the moon. The photographs were then compared with other photographs
of the same part of the sky taken when the sun was in a distant part of the sky (Fig. 1.19).
Einstein became a world celebrity as a result.

Because light is deflected in a gravitational field, a dense concentration of mass—
such as a galaxy of stars—can act as a lens to produce multiple images of a distant
light source located behind it (Fig. 1.20). A quasar, the nucleus of a young galaxy,
is brighter than 100 billion stars but is no larger than the solar system. The first
observation of gravitational lensing was the discovery in 1979 of what seemed to
be a pair of nearby quasars but was actually a single one whose light was deviated
by an intervening massive object. Since then a number of other gravitational lenses
have been found; the effect occurs in radio waves from distant sources as well as in
light waves.

The interaction between gravity and light also gives rise to the gravitational red shift
and to black holes, topics that are considered in Chap. 2.
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Figure 1.19 Starlight passing near the sun is deflected by its strong gravitational field. The deflection
can be measured during a solar eclipse when the sun’s disk is obscured by the moon.
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Figure 1.20 A gravitational lens. Light and radio waves from a source such as a quasar are deviated by a massive object such as a
galaxy so that they seem to come from two or more identical sources. A number of such gravitational lenses have been identified.

Other Findings of General Relativity

A further success of general relativity was the clearing up of a long-standing puzzle in
astronomy. The perihelion of a planetary orbit is the point in the orbit nearest the sun.
Mercury’s orbit has the peculiarity that its perihelion shifts (precesses) about 1.6° per
century (Fig. 1.21). All but 43" (1”7 = 1 arc second = 55 of a degree) of this shift is
due to the attractions of other planets, and for a while the discrepancy was used as
evidence for an undiscovered planet called Vulcan whose orbit was supposed to lie
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Figure 1.21 The precession of the
perihelion of Mercury's orbit.

inside that of Mercury. When gravity is weak, general relativity gives very nearly the
same results as Newton’s formula F = Gm;m,/r*. But Mercury is close to the sun and
so moves in a strong gravitational field, and Einstein was able to show from general
relativity that a precession of 43" per century was to be expected for its orbit.

The existence of gravitational waves that travel with the speed of light was the
prediction of general relativity that had to wait the longest to be verified. To visualize
gravitational waves, we can think in terms of the model of Fig. 1.17 in which two-
dimensional space is represented by a rubber sheet distorted by masses embedded in
it. If one of the masses vibrates, waves will be sent out in the sheet that set other masses
in vibration. A vibrating electric charge similarly sends out electromagnetic waves that
excite vibrations in other charges.

A big difference between the two kinds of waves is that gravitational waves are ex-
tremely weak, so that despite much effort none have as yet been directly detected.
However, in 1974 strong evidence for gravitational waves was found in the behavior
of a system of two nearby stars, one a pulsar, that revolve around each other. A pulsar
is a very small, dense star, composed mainly of neutrons, that spins rapidly and sends
out flashes of light and radio waves at a regular rate, much as the rotating beam of a
lighthouse does (see Sec. 9.11). The pulsar in this particular binary system emits pulses
every 59 milliseconds (ms), and it and its companion (probably another neutron star)
have an orbital period of about 8 h. According to general relativity, such a system
should give off gravitational waves and lose energy as a result, which would reduce
the orbital period as the stars spiral in toward each other. A change in orbital period
means a change in the arrival times of the pulsars flashes, and in the case of the ob-
served binary system the orbital period was found to be decreasing at 75 ms per year.
This is so close to the figure that general relativity predicts for the system that there
seems to be no doubt that gravitational radiation is responsible. The 1993 Nobel Prize
in physics was awarded to Joseph Taylor and Russell Hulse for this work.

Much more powerful sources of gravitational waves ought to be such events as two
black holes colliding and supernova explosions in which the remnant star cores col-
lapse into neutron stars (again, see Sec. 9.11). A gravitational wave that passes through
a body of matter will cause distortions to ripple through it due to fluctuations in the
gravitational field. Because gravitational forces are feeble—the electric attraction be-
tween a proton and an electron is over 10°° times greater than the gravitational at-
traction between them—such distortions at the earth induced by gravitational waves
from a supernova in our galaxy (which occurs an average of once every 30 years or
so) would amount to only about 1 part in 10'®, even less for a more distant super-
nova. This corresponds to a change in, say, the height of a person by well under the
diameter of an atomic nucleus, yet it seems to be detectable—just—with current
technology.

In one method, a large metal bar cooled to a low temperature to minimize the ran-
dom thermal motions of its atoms is monitored by sensors for vibrations due to grav-
itational waves. In another method, an interferometer similar to the one shown in
Fig. 1.2 with a laser as the light source is used to look for changes in the lengths of
the arms to which the mirrors are attached. Instruments of both kinds are operating,
thus far with no success.

A really ambitious scheme has been proposed that would use six spacecraft in or-
bit around the sun placed in pairs at the corners of a triangle whose sides are 5 million
kilometers (km) long. Lasers, mirrors, and sensors in the spacecraft would detect
changes in their spacings resulting from the passing of a gravitational wave. It may only
be a matter of time before gravitational waves will be providing information about a
variety of cosmic disturbances on the largest scale.

o



bei48482 ch0l.gxd 1/15/02 1:21 AM Page 37 $

The Lorentz Transformation

37

The Lorentz Transformation

uppose we are in an inertial frame of reference S and find the coordinates of

some event that occurs at the time t are x, y, z. An observer located in a dif-

ferent inertial frame S” which is moving with respect to S at the constant ve-
locity v will find that the same event occurs at the time t" and has the coordinates x’,
y', 2. (In order to simplify our work, we shall assume that v is in the +x direction,
as in Fig. 1.22.) How are the measurements x, y, z, t related to x', y', 2, t?

Galilean Transformation

Before special relativity, transforming measurements from one inertial system to an-
other seemed obvious. If clocks in both systems are started when the origins of S and
S’ coincide, measurements in the x direction made is S will be greater than those made
in S’ by the amount vt, which is the distance S’ has moved in the x direction. That is,

x'=x—vt (1.26)

There is no relative motion in the y and z directions, and so

y =y (1.27)

’

Z
Figure 1.22 Frame S’ moves in the +x direction with the speed v relative to frame S. The Lorentz

transformation must be used to convert measurements made in one of these frames to their equivalents
in the other.

o



bei48482 ch0l.gxd 1/15/02 1:21 AM Page 38 $

38

Appendix to Chapter 1

7' =z (1.28)

In the absence of any indication to the contrary in our everyday experience, we fur-
ther assume that

t'=t (1.29)

The set of Egs. (1.26) to (1.29) is known as the Galilean transformation.

To convert velocity components measured in the S frame to their equivalents in the
S’ frame according to the Galilean transformation, we simply differentiate x’, y', and
Z' with respect to time:

d}c,
V= —— =v,—v (1.30)
dt
@
VS o T (131
d !/
v= 5 =y, (1.32)
dt

Although the Galilean transformation and the corresponding velocity transfor-
mation seem straightforward enough, they violate both of the postulates of special
relativity. The first postulate calls for the same equations of physics in both the S
and S’ inertial frames, but the equations of electricity and magnetism become very
different when the Galilean transformation is used to convert quantities measured
in one frame into their equivalents in the other. The second postulate calls for the
same value of the speed of light ¢ whether determined in S or S’. If we measure the
speed of light in the x direction in the S system to be ¢, however, in the S" system
it will be

c'=c—v
according to Eq. (1.30). Clearly a different transformation is required if the postulates

of special relativity are to be satisfied. We would expect both time dilation and length
contraction to follow naturally from this new transformation.

Lorentz Transformation

A reasonable guess about the nature of the correct relationship between x and x’ is
x" = k(x — vt) (1.33)

Here k is a factor that does not depend upon either x or ¢t but may be a function of v.
The choice of Eq. (1.33) follows from several considerations:

1 Itis linear in x and x', so that a single event in frame S corresponds to a single event
in frame S’, as it must.

2 It is simple, and a simple solution to a problem should always be explored first.

3 It has the possibility of reducing to Eq. (1.26), which we know to be correct in
ordinary mechanics.
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Because the equations of physics must have the same form in both S and S’, we need
only change the sign of v (in order to take into account the difference in the direction
of relative motion) to write the corresponding equation for x in terms of x" and t":

x = k(x" + vt") (1.39)

The factor k must be the same in both frames of reference since there is no difference
between S and S’ other than in the sign of v.

As in the case of the Galilean transformation, there is nothing to indicate that there
might be differences between the corresponding coordinates y, y’ and z, z" which are
perpendicular to the direction of v. Hence we again take

y =y (1.35)
7=z (1.36)

The time coordinates t and t', however, are not equal. We can see this by substi-
tuting the value of x" given by Eq. (1.33) into Eq. (1.34). This gives

x = k*(x — vt) + kvt’

from which we find that

2
t’=kt+<l k )x (1.37)
kv
Equations (1.33) and (1.35) to (1.37) constitute a coordinate transformation that
satisfies the first postulate of special relativity.

The second postulate of relativity gives us a way to evaluate k. At the instant t = 0,
the origins of the two frames of reference S and S are in the same place, according to
our initial conditions, and t" = 0 then also. Suppose that a flare is set off at the com-
mon origin of S and S" at t = t' = 0, and the observers in each system measure the
speed with which the flare’ light spreads out. Both observers must find the same speed ¢
(Fig. 1.23), which means that in the S frame

x =ct (1.38)
and in the S’ frame
x" = ct' (1.39)

Substituting for x" and t" in Eq. (1.39) with the help of Egs. (1.33) and (1.37) gives

1 _ 1,2
k(x—vt)zckt-I—( k )cx
kv

and solving for x,

ckt + vkt
x=—=(| —— | =«t

11—k 1—k2) (1 \e
k— - 1- (5 -1)=
( kv )C k ( kv ¢ k? v
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Figure 1.23 (a) Inertial frame S’ is a boat moving at speed v in the +x direction relative to another
boat, which is the inertial frame S. When t = t, = 0, S" is next to S, and x = x, = 0. At this moment
a flare is fired from one of the boats. An observer on boat S detects light waves spreading out at speed
¢ from his boat. An observer on boat S" also detects light waves spreading out at speed ¢ from her
boat, even though S’ is moving to the right relative to S. (b) If instead a stone were dropped in the
water at t = to = 0, the observers would find a pattern of ripples spreading out around S at different
speeds relative to their boats. The difference between (a) and (b) is that water, in which the ripples
move, is itself a frame of reference whereas space, in which light moves, is not.

This expression for x will be the same as that given by Eq. (1.38), namely, x = ct,
provided that the quantity in the brackets equals 1. Therefore

v
¢

and

1
k= ———— (1.40)

1 — v

Finally we put this value of k in Egs. (1.36) and (1.40). Now we have the complete
transformation of measurements of an event made in S to the corresponding meas-
urements made in S":

X — vt
Lorentz ¥ = (1.41)

transformation V1 — vz/cz
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y =y (1.42)
. (1.43)
vx
t——%
(= - (1.44)

V1 —v%c?

These equations comprise the Lorentz transformation. They were first obtained
by the Dutch physicist H.A. Lorentz, who showed that the basic formulas of
electromagnetism are the same in all inertial frames only when Egs. (1.41) to (1.44)
are used. It was not until several years later that Einstein discovered their full
significance. It is obvious that the Lorentz transformation reduces to the Galilean
transformation when the relative velocity v is small compared with the velocity of

light c.

Example 1.9

Derive the relativistic length contraction using the Lorentz transformation.

Solution

Let us consider a rod lying along the x” axis in the moving frame S’. An observer in this frame
determines the coordinates of its ends to be x1 and x5, and so the proper length of the rod is

p— ’ ’
Lo =x3 = x1

Hendrik A. Lorentz (1853-1928)
was born in Arnhem, Holland, and
studied at the University of Leyden.
At nineteen he returned to Arnhem
and taught at the high school there
while preparing a doctoral thesis that
extended Maxwell’s theory of elec-
tromagnetism to cover the details of
the refraction and reflection of light.
In 1878 he became professor of the-
oretical physics at Leyden, the first
such post in Holland, where he remained for thirty-four years
until he moved to Haarlem. Lorentz went on to reformulate
and simplify Maxwell’s theory and to introduce the idea that
electromagnetic fields are created by electric charges on the
atomic level. He proposed that the emission of light by atoms
and various optical phenomena could be traced to the mo-
tions and interactions of atomic electrons. The discovery in

1896 by Pieter Zeeman, a student of his, that the spectral
lines of atoms that radiate in a magnetic field are split
into components of slightly different frequency confirmed
Lorentz’s work and led to a Nobel Prize for both of them in
1902.

The set of equations that enables electromagnetic quantities
in one frame of reference to be transformed into their values in
another frame of reference moving relative to the first were
found by Lorentz in 1895, although their full significance was
not realized until Einstein’s theory of special relativity ten years
afterward. Lorentz (and, independently, the Irish physicist G. E
Fitzgerald) suggested that the negative result of the Michelson-
Morley experiment could be understood if lengths in the
direction of motion relative to an observer were contracted. Sub-
sequent experiments showed that although such contractions
do occur, they are not the real reason for the Michelson-
Morley result, which is that there is no “ether” to serve as a
universal frame of reference.
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In order to find L = x, — x;, the length of the rod as measured in the stationary frame S at the
time t, we make use of Eq. (1.41) to give

, X, — vt ;o
M T ————
1 — v 1 —v¥?

Hence L=x—x;=05—xD V1 —vY?=LV1—v¥?

This is the same as Eq. (1.9)

X, — vt

Inverse Lorentz Transformation

In Example 1.9 the coordinates of the ends of the moving rod were measured in the
stationary frame S at the same time t, and it was easy to use Eq. (1.41) to find L in
terms of Ly and v. If we want to examine time dilation, though, Eq. (1.44) is not con-
venient, because t; and t,, the start and finish of the chosen time interval, must be
measured when the moving clock is at the respective different positions x; and x,. In
situations of this kind it is easier to use the inverse Lorentz transformation, which
converts measurements made in the moving frame S’ to their equivalents in S.

To obtain the inverse transformation, primed and unprimed quantities in Eqs. (1.41)
to (1.44) are exchanged, and v is replaced by —uv:

Inverse Lorentz x" + vt (1.45)
. X = —— .
transformation 1 — v
y=y (1.46)
7 = (1.47)
ux’
t"+ —
‘- 1 - vz/c2 (159

Example 1.10
Derive the formula for time dilation using the inverse Lorentz transformation.
Solution

Let us consider a clock at the point x" in the moving frame S’. When an observer in S’ finds
that the time is t', an observer in S will find it to be t,, where, from Eq. (1.48),

ux'

2
C
V1 —v?c?

After a time interval of t, (to him), the observer in the moving system finds that the time is now
t5 according to his clock. That is,

th +

L =

to = th — t)
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The observer in S, however, measures the end of the same time interval to be

!

ux
th +
2
tz =
1 — v
so to her the duration of the interval t is
th =t t
b=t =t = 2 1 _ 0
1 —v?/? 1 —v?/?

This is what we found earlier with the help of a light-pulse clock.

Velocity Addition

Special relativity postulates that the speed of light ¢ in free space has the same value
for all observers, regardless of their relative motion.“Common sense” (which means
here the Galilean transformation) tells us that if we throw a ball forward at 10 m/s
from a car moving at 30 m/s, the balls speed relative to the road will be 40 m/s, the
sum of the two speeds. What if we switch on the car’s headlights when its speed is v?
The same reasoning suggests that their light, which is emitted from the reference frame
S’ (the car) in the direction of its motion relative to another frame S (the road), ought
to have a speed of ¢ + v as measured in S. But this violates the above postulate, which
has had ample experimental verification. Common sense is no more reliable as a guide
in science than it is elsewhere, and we must turn to the Lorentz transformation equa-
tions for the correct scheme of velocity addition.

Suppose something is moving relative to both S and S’. An observer in S measures
its three velocity components to be

a7 At d

dx dy V—E

while to an observer in S’ they are

_d)(:’

dy’ dz’
= — V, = < = =
dt’

!
Vx YA Vam
By differentiating the inverse Lorentz transformation equations for x, y, z, and t, we
obtain

dz’'
a’ + 2
o = A vdt dy=dy  de=do  dt ¢
V1 —v?/? V1 —v¥c?
&

; poo b v a "
and so x dt dt’ N de, ) 161)(’
2 2 dt'
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Relativistic velocity B Vit
transformation Vi = v, (1.49)
1+—
c
I\N/1 _ .,2/-2
’ L
2
ViV1 —v¥e?
V,= ————— (1.51)
1+ W
2

If Vi = ¢, that is, if light is emitted in the moving frame S’ in its direction of motion
relative to S, an observer in frame S will measure the speed

Vi+v c+tv clc+v)
= = = :C
X ! vC
1+UVX 1+_2 ctuv
¢ c

Thus observers in the car and on the road both find the same value for the speed of
light, as they must.

Example 1.11

Spacecraft Alpha is moving at 0.90¢ with respect to the earth. If spacecraft Beta is to pass Alpha
at a relative speed of 0.50¢ in the same direction, what speed must Beta have with respect to
the earth?

Solution

According to the Galilean transformation, Beta would need a speed relative to the earth of
0.90c¢ + 0.50c = 1.40c¢, which we know is impossible. According to Eq. (1.49), however, with
Vi, = 0.50c and v = 0.90c, the required speed is only

Vi+v 0.50¢ + 0.90¢
x Vi (0.900(0.500) 0-97¢
vVy .900)(0.50¢
L+ 7 L+ 672

which is less than c. It is necessary to go less than 10 percent faster than a spacecraft traveling
at 0.90c in order to pass it at a relative speed of 0.50c.

Simultaneity

The relative character of time as well as space has many implications. Notably, events
that seem to take place simultaneously to one observer may not be simultaneous to
another observer in relative motion, and vice versa.

Let us examine two events—the setting off of a pair of flares, say—that occur at the
same time t, to somebody on the earth but at the different locations x; and x,. What
does the pilot of a spacecraft in flight see? To her, the flare at x; and t, appears at the
time

o
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to — vx,/c*

1 — v

(=

according to Eq. (1.44), while the flare at x, and ¢y appears at the time

to — UXz/C2

1 - vz/c2

th =

Hence two events that occur simultaneously to one observer are separated by a time
interval of

vl — x)/c?

1 — v

th— t)=

to an observer moving at the speed v relative to the other observer. Who is right? The
question is, of course, meaningless: both observers are “right” since each simply meas-
ures what he or she sees.

Because simultaneity is a relative concept and not an absolute one, physical theo-
ries that require simultaneity in events at different locations cannot be valid. For in-
stance, saying that total energy is conserved in an isolated system does not rule out a
process in which an amount of energy AE vanishes at one place while an equal amount
of energy AE comes into being somewhere else with no actual transport of energy from
one place to the other. Because simultaneity is relative, some observers of the process
will find energy not being conserved. To rescue conservation of energy in the light
of special relativity, then, we have to say that, when energy disappears somewhere
and appears elsewhere, it has actually flowed from the first location to the second.
Thus energy is conserved locally everywhere, not merely when an isolated system is
considered—a much stronger statement of this principle.
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Spacetime

s we have seen, the concepts of space and time are inextricably mixed in
nature. A length that one observer can measure with only a meter stick may
have to be measured with both a meter stick and a clock by another observer.
A convenient and elegant way to express the results of special relativity is to regard
events as occurring in a four-dimensional spacetime in which the usual three coordi-
nates x, y, z refer to space and a fourth coordinate ict refers to time, where i = V-1
Although we cannot visualize spacetime, it is no harder to deal with mathematically
than three-dimensional space.
The reason that ict is chosen as the time coordinate instead of just t is that the
quantity

SS=xr 4y 4+ 22— () (1.52)

is invariant under a Lorentz transformation. That is, if an event occurs at x, y, 2, t in
an inertial frame S and at x’, y’, 2/, t’ in another inertial frame S’, then

SZ — xz +y2 + ZZ _ (Ct)z — Xlz +y72 + Zrz _ (Ctr)z

Because s” is invariant, we can think of a Lorentz transformation merely as a rotation
in spacetime of the coordinate axes x, y, z, ict (Fig. 1.24).

The four coordinates x, y, z, ict define a vector in spacetime, and this four-vector
remains fixed in spacetime regardless of any rotation of the coordinate system—that
is, regardless of any shift in point of view from one inertial frame S to another S'.

Another four-vector whose magnitude remains constant under Lorentz transforma-
tions has the components py, p,, p., iE/c. Here p,, p,, p. are the usual components of
the linear momentum of a body whose total energy is E. Hence the value of

Figure 1.24 Rotating a two-dimensional coordinate system does not change the quantity s* = x*
+y> =x">+y?, where s is the length of the vector s. This result can be generalized to the four-
dimensional spacetime coordinate system x, y, z, ict.

o
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is the same in all inertial frames even though p,, p,, p, and E separately may be dif-
ferent. This invariance was noted earlier in connection with Eq. (1.24); we note that
P’ =pitpy

A more mathematically elaborate formulation brings together the electric and mag-
netic fields E and B into an invariant quantity called a tensor. This approach to
incorporating special relativity into physics has led both to a deeper understanding of
natural laws and to the discovery of new phenomena and relationships.

Spacetime Intervals

The statements made at the end of Sec. 1.2 (P 10) are easy to confirm using the idea
of spacetime. Figure 1.25 shows two events plotted on the axes x and ct. Event 1 oc-
curs at x = 0, t = 0 and event 2 occurs at x = Ax, t = At. The spacetime interval As
between them is defined by

Spacetime interval (As)? = (CAD? — (Ax)? (1.53)
between events

The virtue of this definition is that (As)?, like the s* of Eq. 1.52, is invariant under
Lorentz transformations. If Ax and At are the differences in space and time between
two events measured in the S frame and Ax’ and At’ are the same quantities meas-
ured in the S’ frame,

(As)* = (cAD? — (Ax)* = (cAt")* — (Ax")?

Therefore whatever conclusions we arrive at in the S frame in which event 1 is at the
origin hold equally well in any other frame in relative motion at constant velocity.

ct

FUTURE LIGHT CONE

x=ct

CAt ===~ P 4

Event 2 /i

|

|

|

|

|

|

1

1

!

Event 1 —/ Ax *

X=—ct

PAST LIGHT CONE

Figure 1.25 The past and future light cones in spacetime of event 1.

o
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Now let us look into the possible relationships between events 1 and 2. Event 2 can
be related causally in some way to event 1 provided that a signal traveling slower than
the speed of light can connect these events, that is, provided that

cAt > |Ax]|
or
Timelike interval (As)> >0 (1.53)

Aninterval in which (As)* > 01s said to be timelike. Every timelike interval that connects
event 1 with another event lies within the light cones bounded by x = *ctin
Fig. 1.25. All events that could have affected event 1 lie in the past light cone; all events
that event 1 is able to affect lie in the future light cone. (Events connected by timelike
intervals need not necessarily be related, of course, but it is possible for them to be
related.)

Conversely, the criterion for there being no causal relationship between events 1
and 2 is that

cAt < |Ax|
or
Spacelike interval (As)* <0 (1.54)

An interval in which (As)* < 0 is said to be spacelike. Every event that is connected
with event 1 by a spacelike interval lies outside the light cones of event 1 and neither
has interacted with event 1 in the past nor is capable of interacting with it in the
future; the two events must be entirely unrelated.

When events 1 and 2 can be connected with a light signal only,

cAt = |Ax]|
or
Lightlike interval As =0 (1.55)

An interval in which As = 0 is said to be lightlike. Events that can be connected with
event 1 by lightlike intervals lie on the boundaries of the light cones.

These conclusions hold in terms of the light cones of event 2 because (As)” is
invariant; for example, if event 2 is inside the past light cone of event 1, event 1 is
inside the future light cone of event 2. In general, events that lie in the future of an
event as seen in one frame of reference S lie in its future in every other frame S’, and
events that lie in the past of an event in S lie in its past in every other frame S". Thus
“future” and “past” have invariant meanings. However, “simultaneity” is an ambiguous
concept, because all events that lie outside the past and future light cones of event 1
(that is, all events connected by spacelike intervals with event 1) can appear to occur
simultaneously with event 1 in some particular frame of reference.

The path of a particle in spacetime is called its world line (Fig. 1.26). The world line
of a particle must lie within its light cones.

o
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Figure 1.26 The world line of a particle in spacetime.

UNRELATED

X

X=—ct

But be ye doers of the word, and not hearers only, deceiving your own selves. —James 1:22

1.1 Special Relativity

1.

If the speed of light were smaller than it is, would relativistic
phenomena be more or less conspicuous than they are now?

It is possible for the electron beam in a television picture tube
to move across the screen at a speed faster than the speed of
light. Why does this not contradict special relativity?

1.2 Time Dilation

3.

An athlete has learned enough physics to know that if he meas-
ures from the earth a time interval on a moving spacecratt,
what he finds will be greater than what somebody on the
spacecraft would measure. He therefore proposes to set a world
record for the 100-m dash by having his time taken by an
observer on a moving spacecraft. Is this a good idea?

An observer on a spacecraft moving at 0.700c relative to the
earth finds that a car takes 40.0 min to make a trip. How long
does the trip take to the driver of the car?

Two observers, A on earth and B in a spacecraft whose speed
is 2.00 X 10% m/s, both set their watches to the same time
when the ship is abreast of the earth. (a) How much time
must elapse by A% reckoning before the watches differ by
1.00 s? (b) To A, B’s watch seems to run slow. To B, does A’s
watch seem to run fast, run slow, or keep the same time as
his own watch?

6.

An airplane is flying at 300 m/s (672 mi/h). How much time
must elapse before a clock in the airplane and one on the
ground differ by 1.00 s?

How fast must a spacecraft travel relative to the earth for each
day on the spacecraft to correspond to 2 d on the earth?

The Apollo 11 spacecraft that landed on the moon in 1969
traveled there at a speed relative to the earth of 1.08 X 10* m/s.
To an observer on the earth, how much longer than his own day
was a day on the spacecraft?

A certain particle has a lifetime of 1.00 X 10~ s when meas-
ured at rest. How far does it go before decaying if its speed is
0.99¢ when it is created?

1.3 Doppler Effect

10.

11.

12.

o

A spacecraft receding from the earth at 0.97¢ transmits data at
the rate of 1.00 X 10* pulses/s. At what rate are they received?

A galaxy in the constellation Ursa Major is receding from the
earth at 15,000 km/s. If one of the characteristic wavelengths of
the light the galaxy emits is 550 nm, what is the corresponding
wavelength measured by astronomers on the earth?

The frequencies of the spectral lines in light from a distant
galaxy are found to be two-thirds as great as those of the same
lines in light from nearby stars. Find the recession speed of the
distant galaxy.
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13.

14.

15.

16.

A spacecralt receding from the earth emits radio waves at a
constant frequency of 10° Hz. If the receiver on earth can
measure frequencies to the nearest hertz, at what spacecraft
speed can the difference between the relativistic and classical
doppler effects be detected? For the classical effect, assume the
earth is stationary.

A car moving at 150 km/h (93 mi/h) is approaching a station-
ary police car whose radar speed detector operates at a fre-
quency of 15 GHz. What frequency change is found by the
speed detector?

If the angle between the direction of motion of a light source of
frequency v, and the direction from it to an observer is 6, the
frequency » the observer finds is given by

Vi1-— vz/c2

V=1,
1 — (v/c) cos 6

where v is the relative speed of the source. Show that this for-
mula includes Egs. (1.5) to (1.7) as special cases.

(a) Show that when v << ¢, the formulas for the doppler effect
both in light and in sound for an observer approaching a
source, and vice versa, all reduce to v = vy(1 + v/c), so that
Av/v =wv/c. [Hint: Forx << 1, 1/(1 + x) = 1 — x.] (b) What
do the formulas for an observer receding from a source, and
vice versa, reduce to when v << ¢?

1.4 Length Contraction

17.

18.

19.

20.

21.

An astronaut whose height on the earth is exactly 6 ft is lying
parallel to the axis of a spacecraft moving at 0.90c relative to
the earth. What is his height as measured by an observer in the
same spacecraft? By an observer on the earth?

An astronaut is standing in a spacecraft parallel to its direction
of motion. An observer on the earth finds that the spacecraft
speed is 0.60c and the astronaut is 1.3 m tall. What is the as-
tronaut’s height as measured in the spacecraft?

How much time does a meter stick moving at 0.100c relative to
an observer take to pass the observer? The meter stick is paral-
lel to its direction of motion.

A meter stick moving with respect to an observer appears only
500 mm long to her. What is its relative speed? How long does
it take to pass her? The meter stick is parallel to its direction of
motion.

A spacecraft antenna is at an angle of 10° relative to the axis of
the spacecraft. If the spacecraft moves away from the earth at a
speed of 0.70¢, what is the angle of the antenna as seen from
the earth?

1.5 Twin Paradox

22.

23.

Twin A makes a round trip at 0.6¢ to a star 12 light-years away,
while twin B stays on the earth. Each twin sends the other a
signal once a year by his own reckoning. (a) How many signals
does A send during the trip? How many does B send? (b) How
many signals does A receive? How many does B receive?

A woman leaves the earth in a spacecraft that makes a round
trip to the nearest star, 4 light-years distant, at a speed of 0.9c.

24.

25.

26.

1.8

27.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

How much younger is she upon her return than her twin sister
who remained behind?

Relativistic Momentum

(a) An electron’ speed is doubled from 0.2¢ to 0.4c. By what
ratio does its momentum increase? (b) What happens to the
momentum ratio when the electron’s speed is doubled again
from 0.4c to 0.8¢?

All definitions are arbitrary, but some are more useful than oth-
ers. What is the objection to defining linear momentum as p =
mv instead of the more complicated p = ymv?

Verify that
1 P

=1+
1 — v !

Mass and Energy

Dynamite liberates about 5.4 X 10° J/kg when it explodes.
What fraction of its total energy content is this?

A certain quantity of ice at 0°C melts into water at 0°C and in
so doing gains 1.00 kg of mass. What was its initial mass?

At what speed does the kinetic energy of a particle equal its rest
energy?

How many joules of energy per kilogram of rest mass are
needed to bring a spacecraft from rest to a speed of 0.90¢?

An electron has a kinetic energy of 0.100 MeV. Find its speed
according to classical and relativistic mechanics.

Verify that, for E >> E,,

1 [ E\
Bkl__<_0)
c 2 E

A particle has a kinetic energy 20 times its rest energy. Find the
speed of the particle in terms of c.

(a) The speed of a proton is increased from 0.20c¢ to 0.40c. By
what factor does its kinetic energy increase? (b) The proton
speed is again doubled, this time to 0.80c. By what factor does
its kinetic energy increase now?

How much work (in MeV) must be done to increase the speed
of an electron from 1.2 X 10° m/s to 2.4 X 10° m/s?

(a) Derive a formula for the minimum kinetic energy needed by
a particle of rest mass m to emit Cerenkov radiation in a
medium of index of refraction n. [Hint: Start from Egs. (1.21)
and (1.23).] (b) Use this formula to find KE,;, for an electron
in a medium of n = 1.5.

Prove that %'ymvz, does not equal the kinetic energy of a particle
moving at relativistic speeds.

A moving electron collides with a stationary electron and an
electron-positron pair comes into being as a result (a positron is
a positively charged electron). When all four particles have the
same velocity after the collision, the kinetic energy required for
this process is a minimum. Use a relativistic calculation to show
that KE;, = 6mc?, where m is the rest mass of the electron.

o
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39. An alternative derivation of the mass-energy formula E, = mc?,

Initial center of mass

M2—| —>¢ ° —M/2
A

Burst of radiation is emitted

} L |
- |
—>C
A
New center of mass
S Radiation is
| . — absorbed and
~ box stops

Figure 1.27 The box has moved the distance S to the left when
it stops.

also given by Einstein, is based on the principle that the
location of the center of mass (CM) of an isolated system
cannot be changed by any process that occurs inside the
system. Figure 1.27 shows a rigid box of length L that rests
on a frictionless surface; the mass M of the box is equally
divided between its two ends. A burst of electromagnetic
radiation of energy E, is emitted by one end of the box.
According to classical physics, the radiation has the momen-
tum p = Eo/c, and when it is emitted, the box recoils with the
speed v = Eo/Mc so that the total momentum of the system
remains zero. After a time t = L/c the radiation reaches the
other end of the box and is absorbed there, which brings the
box to a stop after having moved the distance S. If the CM of
the box is to remain in its original place, the radiation must
have transferred mass from one end to the other. Show that
this amount of mass is m = Eo/c’.

1.9 Energy and Momentum

40.

41.

42.

43.

44,

Find the SI equivalents of the mass unit MeV/c* and the
momentum unit MeVc.

In its own frame of reference, a proton takes 5 min to cross the
Milky Way galaxy, which is about 10° light-years in diameter.
(a) What is the approximate energy of the proton in electronvolts?
(b) About how long would the proton take to cross the galaxy as
measured by an observer in the galaxy’s reference frame?

What is the energy of a photon whose momentum is the same
as that of a proton whose kinetic energy is 10.0 MeV?

Find the momentum (in MeV/c) of an electron whose speed is
0.600c.

Find the total energy and kinetic energy (in GeV) and the
momentum (in GeV/c) of a proton whose speed is 0.900c. The
mass of the proton is 0.938 GeV/c”.

45.

46.
47.

48.

49.

50.

Find the momentum of an electron whose kinetic energy equals
its rest energy of 511 keV.

Verify that v/c = pc/E.

Find the speed and momentum (in GeV/c) of a proton whose
total energy is 3.500 GeV.

Find the total energy of a neutron (m = 0.940 GeV/c?) whose
momentum is 1.200 GeVic.

A particle has a kinetic energy of 62 MeV and a momentum of
335 MeVc. Find its mass (in MeV/c?) and speed (as a fraction
of ¢).

(@) Find the mass (in GeV/c”) of a particle whose total energy
is 4.00 GeV and whose momentum is 1.45 GeVic. (b) Find the
total energy of this particle in a reference frame in which its
momentum is 2.00 GeV/c.

Appendix I: The Lorentz Transformation

51.

52.

53.

54.

55.

56.

o

An observer detects two explosions, one that occurs near her at
a certain time and another that occurs 2.00 ms later 100 km
away. Another observer finds that the two explosions occur at
the same place. What time interval separates the explosions to
the second observer?

An observer detects two explosions that occur at the same time,
one near her and the other 100 km away. Another observer
finds that the two explosions occur 160 km apart. What time
interval separates the explosions to the second observer?

A spacecraft moving in the +x direction receives a light sig-
nal from a source in the xy plane. In the reference frame of
the fixed stars, the speed of the spacecraft is v and the signal
arrives at an angle € to the axis of the spacecraft. (a) With
the help of the Lorentz transformation find the angle 6" at
which the signal arrives in the reference frame of the space-
craft. (b) What would you conclude from this result about
the view of the stars from a porthole on the side of the
spacecraft?

A body moving at 0.500c¢ with respect to an observer disinte-
grates into two fragments that move in opposite directions rela-
tive to their center of mass along the same line of motion as the
original body. One fragment has a velocity of 0.600c in the
backward direction relative to the center of mass and the other
has a velocity of 0.500c in the forward direction. What veloci-
ties will the observer find?

A man on the moon sees two spacecraft, A and B, coming to-
ward him from opposite directions at the respective speeds of
0.800c¢ and 0.900c. (a) What does a man on A measure for the
speed with which he is approaching the moon? For the speed
with which he is approaching B? (b) What does a man on

B measure for the speed with which he is approaching the
moon? For the speed with which he is approaching A?

An electron whose speed relative to an observer in a laboratory
is 0.800c is also being studied by an observer moving in the
same direction as the electron at a speed of 0.500¢ relative to
the laboratory. What is the kinetic energy (in MeV) of the elec-
tron to each observer?
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n our everyday experience there is nothing mysterious or ambiguous about the

concepts of particle and wave. A stone dropped into a lake and the ripples that

spread out from its point of impact apparently have in common only the ability
to carry energy and momentum from one place to another. Classical physics, which
mirrors the “physical reality” of our sense impressions, treats particles and waves as
separate components of that reality. The mechanics of particles and the optics of waves
are traditionally independent disciplines, each with its own chain of experiments and
principles based on their results.

The physical reality we perceive has its roots in the microscopic world of atoms and
molecules, electrons and nuclei, but in this world there are neither particles nor waves
in our sense of these terms. We regard electrons as particles because they possess charge
and mass and behave according to the laws of particle mechanics in such familiar de-
vices as television picture tubes. We shall see, however, that it is just as correct to in-
terpret a moving electron as a wave manifestation as it is to interpret it as a particle
manifestation. We regard electromagnetic waves as waves because under suitable cir-
cumstances they exhibit diffraction, interference, and polarization. Similarly, we shall
see that under other circumstances electromagnetic waves behave as though they con-
sist of streams of particles. Together with special relativity, the wave-particle duality is
central to an understanding of modern physics, and in this book there are few argu-
ments that do not draw upon either or both of these fundamental ideas.

2.1 ELECTROMAGNETIC WAVES

Coupled electric and magnetic oscillations that move with the speed of light
and exhibit typical wave behavior

In 1864 the British physicist James Clerk Maxwell made the remarkable suggestion
that accelerated electric charges generate linked electric and magnetic disturbances that
can travel indefinitely through space. If the charges oscillate periodically, the distur-
bances are waves whose electric and magnetic components are perpendicular to each
other and to the direction of propagation, as in Fig. 2.1.

From the earlier work of Faraday, Maxwell knew that a changing magnetic field can
induce a current in a wire loop. Thus a changing magnetic field is equivalent in its
effects to an electric field. Maxwell proposed the converse: a changing electric field has
a magnetic field associated with it. The electric fields produced by electromagnetic
induction are easy to demonstrate because metals offer little resistance to the flow of
charge. Even a weak field can lead to a measurable current in a metal. Weak magnetic
fields are much harder to detect, however, and Maxwell's hypothesis was based on a
symmetry argument rather than on experimental findings.

Electric field

(U 2722 A 2777
w QY QY

Magnetic field

Figure 2.1 The electric and magnetic fields in an electromagnetic wave vary together. The fields are
perpendicular to each other and to the direction of propagation of the wave.

o
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James Clerk Maxwell (1831-
1879) was born in Scotland
shortly before Michael Faraday
discovered electromagnetic induc-
tion. At nineteen he entered Cam-
bridge University to study physics
and mathematics. While still a stu-
dent, he investigated the physics of
color vision and later used his
ideas to make the first color pho-
tograph. Maxwell became known
to the scientific world at twenty-four when he showed that the
rings of Saturn could not be solid or liquid but must consist of
separate small bodies. At about this time Maxwell became in-
terested in electricity and magnetism and grew convinced that
the wealth of phenomena Faraday and others had discovered
were not isolated effects but had an underlying unity of some
kind. Maxwell’s initial step in establishing that unity came in
1856 with the paper “On Faraday’s Lines of Force,” in which
he developed a mathematical description of electric and mag-
netic fields.

Maxwell left Cambridge in 1856 to teach at a college in
Scotland and later at Kings College in London. In this period
he expanded his ideas on electricity and magnetism to create a
single comprehensive theory of electromagnetism. The funda-
mental equations he arrived at remain the foundations of the
subject today. From these equations Maxwell predicted that
electromagnetic waves should exist that travel with the speed

of light, described the properties the waves should have, and
surmised that light consisted of electromagnetic waves. Sadly,
he did not live to see his work confirmed in the experiments
of the German physicist Heinrich Hertz.

Maxwells contributions to kinetic theory and statistical
mechanics were on the same profound level as his contribu-
tions to electromagnetic theory. His calculations showed that
the viscosity of a gas ought to be independent of its pressure,
a surprising result that Maxwell, with the help of his wife, con-
firmed in the laboratory. They also found that the viscosity was
proportional to the absolute temperature of the gas. Maxwell’s
explanation for this proportionality gave him a way to estimate
the size and mass of molecules, which until then could only be
guessed at. Maxwell shares with Boltzmann credit for the equa-
tion that gives the distribution of molecular energies in a gas.

In 1865 Maxwell returned to his family’s home in Scotland.
There he continued his research and also composed a treatise
on electromagnetism that was to be the standard text on the
subject for many decades. It was still in print a century later.
In 1871 Maxwell went back to Cambridge to establish and
direct the Cavendish Laboratory, named in honor of the pio-
neering physicist Henry Cavendish. Maxwell died of cancer at
the age of forty-eight in 1879, the year in which Albert Ein-
stein was born. Maxwell had been the greatest theoretical physi-
cist of the nineteenth century; Einstein was to be the greatest
theoretical physicist of the twentieth century. (By a similar
coincidence, Newton was born in the year of Galileos death.)

If Maxwell was right, electromagnetic (em) waves must occur in which constantly

varying electric and magnetic fields are coupled together by both electromagnetic in-
duction and the converse mechanism he proposed. Maxwell was able to show that the
speed ¢ of electromagnetic waves in free space is given by

1
(= ——— =2.998 X 10® m/s
V €olho

where €, is the electric permittivity of free space and ug is its magnetic permeability.
This is the same as the speed of light waves. The correspondence was too great to be
accidental, and Maxwell concluded that light consists of electromagnetic waves.

During Maxwell’s lifetime the notion of em waves remained without direct experi-
mental support. Finally, in 1888, the German physicist Heinrich Hertz showed that em
waves indeed exist and behave exactly as Maxwell had predicted. Hertz generated the
waves by applying an alternating current to an air gap between two metal balls. The
width of the gap was such that a spark occurred each time the current reached a peak.
A wire loop with a small gap was the detector; em waves set up oscillations in the loop
that produced sparks in the gap. Hertz determined the wavelength and speed of the
waves he generated, showed that they have both electric and magnetic components,
and found that they could be reflected, refracted, and diffracted.

Light is not the only example of an em wave. Although all such waves have the
same fundamental nature, many features of their interaction with matter depend upon
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Figure 2.2 The spectrum of electromagnetic radiation.

their frequencies. Light waves, which are em waves the eye responds to, span only a
brief frequency interval, from about 4.3 X 10'* Hz for red light to about 7.5 X 10**
Hz for violet light. Figure 2.2 shows the em wave spectrum from the low frequencies
used in radio communication to the high frequencies found in x-rays and gamma rays.

A characteristic property of all waves is that they obey the principle of superposition:

When two or more waves of the same nature travel past a point at the same time,
the instantaneous amplitude there is the sum of the instantaneous amplitudes of
the individual waves.

Instantaneous amplitude refers to the value at a certain place and time of the quan-
tity whose variations constitute the wave. (“Amplitude” without qualification refers to
the maximum value of the wave variable.) Thus the instantaneous amplitude of a wave
in a stretched string is the displacement of the string from its normal position; that of
a water wave is the height of the water surface relative to its normal level; that of a
sound wave is the change in pressure relative to the normal pressure. Since the elec-
tric and magnetic fields in a light wave are related by E = B, its instantaneous amplitude
can be taken as either E or B. Usually E is used, since it is the electric fields of light
waves whose interactions with matter give rise to nearly all common optical effects.
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The interference of water waves. Constructive interference occurs along the line
AB and destructive interference occurs along the line CD.

When two or more trains of light waves meet in a region, they interfere to produce
a new wave there whose instantaneous amplitude is the sum of those of the original
waves. Constructive interference refers to the reinforcement of waves with the same
phase to produce a greater amplitude, and destructive interference refers to the partial
or complete cancellation of waves whose phases differ (Fig. 2.3). If the original waves
have different frequencies, the result will be a mixture of constructive and destructive
interference, as in Fig. 3.4.

The interference of light waves was first demonstrated in 1801 by Thomas Young,
who used a pair of slits illuminated by monochromatic light from a single source (Fig. 2.4).
From each slit secondary waves spread out as though originating at the slit; this is an ex-
ample of diffraction, which, like interference, is a characteristic wave phenomenon. Ow-
ing to interference, the screen is not evenly lit but shows a pattern of alternate bright
and dark lines. At those places on the screen where the path lengths from the two slits
differ by an odd number of half wavelengths (A/2, 3A/2, 5A/2, . . ), destructive inter-
ference occurs and a dark line is the result. At those places where the path lengths are

(a) (b)

Figure 2.3 (a) In constructive interference, superposed waves in phase reinforce each other. (b) In destructive
interference, waves out of phase partially or completely cancel each other.
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Figure 2.4 Origin of the interference pattern in Youngs experiment. Constructive interference occurs where the difference in path lengths
from the slits to the screen is 6, A, 2A, . . . . Destructive interference occurs where the path difference is A/2, 3A/2, 5A/2, . . ..

equal or differ by a whole number of wavelengths (A, 2A, 3A, . . .), constructive inter-
ference occurs and a bright line is the result. At intermediate places the interference is
only partial, so the light intensity on the screen varies gradually between the bright and
dark lines.

Interference and diffraction are found only in waves—the particles we are familiar
with do not behave in those ways. If light consisted of a stream of classical particles,
the entire screen would be dark. Thus Young’s experiment is proof that light consists
of waves. Maxwell’s theory further tells us what kind of waves they are: electromag-
netic. Until the end of the nineteenth century the nature of light seemed settled forever.

2.2 BLACKBODY RADIATION

Only the quantum theory of light can explain its origin

Following Hertz’s experiments, the question of the fundamental nature of light
seemed clear: light consisted of em waves that obeyed Maxwell’s theory. This cer-
tainty lasted only a dozen years. The first sign that something was seriously amiss
came from attempts to understand the origin of the radiation emitted by bodies of
matter.

We are all familiar with the glow of a hot piece of metal, which gives off visible light
whose color varies with the temperature of the metal, going from red to yellow to white
as it becomes hotter and hotter. In fact, other frequencies to which our eyes do not
respond are present as well. An object need not be so hot that it is luminous for it to
be radiating em energy; all objects radiate such energy continuously whatever their
temperatures, though which frequencies predominate depends on the temperature. At
room temperature most of the radiation is in the infrared part of the spectrum and
hence is invisible.

The ability of a body to radiate is closely related to its ability to absorb radiation.
This is to be expected, since a body at a constant temperature is in thermal equilib-
rium with its surroundings and must absorb energy from them at the same rate as it
emits energy. It is convenient to consider as an ideal body one that absorbs all radi-
ation incident upon it, regardless of frequency. Such a body is called a blackbody.

The point of introducing the idealized blackbody in a discussion of thermal ra-
diation is that we can now disregard the precise nature of whatever is radiating, since

o



bei48482 ch02.gxd 1/16/02 1:52 PM Page 58 $

28

Chapter Two

ncidens
L\g‘(\{ 12y

Figure 2.5 A hole in the wall of a
hollow object is an excellent ap-
proximation of a blackbody.

The color and brightness of an
object heated until it glows, such
as the filament of this light bulb,
depends upon its temperature,
which here is about 3000 K. An
object that glows white is hotter
than it is when it glows red, and
it gives off more light as well.

all blackbodies behave identically. In the laboratory a blackbody can be approximated
by a hollow object with a very small hole leading to its interior (Fig. 2.5). Any ra-
diation striking the hole enters the cavity, where it is trapped by reflection back and
forth until it is absorbed. The cavity walls are constantly emitting and absorbing ra-
diation, and it is in the properties of this radiation (blackbody radiation) that we
are interested.

Experimentally we can sample blackbody radiation simply by inspecting what
emerges from the hole in the cavity. The results agree with everyday experience. A
blackbody radiates more when it is hot than when it is cold, and the spectrum of a
hot blackbody has its peak at a higher frequency than the peak in the spectrum of a
cooler one. We recall the behavior of an iron bar as it is heated to progressively higher
temperatures: at first it glows dull red, then bright orange-red, and eventually it be-
comes “white hot.” The spectrum of blackbody radiation is shown in Fig. 2.6 for two
temperatures.

The Ultraviolet Catastrophe

Why does the blackbody spectrum have the shape shown in Fig. 2.6? This prob-
lem was examined at the end of the nineteenth century by Lord Rayleigh and James
Jeans. The details of their calculation are given in Chap. 9. They started by con-
sidering the radiation inside a cavity of absolute temperature T whose walls are
perfect reflectors to be a series of standing em waves (Fig. 2.7). This is a three-
dimensional generalization of standing waves in a stretched string. The condition

T =1800 K

T=1200K

Spectral energy density, u(v)dv

0 2X10"%  4X10"*  6X10'Hz
~

Visible light
Frequency, v

Figure 2.6 Blackbody spectra. The spectral distribution of energy in the radiation depends only on
the temperature of the body. The higher the temperature, the greater the amount of radiation and the
higher the frequency at which the maximum emission occurs. The dependence of the latter frequency
on temperature follows a formula called Wien’s displacement law, which is discussed in Sec. 9.6.
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for standing waves in such a cavity is that the path length from wall to wall, whatever
the direction, must be a whole number of half-wavelengths, so that a node occurs

at each reflecting surface. The number of independent standing waves G(v)dv in A= 2L
the frequency interval between v and dv per unit volume in the cavity turned out 3
to be
Density of standi 8wy dy

ensity of standing GOy = QD

waves in cavity o A=L

This formula is independent of the shape of the cavity. As we would expect, the higher
the frequency v, the shorter the wavelength and the greater the number of possible
standing waves. /\

The next step is to find the average energy per standing wave. According to the A=2L
theorem of equipartition of energy, a mainstay of classical physics, the average energy
per degree of freedom of an entity (such as a molecule of an ideal gas) that is a mem-
ber of a system of such entities in thermal equilibrium at the temperature T is $kT.
Here k is Boltzmann’s constant:

=~

Figure 2.7 Em radiation in a cav-
ity whose walls are perfect reflec-
tors consists of standing waves
that have nodes at the walls,
A degree of freedom is a mode of energy possession. Thus a monatomic ideal gas Which restricts their possible
molecule has three degrees of freedom, corresponding to kinetic energy of motion in ~ Wavelengths. Shown are three

. . . B possible wavelengths when the
three independent directions, for an average total energy of JkT. : A

i ) ) ) distance between opposite walls
A one-dimensional harmonic oscillator has two degrees of freedom, one that corre- 51

sponds to its kinetic energy and one that corresponds to its potential energy. Because
each standing wave in a cavity originates in an oscillating electric charge in the cavity
wall, two degrees of freedom are associated with the wave and it should have an average
energy of 2(DkT:

Boltzmann’s constant k=1.381 X 10> J/K

Classical average energy - BT 2.2)

per standing wave

The total energy u(v) dv per unit volume in the cavity in the frequency interval from
v to v + dv is therefore

Rayleigh-Jeans u(w) dv = EGW) dv = 8mkT
formula Pt

V2 dv 2.3)

This radiation rate is proportional to this energy density for frequencies between v and
v + dv. Equation (2.3), the Rayleigh-Jeans formula, contains everything that classi-
cal physics can say about the spectrum of blackbody radiation.

Even a glance at Eq. (2.3) shows that it cannot possibly be correct. As the fre-
quency v increases toward the ultraviolet end of the spectrum, this formula predicts
that the energy density should increase as »*. In the limit of infinitely high fre-
quencies, u(v) dv therefore should also go to infinity. In reality, of course, the energy
density (and radiation rate) falls to 0 as ¥ — oo (Fig. 2.8). This discrepancy became
known as the ultraviolet catastrophe of classical physics. Where did Rayleigh and
Jeans go wrong?
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N Rayleigh-Jeans
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Spectral energy density, u(v)dv
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Figure 2.8 Comparison of the Rayleigh-Jeans formula for the spectrum of the radiation from a black-
body at 1500 K with the observed spectrum. The discrepancy is known as the ultraviolet catastrophe
because it increases with increasing frequency. This failure of classical physics led Planck to the dis-
covery that radiation is emitted in quanta whose energy is hv.

Planck Radiation Formula

In 1900 the German physicist Max Planck used “lucky guesswork” (as he later called it)

to come up with a formula for the spectral energy density of blackbody radiation:

Planck radiation
formula

8mrh v’ dv
=" 7 7
u(v) dv JERT @4

Here h is a constant whose value is

Planck’s constant

Max Planck (1858-1947) was
born in Kiel and educated in Mu-
nich and Berlin. At the University
of Berlin he studied under Kirch-
hoff and Helmholtz, as Hertz had
done earlier. Planck realized that
blackbody radiation was important
because it was a fundamental effect
independent of atomic structure,
which was still a mystery in the late
nineteenth century, and worked at
understanding it for six years be-
fore finding the formula the radiation obeyed. He “strived from
the day of its discovery to give it a real physical interpretation.”
The result was the discovery that radiation is emitted in energy
steps of hv. Although this discovery, for which he received the
Nobel Prize in 1918, is now considered to mark the start of

h=6626X10""]-s

modern physics, Planck himself remained skeptical for a long
time of the physical reality of quanta. As he later wrote, “My
vain attempts to somehow reconcile the elementary quantum
with classical theory continued for many years and cost me
great effort. . . . Now I know for certain that the quantum of
action has a much more fundamental significance than I orig-
inally suspected.”

Like many physicists, Planck was a competent musician (he
sometimes played with Einstein) and in addition enjoyed moun-
tain climbing. Although Planck remained in Germany during
the Hitler era, he protested the Nazi treatment of Jewish scien-
tists and lost his presidency of the Kaiser Wilhelm Institute as
a result. In 1945 one of his sons was implicated in a plot to
kill Hitler and was executed. After World War II the Institute
was renamed after Planck and he was again its head until his
death.
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At high frequencies, hv >> kT and "/*" — o, which means that u(») dv— 0 as
observed. No more ultraviolet catastrophe. At low frequencies, where the Rayleigh-
Jeans formula is a good approximation to the data (see Fig. 2.8), hv << kT and hv/kT
<< 1. In general,

2 3
X

=l g
20 3

If x is small, e* = 1 + x, and so for hv/kT << 1 we have

! ! il hy << kT
=~ ~ — v
| hy hv
1+—-1
RT

Thus at low frequencies Planck’s formula becomes

hy

8mh kT 8wkT
u(y) dv = 773- v’ ( ) dv = 773 v? dv
c c

which is the Rayleigh-Jeans formula. Planck’s formula is clearly at least on the right
track; in fact, it has turned out to be completely correct.

Next Planck had the problem of justifying Eq. (2.4) in terms of physical principles.
A new principle seemed needed to explain his formula, but what was it? After several
weeks of “the most strenuous work of my life,” Planck found the answer: The oscilla-
tors in the cavity walls could not have a continuous distribution of possible energies
€ but must have only the specific energies

Oscillator energies €, = nhv n=20,12,... 2.5)

An oscillator emits radiation of frequency » when it drops from one energy state to the
next lower one, and it jumps to the next higher state when it absorbs radiation of
frequency v. Each discrete bundle of energy hv is called a quantum (plural quanta)
from the Latin for “how much.”

With oscillator energies limited to nhw, the average energy per oscillator in the cavity
walls—and so per standing wave—turned out to be not € = kT as for a continuous
distribution of oscillator energies, but instead

Actual average energy hy

per standing wave €= SR 2.6)

This average energy leads to Eq. (2.4). Blackbody radiation is further discussed in
Chap. 9.

Example 2.1

Assume that a certain 660-Hz tuning fork can be considered as a harmonic oscillator whose vi-
brational energy is 0.04 J. Compare the energy quanta of this tuning fork with those of an atomic
oscillator that emits and absorbs orange light whose frequency is 5.00 X 10'* Hz.

o



bei48482 ch02.gxd 1/16/02 1:52 PM Page 62 $

62

Chapter Two

Solution

(@) For the tuning fork,
hy, = (6.63 X 102*]+5) (660 s 1) =438 X 107! ]

The total energy of the vibrating tines of the fork is therefore about 10> times the quantum
energy hv. The quantization of energy in the tuning fork is obviously far too small to be observed,
and we are justified in regarding the fork as obeying classical physics.

(b) For the atomic oscillator,
hy, = (6.63 X 107 ] +5) (5.00 X 10"*s71) =332 X 107" ]

In electronvolts, the usual energy unit in atomic physics,

332X 10717]
hvy= ———————=208eV
1.60 X 1077 Jev

This is a significant amount of energy on an atomic scale, and it is not surprising that classical
physics fails to account for phenomena on this scale.

The concept that the oscillators in the cavity walls can interchange energy with
standing waves in the cavity only in quanta of hv is, from the point of view of classi-
cal physics, impossible to understand. Planck regarded his quantum hypothesis as an
“act of desperation” and, along with other physicists of his time, was unsure of how
seriously to regard it as an element of physical reality. For many years he held that,
although the energy transfers between electric oscillators and em waves apparently are
quantized, em waves themselves behave in an entirely classical way with a continuous
range of possible energies.

2.3 PHOTOELECTRIC EFFECT

The energies of electrons liberated by light depend on the frequency
of the light

During his experiments on em waves, Hertz noticed that sparks occurred more readily in
the air gap of his transmitter when ultraviolet light was directed at one of the metal balls.
He did not follow up this observation, but others did. They soon discovered that the cause
was electrons emitted when the frequency of the light was sufficiently high. This phe-
nomenon is known as the photoelectric effect and the emitted electrons are called pho-
toelectrons. It is one of the ironies of history that the same work to demonstrate that light
consists of em waves also gave the first hint that this was not the whole story.

Figure 2.9 shows how the photoelectric effect was studied. An evacuated tube con-
tains two electrodes connected to a source of variable voltage, with the metal plate whose
surface is irradiated as the anode. Some of the photoelectrons that emerge from this sur-
face have enough energy to reach the cathode despite its negative polarity, and they con-
stitute the measured current. The slower photoelectrons are repelled before they get to
the cathode. When the voltage is increased to a certain value Vj, of the order of several
volts, no more photoelectrons arrive, as indicated by the current dropping to zero. This
extinction voltage corresponds to the maximum photoelectron kinetic energy.
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Figure 2.9 Experimental observation of the photoelectric effect. 9 ;
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The existence of the photoelectric effect is not surprising. After all, light waves carry
energy, and some of the energy absorbed by the metal may somehow concentrate on 0 v v
0

individual electrons and reappear as their kinetic energy. The situation should be like
water waves dislodging pebbles from a beach. But three experimental findings show
that no such simple explanation is possible.

1 Within the limits of experimental accuracy (about 1079 s), there is no time interval
between the arrival of light at a metal surface and the emission of photoelectrons. How-
ever, because the energy in an em wave is supposed to be spread across the wavefronts,
a period of time should elapse before an individual electron accumulates enough energy
(several eV) to leave the metal. A detectable photoelectron current results when 107°
W/m? of em energy is absorbed by a sodium surface. A layer of sodium 1 atom thick
and 1 m” in area contains about 10" atoms, so if the incident light is absorbed in the
uppermost atomic layer, each atom receives energy at an average rate of 107*° W. At
this rate over a month would be needed for an atom to accumulate energy of the mag-
nitude that photoelectrons from a sodium surface are observed to have.

2 A bright light yields more photoelectrons than a dim one of the same frequency, but
the electron energies remain the same (Fig. 2.10). The em theory of light, on the con-
trary, predicts that the more intense the light, the greater the energies of the electrons.
3 The higher the frequency of the light, the more energy the photoelectrons have
(Fig. 2.11). Blue light results in faster electrons than red light. At frequencies below a
certain critical frequency vp, which is characteristic of each particular metal, no elec-
trons are emitted. Above v, the photoelectrons range in energy from 0 to a maximum
value that increases linearly with increasing frequency (Fig. 2.12). This observation,
also, cannot be explained by the em theory of light.

Quantum Theory of Light

When Planck’s derivation of his formula appeared, Einstein was one of the first—
perhaps the first—to understand just how radical the postulate of energy quantization

o

Retarding potential

Figure 2.10 Photoelectron cur-
rent is proportional to light in-
tensity I for all retarding voltages.
The stopping potential V,, which
corresponds to the maximum
photoelectron energy, is the same
for all intensities of light of the
same frequency .
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Figure 2.11 The stopping poten-
tial V,, and hence the maximum
photoelectron energy, depends on
the frequency of the light. When
the retarding potential is V = 0,
the photoelectron current is the
same for light of a given intensity
regardless of its frequency.
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Figure 2.12 Maximum photoelectron kinetic energy KE,, versus frequency of incident light for three
metal surfaces.

of oscillators was: “It was as if the ground was pulled from under one.” A few years
later, in 1905, Einstein realized that the photoelectric effect could be understood if the
energy in light is not spread out over wavefronts but is concentrated in small packets,
or photons. (The term photon was coined by the chemist Gilbert Lewis in 1926.) Each
photon of light of frequency v has the energy hv, the same as Planck’s quantum energy.
Planck had thought that, although energy from an electric oscillator apparently had to
be given to em waves in separate quanta of hv each, the waves themselves behaved
exactly as in conventional wave theory. Einstein’s break with classical physics was more
drastic: Energy was not only given to em waves in separate quanta but was also car-
ried by the waves in separate quanta.

The three experimental observations listed above follow directly from Einstein’s hy-
pothesis. (1) Because em wave energy is concentrated in photons and not spread out,
there should be no delay in the emission of photoelectrons. (2) All photons of fre-
quency v have the same energy, so changing the intensity of a monochromatic light
beam will change the number of photoelectrons but not their energies. (3) The higher
the frequency v, the greater the photon energy hv and so the more energy the photo-
electrons have.

What is the meaning of the critical frequency vy below which no photoelectrons are
emitted? There must be a minimum energy ¢ for an electron to escape from a partic-
ular metal surface or else electrons would pour out all the time. This energy is called
the work function of the metal, and is related to vy by the formula

Work function ¢ = hy, 2.7

The greater the work function of a metal, the more energy is needed for an electron
to leave its surface, and the higher the critical frequency for photoelectric emission
to occur.

Some examples of photoelectric work functions are given in Table 2.1. To pull an
electron from a metal surface generally takes about half as much energy as that needed
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Table 2.1 Photoelectric Work Functions

Metal Symbol Work Function, eV
Cesium Cs 1.9
Potassium K 2.2
Sodium Na 2.3
Lithium Li 2.5
Calcium Ca 32
Copper Cu 4.7
Silver Ag 4.7
Platinum Pt 6.4

to pull an electron from a free atom of that metal (see Fig. 7.10); for instance, the
ionization energy of cesium is 3.9 eV compared with its work function of 1.9 eV. Since
the visible spectrum extends from about 4.3 to about 7.5 X 10'* Hz, which corre-
sponds to quantum energies of 1.7 to 3.3 eV, it is clear from Table 2.1 that the pho-
toelectric effect is a phenomenon of the visible and ultraviolet regions.

According to Einstein, the photoelectric effect in a given metal should obey the
equation

Photoelectric effect hv = KEpax + @ 2.8)

where hv is the photon energy, KE,,,« is the maximum photoelectron energy (which is
proportional to the stopping potential), and ¢ is the minimum energy needed for an

All light-sensitive detectors, including the eye and the one used in this video camera, are based
on the absorption of energy from photons of light by electrons in the atoms the light falls on.
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E=hv, E=hv

<«_ !

KE =hv - hUO

max

KE=0
C’L Metal

Figure 2.13 1f the energy hv, (the work function of the surface) is needed to remove an electron from
a metal surface, the maximum electron kinetic energy will be hv — hyy when light of frequency v is
directed at the surface.

electron to leave the metal. Because ¢ = hvy, Eq. (2.8) can be rewritten (Fig. 2.13)

hv = KE, .« + hvy
KE,ax = hv — hyvy = h(v — vp) 2.9

This formula accounts for the relationships between KE,,, and » plotted in Fig. 2.12
from experimental data. If Einstein was right, the slopes of the lines should all be equal
to Planck’s constant h, and this is indeed the case.

In terms of electronvolts, the formula E = hw for photon energy becomes

Photon ( 6.626 X 10" J - s

— - -15 )
energy 1.602 X 101 J/ev )V (4.136 X 10" v eV -s (2.10)

If we are given instead the wavelength A of the light, then since v = ¢/A we have

Photon (4136 X107 eV-5)(2.998 X 10° m/s)  1.240 X 10 eV m
energy E= A N A

2.1D

Example 2.2

Ultraviolet light of wavelength 350 nm and intensity 1.00 W/m? is directed at a potassium sur-
face. (@) Find the maximum KE of the photoelectrons. (b) If 0.50 percent of the incident pho-
tons produce photoelectrons, how many are emitted per second if the potassium surface has an
area of 1.00 cm??

Solution
(a) From Eq. (2.11) the energy of the photons is, since 1 nm = 1 nanometer = 1077 m,

124 X 10 °eV+-m
Ep = = =35eV
(350 nm)(10"° m/nm)
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Table 2.1 gives the work function of potassium as 2.2 eV, so
KEpx =hv —¢=35eV—22eV=13¢eV

(b) The photon energy in joules is 5.68 X 107 J. Hence the number of photons that reach the
surface per second is

E/t _ (P/A@A) _ (1.00 W/m?) (1.00 X 107 m?)

E

= 1.76 X 10"* photons/s
Y E, 5.68 X 107" J/photon

np

The rate at which photoelectrons are emitted is therefore

ne = (O.OOSO)nP =88 x 10" photoelectrons/s

Thermionic Emission

E instein’s interpretation of the photoelectric effect is supported by studies of thermionic emis-
sion. Long ago it was discovered that the presence of a very hot object increases the elec-
tric conductivity of the surrounding air. Eventually the reason for this effect was found to be the
emission of electrons from such an object. Thermionic emission makes possible the operation
of such devices as television picture tubes, in which metal filaments or specially coated cathodes
at high temperature supply dense streams of electrons.

The emitted electrons evidently obtain their energy from the thermal agitation of the parti-
cles of the metal, and we would expect the electrons to need a certain minimum energy to
escape. This minimum energy can be determined for many surfaces, and it is always close to
the photoelectric work function for the same surfaces. In photoelectric emission, photons of
light provide the energy required by an electron to escape, while in thermionic emission heat
does so.

2.4 WHAT IS LIGHT?

Both wave and particle

The concept that light travels as a series of little packets is directly opposed to the wave
theory of light (Fig. 2.14). Both views have strong experimental support, as we have
seen. According to the wave theory, light waves leave a source with their energy spread
out continuously through the wave pattern. According to the quantum theory, light
consists of individual photons, each small enough to be absorbed by a single electron.
Yet, despite the particle picture of light it presents, the quantum theory needs the fre-
quency of the light to describe the photon energy.

Which theory are we to believe? A great many scientific ideas have had to be re-
vised or discarded when they were found to disagree with new data. Here, for the first
time, two different theories are needed to explain a single phenomenon. This situation
is not the same as it is, say, in the case of relativistic versus newtonian mechanics, where
one turns out to be an approximation of the other. The connection between the wave  Figure 2.14 (@) The wave theory
and quantum theories of light is something else entirely. of light explains diffraction and

To appreciate this connection, let us consider the formatign of a double-slit in- Et:;rf;rce;;i’ox&z%i;??ogu(z?[ﬁi
terference pattern on a screen. In the wave model, the light intensity at a place on quantum theory explains the pho-
the screen depends on E? the average over a complete cycle of the square of the in-  (oelectric effect, which the wave
stantaneous magnitude E of the em wave’s electric field. In the particle model, this  theory cannot account for.
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intensity depends instead on Nhv, where N is the number of photons per second
per unit area that reach the same place on the screen. Both descriptions must give
the same value for the intensity, so N is proportional to E If N is large enough,
somebody looking at the screen would see the usual double-slit interference pat-
tern and would have no reason to doubt the wave model. If N is small—perhaps
so small that only one photon at a time reaches the screen—the observer would
find a series of apparently random flashes and would assume that he or she is watch-
ing quantum behavior.

If the observer keeps track of the flashes for long enough, though, the pattern they
form will be the same as when N is large. Thus the observer is entitled to conclude
that the probability of finding a photon at a certain place and time depends on the value
of E”there. If we regard each photon as somehow having a wave associated with it,
the intensity of this wave at a given place on the screen determines the likelihood that
a photon will arrive there. When it passes through the slits, light is behaving as a wave
does. When it strikes the screen, light is behaving as a particle does. Apparently light
travels as a wave but absorbs and gives off energy as a series of particles.

We can think of light as having a dual character. The wave theory and the quan-
tum theory complement each other. Either theory by itself is only part of the story
and can explain only certain effects. A reader who finds it hard to understand how
light can be both a wave and a stream of particles is in good company: shortly before
his death, Einstein remarked that “All these fifty years of conscious brooding have
brought me no nearer to the answer to the question, ‘What are light quanta?” The
“true nature” of light includes both wave and particle characters, even though there is
nothing in everyday life to help us visualize that.

2.5 X-RAYS
They consist of high-energy photons

The photoelectric effect provides convincing evidence that photons of light can transfer
energy to electrons. Is the inverse process also possible? That is, can part or all of the
kinetic energy of a moving electron be converted into a photon? As it happens, the in-
verse photoelectric effect not only does occur but had been discovered (though not
understood) before the work of Planck and Einstein.

In 1895 Wilhelm Roentgen found that a highly penetrating radiation of unknown
nature is produced when fast electrons impinge on matter. These x-rays were soon
found to travel in straight lines, to be unaffected by electric and magnetic fields, to
pass readily through opaque materials, to cause phosphorescent substances to glow,
and to expose photographic plates. The faster the original electrons, the more pene-
trating the resulting x-rays, and the greater the number of electrons, the greater the in-
tensity of the x-ray beam.

Not long after this discovery it became clear that x-rays are em waves. Electro-
magnetic theory predicts that an accelerated electric charge will radiate em waves,
and a rapidly moving electron suddenly brought to rest is certainly accelerated. Ra-
diation produced under these -circumstances is given the German name
bremsstrahlung (“braking radiation”). Energy loss due to bremsstrahlung is more
important for electrons than for heavier particles because electrons are more violently
accelerated when passing near nuclei in their paths. The greater the energy of an
electron and the greater the atomic number of the nuclei it encounters, the more en-
ergetic the bremsstrahlung.
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Wilhelm Konrad Roentgen
(1845-1923) was born in Lennep,
Germany, and studied in Holland
and Switzerland. After periods at
several German  universities,
Roentgen became professor of
physics at Wirzburg where, on
November 8, 1895, he noticed
that a sheet of paper coated with
barium platinocyanide glowed
when he switched on a nearby
cathode-ray tube that was entirely

are accelerated in a vacuum by an electric field, and it was
the impact of these electrons on the glass end of the tube that
produced the penetrating “x” (since their nature was then
unknown) rays that caused the salt to glow. Roentgen said of
his discovery that, when people heard of it, they would say,
“Roentgen has probably gone crazy.” In fact, x-rays were an
immediate sensation, and only two months later were being
used in medicine. They also stimulated research in new di-
rections; Becquerel’s discovery of radioactivity followed within
a year. Roentgen received the first Nobel Prize in physics in
1902. He refused to benefit financially from his work and died
in poverty in the German inflation that followed the end of

covered with black cardboard. In a cathode-ray tube electrons World War 1.

In 1912 a method was devised for measuring the wavelengths of x-rays. A dif-
fraction experiment had been recognized as ideal, but as we recall from physical
optics, the spacing between adjacent lines on a diffraction grating must be of the
same order of magnitude as the wavelength of the light for satisfactory results, and
gratings cannot be ruled with the minute spacing required by x-rays. Max von Laue
realized that the wavelengths suggested for x-rays were comparable to the spacing
between adjacent atoms in crystals. He therefore proposed that crystals be used to
diffract x-rays, with their regular lattices acting as a kind of three-dimensional grat-
ing. In experiments carried out the following year, wavelengths from 0.013 to 0.048
nm were found, 10~ of those in visible light and hence having quanta 10* times
as energetic.

Electromagnetic radiation with wavelengths from about 0.01 to about 10 nm falls
into the category of x-rays. The boundaries of this category are not sharp: the shorter-
wavelength end overlaps gamma rays and the longer-wavelength end overlaps ultravi-
olet light (see Fig. 2.2).

Figure 2.15 is a diagram of an x-ray tube. A cathode, heated by a filament through
which an electric current is passed, supplies electrons by thermionic emission.
The high potential difference V maintained between the cathode and a metallic tar-
get accelerates the electrons toward the latter. The face of the target is at an angle
relative to the electron beam, and the x-rays that leave the target pass through the

Evacuated

-9 <e
Electrons

mll

Figure 2.15 An x-ray tube. The higher the accelerating voltage V, the faster the electrons and the
shorter the wavelengths of the x-rays.
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In modern x-ray tubes like these,
circulating oil carries heat away
from the target and releases it to
the outside air through a heat
exchanger. The use of x-rays as a
diagnostic tool in medicine is
based upon the different extents
to which different tissues absorb
them. Because of its calcium con-
tent, bone is much more opaque
to x-rays than muscle, which in
turn is more opaque than fat. To
enhance contrast, “meals” that con-
tain barium are given to patients to
better display their digestive sys-
tems, and other compounds may
be injected into the bloodstream to
enable the condition of blood ves-
sels to be studied.

10

Tungsten
target

Relative intensity

20 kv

0 0.02 0.04 0.06 0.08 0.10
Wavelength, nm

Figure 2.16 X-ray spectra of tungsten at various accelerating potentials.

side of the tube. The tube is evacuated to permit the electrons to get to the target
unimpeded.

As mentioned earlier, classical electromagnetic theory predicts bremsstrahlung when
electrons are accelerated, which accounts in general for the x-rays produced by an x-ray
tube. However, the agreement between theory and experiment is not satisfactory in cer-
tain important respects. Figures 2.16 and 2.17 show the x-ray spectra that result when
tungsten and molybdenum targets are bombarded by electrons at several different accel-
erating potentials. The curves exhibit two features electromagnetic theory cannot explain:

1 In the case of molybdenum, intensity peaks occur that indicate the enhanced pro-

duction of x-rays at certain wavelengths. These peaks occur at specific wavelengths for
each target material and originate in rearrangements of the electron structures of the

12

10

Tungsten, 35 kV,

Relative intensity
o

2 Molybdenum,
35 kv
0 0.02 0.04 0.06 0.08 0.10

Wavelength, nm

Figure 2.17 X-ray spectra of tungsten and molybdenum at 35 kV accelerating potential.
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In a CT (computerized tomography) scanner, a series of x-ray exposures of a patient
taken from different directions are combined by a computer to give cross-sectional
images of the parts of the body being examined. In effect, the tissue is sliced up by the
computer on the basis of the x-ray exposures, and any desired slice can be displayed.
This technique enables an abnormality to be detected and its exact location established,
which might be impossible to do from an ordinary x-ray picture. (The word tomogra-
phy comes from tomos, Greek for “cut.”)

target atoms after having been disturbed by the bombarding electrons. This phenom-
enon will be discussed in Sec. 7.9; the important thing to note at this point is the pres-
ence of x-rays of specific wavelengths, a decidedly nonclassical effect, in addition to a
continuous x-ray spectrum.

2 The x-rays produced at a given accelerating potential V vary in wavelength, but none
has a wavelength shorter than a certain value A, Increasing V decreases A pi,. At a
particular V, A, is the same for both the tungsten and molybdenum targets. Duane
and Hunt found experimentally that A, is inversely proportional to V; their precise
relationship is

. 1.24 X 10°°
X-ray production Amin = ﬁ V-m (2.12)

The second observation fits in with the quantum theory of radiation. Most of the
electrons that strike the target undergo numerous glancing collisions, with their energy
going simply into heat. (This is why the targets in x-ray tubes are made from high-
melting-point metals such as tungsten, and a means of cooling the target is usually em-
ployed.) A few electrons, though, lose most or all of their energy in single collisions
with target atoms. This is the energy that becomes x-rays.

X-rays production, then, except for the peaks mentioned in observation 1 above,
represents an inverse photoelectric effect. Instead of photon energy being transformed
into electron KE, electron KE is being transformed into photon energy. A short wave-
length means a high frequency, and a high frequency means a high photon energy hv.
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Since work functions are only a few electronvolts whereas the accelerating poten-
tials in x-ray tubes are typically tens or hundreds of thousands of volts, we can ignore
the work function and interpret the short wavelength limit of Eq. (2.12) as corre-
sponding to the case where the entire kinetic energy KE = Ve of a bombarding elec-
tron is given up to a single photon of energy hv,,,,. Hence

h
Ve = hvpa = e
/\min
he 1240 X10°°
Amm = -5 = 5 V s m
Ve \%

which is the Duane-Hunt formula of Eq. (2.12)—and, indeed, the same as Eq. (2.11)
except for different units. It is therefore appropriate to regard x-ray production as the
inverse of the photoelectric effect.

Example 2.3

Find the shortest wavelength present in the radiation from an x-ray machine whose accelerat-
ing potential is 50,000 V.

Solution
From Eq. (2.12) we have

124X10°V-m 0
Apin = ————————— =248 X 10" m = 0.0248 nm
5.00 X 10% v

This wavelength corresponds to the frequency

c 3.00 X 10% m/s 1o
Vinax = = —— =121 X 10" Hz
Amin 248X 107" m

2.6 X-RAY DIFFRACTION

How x-ray wavelengths can be determined

A crystal consists of a regular array of atoms, each of which can scatter em waves. The
mechanism of scattering is straightforward. An atom in a constant electric field be-
comes polarized since its negatively charged electrons and positively charged nucleus
experience forces in opposite directions. These forces are small compared with the
forces holding the atom together, and so the result is a distorted charge distribution
equivalent to an electric dipole. In the presence of the alternating electric field of an
em wave of frequency w, the polarization changes back and forth with the same fre-
quency v. An oscillating electric dipole is thus created at the expense of some of the
energy of the incoming wave. The oscillating dipole in turn radiates em waves of fre-
quency v, and these secondary waves go out in all directions except along the dipole
axis. (In an assembly of atoms exposed to unpolarized radiation, the latter restriction
does not apply since the contributions of the individual atoms are random.)

In wave terminology, the secondary waves have spherical wave fronts in place of
the plane wave fronts of the incoming waves (Fig. 2.18). The scattering process, then,
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Scattered

waves
Incident Unscattered
waves waves

-

-

Figure 2.18 The scattering of electromagnetic radiation by a group of atoms. Incident plane waves are
reemitted as spherical waves.

involves atoms that absorb incident plane waves and reemit spherical waves of the
same frequency.

A monochromatic beam of x-rays that falls upon a crystal will be scattered in all di-
rections inside it. However, owing to the regular arrangement of the atoms, in certain
directions the scattered waves will constructively interfere with one another while in
others they will destructively interfere. The atoms in a crystal may be thought of as
defining families of parallel planes, as in Fig. 2.19, with each family having a charac-
teristic separation between its component planes. This analysis was suggested in 1913
by W. L Bragg, in honor of whom the above planes are called Bragg planes.

The conditions that must be fulfilled for radiation scattered by crystal atoms to un-
dergo constructive interference may be obtained from a diagram like that in Fig. 2.20.
A beam containing x-rays of wavelength A is incident upon a crystal at an angle 6 with
a family of Bragg planes whose spacing is d. The beam goes past atom A in the first
plane and atom B in the next, and each of them scatters part of the beam in random
directions. Constructive interference takes place only between those scattered rays that
are parallel and whose paths differ by exactly A, 2A, 3A, and so on. That is, the path
difference must be nA, where n is an integer. The only rays scattered by A and B for
which this is true are those labeled I and 1I in Fig. 2.20.

The first condition on I and II is that their common scattering angle be equal to
the angle of incidence 6 of the original beam. (This condition, which is independent

Figure 2.19 Two sets of Bragg planes in a NaCl crystal.

o



bei48482 ch02.gxd 1/16/02 1:53 PM Page 74 $

74 Chapter Two

Path difference
(e =2dsin 0

(@] (@] o (@] (@]

The interference pattern pro- Figure 2.20 X-ray scattering from a cubic crystal.
duced by the scattering of x-rays
from ions in a crystal of NaCl. The
bright spots correspond to the di-

rections where x-rays scattered . . L .
. . of wavelength, is the same as that for ordinary specular reflection in optics: angle of
from various layers in the crystal

interfere constructively. The cubic ~ incidence = angle of reflection.) The second condition is that

pattern of the NaCl lattice is sug-

gested by he fourfold symmetry 2d sin 6 = nA n=12,3... (2.13)
of the pattern. The large central
spot is due to the unscattered

since ray II must travel the distance 2d sin € farther than ray I. The integer n is the
x-ray beam.

order of the scattered beam.

The schematic design of an x-ray spectrometer based upon Bragg’s analysis is shown
in Fig. 2.21. A narrow beam of x-rays falls upon a crystal at an angle 6, and a detector
is placed so that it records those rays whose scattering angle is also 6. Any x-rays reach-
ing the detector therefore obey the first Bragg condition. As 6 is varied, the detector

- Detector
~
AN
N
X-rays \
0 \
\
l
9&/ Crystal /
/
/
Path of /
Collimators detector -
~

Figure 2.21 X-ray spectrometer.
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will record intensity peaks corresponding to the orders predicted by Eq. (2.13). If the
spacing d between adjacent Bragg planes in the crystal is known, the x-ray wavelength
A may be calculated.

2.7 COMPTON EFFECT

Further confirmation of the photon model

According to the quantum theory of light, photons behave like particles except for their
lack of rest mass. How far can this analogy be carried? For instance, can we consider
a collision between a photon and an electron as if both were billiard balls?

Figure 2.22 shows such a collision: an x-ray photon strikes an electron (assumed
to be initially at rest in the laboratory coordinate system) and is scattered away from
its original direction of motion while the electron receives an impulse and begins to
move. We can think of the photon as losing an amount of energy in the collision that
is the same as the kinetic energy KE gained by the electron, although actually separate
photons are involved. If the initial photon has the frequency v associated with it, the
scattered photon has the lower frequency ', where

Loss in photon energy = gain in electron energy
hv — hv' = KE 2.149)

From Chap. 1 we recall that the momentum of a massless particle is related to its
energy by the formula

E=pc (1.25)

Since the energy of a photon is hv, its momentum is

= — (2.15)

Photon momentum p=

Incident photon

E=hv Target
p=hv/c electron v 2] e
E = m2* + pzcz p cos O
= p .
(a) Scattered p=p psin®
electron »

Figure 2.22 (a) The scattering of a photon by an electron is called the Compton effect. Energy and momentum are conserved in such an
event, and as a result the scattered photon has less energy (longer wavelength) than the incident photon. (b) Vector diagram of the momenta
and their components of the incident and scattered photons and the scattered electron.
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Momentum, unlike energy, is a vector quantity that incorporates direction as well
as magnitude, and in the collision momentum must be conserved in each of two
mutually perpendicular directions. (When more than two bodies participate in a
collision, momentum must be conserved in each of three mutually perpendicular
directions.) The directions we choose here are that of the original photon and one
perpendicular to it in the plane containing the electron and the scattered photon
(Fig. 2.22).

The initial photon momentum is hv/c, the scattered photon momentum is hv'/c, and
the initial and final electron momenta are respectively 0 and p. In the original photon
direction

Initial momentum = final momentum

hv hy'
— 4+ 0=
c

cos ¢ + p cos 6 (2.16)

and perpendicular to this direction

Initial momentum = final momentum

!

0= hy sin ¢ — p sin .17

The angle ¢ is that between the directions of the initial and scattered photons, and 6
is that between the directions of the initial photon and the recoil electron. From Egs.
(2.14), (2.16), and (2.17) we can find a formula that relates the wavelength difference
between initial and scattered photons with the angle ¢ between their directions, both
of which are readily measurable quantities (unlike the energy and momentum of the
recoil electron).
The first step is to multiply Eqs. (2.16) and (2.17) by ¢ and rewrite them as
pc cos @ = hv — hv' cos ¢
pcsin @ = hy' sin ¢

By squaring each of these equations and adding the new ones together, the angle 6 is
eliminated, leaving

p’c* = (hv)* = 2(hw)(hv') cos ¢ + (')’ (2.18)
Next we equate the two expressions for the total energy of a particle

E = KE + mc? (1.20)

E=Vm*"+ pzc2 (1.24)

from Chap. 1 to give

(KE + mc®)? = m*ct + pzcz

p’c® = KE* + 2mc® KE
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Since
KE = hy — hy'
we have
P> = (w)* = 2w)(w") + (hv')* + 2mc*(hw — h') (2.19)
Substituting this value of p*c* in Eq. (2.18), we finally obtain
2mc*(hw — hv') = 2(hw)(hv")(1 — cos ¢) (2.20)

This relationship is simpler when expressed in terms of wavelength A. Dividing
Eq. (2.20) by 2h* ¢?,

h \c c

ﬂ(i _ V_): PV s )
c C

and so, since v/c = 1/A and v'/c = 1/A’,

mefl 1y _l-cosé
h(A /\') AN

h
Compton effect AM—=A=—( —cos ¢) .21
mc

Equation (2.21) was derived by Arthur H. Compton in the early 1920s, and the phe-
nomenon it describes, which he was the first to observe, is known as the Compton
effect. It constitutes very strong evidence in support of the quantum theory of radiation.

Equation (2.21) gives the change in wavelength expected for a photon that is scat-
tered through the angle ¢ by a particle of rest mass m. This change is independent of
the wavelength A of the incident photon. The quantity

Compton wavelength Ae= — (2.22)

is called the Compton wavelength of the scattering particle. For an electron
Ac = 2426 X 107** m, which is 2.426 pm (1 pm = 1 picometer = 107> m). In
terms of A¢, Eq. (2.21) becomes

Compton effect A=A =Ac(1 — cos ¢) (2.23)

The Compton wavelength gives the scale of the wavelength change of the incident
photon. From Eq. (2.23) we note that the greatest wavelength change possible corre-
sponds to ¢ = 180°, when the wavelength change will be twice the Compton wave-
length Ac. Because A = 2.426 pm for an electron, and even less for other particles
owing to their larger rest masses, the maximum wavelength change in the Compton
effect is 4.852 pm. Changes of this magnitude or less are readily observable only in
x-rays: the shift in wavelength for visible light is less than 0.01 percent of the initial
wavelength, whereas for x-rays of A = 0.1 nm it is several percent. The Compton effect
is the chief means by which x-rays lose energy when they pass through matter.
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Arthur Holly Compton (1892-
1962), a native of Ohio, was edu-
cated at College of Wooster and
Princeton. While at Washington
University in St. Louis he found
that x-rays increase in wavelength
when scattered, which he ex-
plained in 1923 on the basis of the
quantum theory of light. This work
convinced remaining doubters of
the reality of photons.

Example 2.4

After receiving the Nobel Prize in 1927, Compton, now at
the University of Chicago, studied cosmic rays and helped es-
tablish that they are fast charged particles (today known to be
atomic nuclei, largely protons) that circulate in space and are
not high-energy gamma rays as many had thought. He did this
by showing that cosmic-ray intensity varies with latitude, which
makes sense only if they are ions whose paths are influenced
by the earth’s magnetic field. During World War II Compton
was one of the leaders in the development of the atomic bomb.

X-rays of wavelength 10.0 pm are scattered from a target. (a) Find the wavelength of the x-rays
scattered through 45°. (b) Find the maximum wavelength present in the scattered x-rays. (¢) Find
the maximum kinetic energy of the recoil electrons.

Solution

(@) From Eq. 2.23),A" = A =Ac(1 — cos ¢), and so

A=A+ A1 — cos 45°)
=10.0 pm + 0.293A¢

= 10.7 pm

(b) A" — A is a maximum when (1 — cos ¢) = 2, in which case

A=A+ 2\c=10.0 pm + 4.9 pm = 14.9 pm

(¢) The maximum recoil kinetic energy is equal to the difference between the energies of the
incident and scattered photons, so

1 1
KEax = h(v — ') = hc(— - —)
A A

where A" is given in (b). Hence

KEmaX -

’

_(6.626 X 10°*] - 5)(3.00 x 10° m/s)( 1 1 )

107" m/pm 10.0 pm 149 pm

=6.54 X 10717]

which is equal to 40.8 keV.

The experimental demonstration of the Compton effect is straightforward. As in
Fig. 2.23, a beam of x-rays of a single, known wavelength is directed at a target, and
the wavelengths of the scattered x-rays are determined at various angles ¢. The results,
shown in Fig. 2.24, exhibit the wavelength shift predicted by Eq. (2.21), but at each
angle the scattered x-rays also include many that have the initial wavelength. This is
not hard to understand. In deriving Eq. (2.21) it was assumed that the scattering par-
ticle is able to move freely, which is reasonable since many of the electrons in matter

o



bei48482 ch02.gxd 1/16/02 1:53 PM Page 79 $

Particle Properties of Waves

-
~

X-ray spectrometer.

\
\

\
|
J— J

Unscattered

x-ray
Source of Collimators /
monochromatic /
x-rays Path of
spectrometer _-
_ —

Figure 2.23 Experimental demonstration of the Compton effect.
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Figure 2.24 Experimental confirmation of Compton scattering. The greater the scattering angle, the greater the wavelength
change, in accord with Eq. (2.21).

are only loosely bound to their parent atoms. Other electrons, however, are very tightly
bound and when struck by a photon, the entire atom recoils instead of the single elec-
tron. In this event the value of m to use in Eq. (2.21) is that of the entire atom, which
is tens of thousands of times greater than that of an electron, and the resulting Comp-
ton shift is accordingly so small as to be undetectable.

2.8 PAIR PRODUCTION

Energy into matter
As we have seen, in a collision a photon can give an electron all of its energy (the pho-
toelectric effect) or only part (the Compton effect). It is also possible for a photon to

materialize into an electron and a positron, which is a positively charged electron. In
this process, called pair production, electromagnetic energy is converted into matter.
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Figure 2.25 In the process of pair production, a photon of sufficient energy materializes into an elec-
tron and a positron.

No conservation principles are violated when an electron-positron pair is created
near an atomic nucleus (Fig. 2.25). The sum of the charges of the electron (¢ = —e)
and of the positron (q@ = +e) is zero, as is the charge of the photon; the total energy,
including rest energy, of the electron and positron equals the photon energy; and lin-
ear momentum is conserved with the help of the nucleus, which carries away enough
photon momentum for the process to occur. Because of its relatively enormous mass,
the nucleus absorbs only a negligible fraction of the photon energy. (Energy and lin-
ear momentum could not both be conserved if pair production were to occur in empty
space, so it does not occur there.)

Bubble-chamber photograph of electron-positron pair formation. A magnetic field perpendicular to
the page caused the electron and positron to move in opposite curved paths, which are spirals be-
cause the particles lost energy as they moved through the chamber. In a bubble chamber, a liquid
(here, hydrogen) is heated above its normal boiling point under a pressure great enough to keep it
liquid. The pressure is then released, and bubbles form around any ions present in the resulting un-
stable superheated liquid. A charged particle moving through the liquid at this time leaves a track of
bubbles that can be photographed.
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The rest energy mc” of an electron or positron is 0.51 MeV, hence pair production
requires a photon energy of at least 1.02 MeV. Any additional photon energy becomes
kinetic energy of the electron and positron. The corresponding maximum photon wave-
length is 1.2 pm. Electromagnetic waves with such wavelengths are called gamma rays,
symbol vy, and are found in nature as one of the emissions from radioactive nuclei and
In cosmic rays.

The inverse of pair production occurs when a positron is near an electron and the
two come together under the influence of their opposite electric charges. Both parti-
cles vanish simultaneously, with the lost mass becoming energy in the form of two
gamma-ray photons:

et te o>yt

The total mass of the positron and electron is equivalent to 1.02 MeV, and each pho-
ton has an energy hv of 0.51 MeV plus half the kinetic energy of the particles relative
to their center of mass. The directions of the photons are such as to conserve both en-
ergy and linear momentum, and no nucleus or other particle is needed for this pair
annihilation to take place.

Example 2.5
Show that pair production cannot occur in empty space.
Solution

From conservation of energy,
hy = 2ymc?

where hv is the photon energy and ymc?” is the total energy of each member of the electron-
position pair. Figure 2.26 is a vector diagram of the linear momenta of the photon, electron,
and positron. The angles 6 are equal in order that momentum be conserved in the transverse
direction. In the direction of motion of the photon, for momentum to be conserved it must
be true that

hv
— =2pcos
c
hv = 2pc cos 6
p
0 p cos O
hv/c 0 p cos O
p

Figure 2.26 Vector diagram of the momenta involved if a photon were to materialize into an electron-
positron pair in empty space. Because such an event cannot conserve both energy and momentum, it
does not occur. Pair production always involves an atomic nucleus that carries away part of the initial
photon momentum.
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Since p = ymv for the electron and positron,
N
hy = 2ymc*| — | cos 0
c

Because v/c <1 and cos 6 < 1,
hy < 2ymc?

But conservation of energy requires that hy = 2ymc?. Hence it is impossible for pair produc-
tion to conserve both energy and momentum unless some other object is involved in the process
to carry away part of the initial photon momentum.

Example 2.6

An electron and a positron are moving side by side in the +x direction at 0.500c when they an-
nihilate each other. Two photons are produced that move along the x axis. (@) Do both photons
move in the +x direction? (b) What is the energy of each photon?

Solution

(@) In the center-of-mass (CM) system (which is the system moving with the original particles),
the photons move off in opposite directions to conserve momentum. They must also do so in
the lab system because the speed of the CM system is less than the speed ¢ of the photons.

(b) Let p; be the momentum of the photon moving in the +x direction and p, be the momen-
tum of the photon moving in the —x direction. Then conservation of momentum (in the lab
system) gives

5 2(mcHw/c?)
—p = 2ymy = e
e 1 —v/c

2(0.511 MeV/c>)(c*)(0.500¢)/ ¢

= = 0.590 MeV/c
V1 - (05007
Conservation of energy gives
pic + poc = Zymcz = 2me” = 200511 MeV) = 1.180 MeV
V1-v/2  V1-05007
and so p1 + p> = 1.180 MeV/c

Now we add the two results and solve for p; and p,:

(pr — p2) + (o1 + po) = 2py = (0.590 + 1.180) MeV/c
p1 = 0.885 MeV/c
p2= (1 +p) —p1 = 0.295 MeV/c

The photon energies are accordingly

Ey = pic = 0.885 MeV Ey = pac = 0.295 MeV

Photon Absorption
The three chief ways in which photons of light, x-rays, and gamma rays interact with

matter are summarized in Fig. 2.27. In all cases photon energy is transferred to elec-
trons which in turn lose energy to atoms in the absorbing material.

o
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Atom

Photoelectric s> o o o—>
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effect

scattering

hv
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hv’
C
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Pair ANNANANNS g/
hv o o ?\

production

Figure 2.27 X- and gamma rays interact with matter chiefly through the photoelectric effect, Comp-
ton scattering, and pair production. Pair production requires a photon energy of at least 1.02 MeV.

At low photon energies the photoelectric effect is the chief mechanism of energy
loss. The importance of the photoelectric effect decreases with increasing energy, to be
succeeded by Compton scattering. The greater the atomic number of the absorber, the
higher the energy at which the photoelectric effect remains significant. In the lighter
elements, Compton scattering becomes dominant at photon energies of a few tens of
keV, whereas in the heavier ones this does not happen until photon energies of nearly

1 MeV are reached (Fig. 2.28).

Carbon

1 PR
B /4  Compton =~ N
;z ] scattering \
s \
A \
1
s \
= Photoelectric \
Eé / effect Pair *

N / production

0.01 0.1 1 10 100

Photon energy, MeV
Lead
- L Photoelectric
%‘ effect — Pair
s “ “ production
2 .
= .
_:>) S Compton
=) 0 )
§ I ‘icattermg
.
0 < \ * S~ -
0.01 0.1 1 10 100

Photon energy, MeV

Figure 2.28 The relative probabilities of the photoelectric effect, Compton scattering, and pair
production as functions of energy in carbon (a light element) and lead (a heavy element).
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Pair production becomes increasingly likely the more the photon energy exceeds
the threshold of 1.02 MeV. The greater the atomic number of the absorber, the lower
the energy at which pair production takes over as the principal mechanism of energy
loss by gamma rays. In the heaviest elements, the crossover energy is about 4 MeV, but
it is over 10 MeV for the lighter ones. Thus gamma rays in the energy range typical of
radioactive decay interact with matter largely through Compton scattering.

The intensity I of an x- or gamma-ray beam is equal to the rate at which it trans-
ports energy per unit cross-sectional area of the beam. The fractional energy —dI/I lost
by the beam in passing through a thickness dx of a certain absorber is found to be pro-
portional to dx:

dl
— = 2.24)
The proportionality constant w is called the linear attenuation coefficient and its
value depends on the energy of the photons and on the nature of the absorbing material.
Integrating Eq. (2.24) gives

Radiation intensity I=TIpe ™ (2.25)

The intensity of the radiation decreases exponentially with absorber thickness x.
Figure 2.29 is a graph of the linear attenuation coefficient for photons in lead as a func-
tion of photon energy. The contribution to w of the photoelectric effect, Compton scat-
tering, and pair production are shown.

We can use Eq. (2.25) to relate the thickness x of absorber needed to reduce the
intensity of an x- or gamma-ray beam by a given amount to the attenuation coefficient
w. If the ratio of the final and initial intensities is /I,

I I
— =M — =M ln—OZ,ux
Iy I
In (I,/I1
Absorber thickness X = (70/) (2.26)
“
1.6

1.4
12
1.0
0.8
0.6

Pair production

Linear attenuation coefficient, cm-!

0.4 C
Photoelectric effect “ompton
0.2 scattering
O &
0 5 10 15 20 25

Photon energy, MeV

Figure 2.29 Linear attentuation coefficients for photons in lead.
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Example 2.7

The linear attenuation coefficient for 2.0-MeV gamma rays in water is 4.9 m ™' (@) Find the rel-
ative intensity of a beam of 2.0-MeV gamma rays after it has passed through 10 cm of water.
(b) How far must such a beam travel in water before its intensity is reduced to 1 percent of its
original value?

Solution

(a) Here ux = (4.9 m 0.10 m) = 0.49 and so, from Eq. (2.25)

I 5
— =M =0 =061
Iy

The intensity of the beam is reduced to 61 percent of its original value after passing through
10 cm of water.
(b) Since Io/I = 100, Eq. (2.26) yields

InUo/D _Inl00
" 49m™!

=09 m

2.9 PHOTONS AND GRAVITY

Although they lack rest mass, photons behave as though they have
gravitational mass

In Sec. 1.10 we learned that light is affected by gravity by virtue of the curvature of
spacetime around a mass. Another way to approach the gravitational behavior of light
follows from the observation that, although a photon has no rest mass, it nevertheless
interacts with electrons as though it has the inertial mass

Photon “mass” m= = — .27

(We recall that, for a photon, p = hv/c and v = ¢.) According to the principle of equiv-
alence, gravitational mass is always equal to inertial mass, so a photon of frequency »
ought to act gravitationally like a particle of mass hv/c*.

The gravitational behavior of light can be demonstrated in the laboratory. When we
drop a stone of mass m from a height H near the earth’s surface, the gravitational pull of
the earth accelerates it as it falls and the stone gains the energy mgH on the way to the
ground. The stone’ final kinetic energy 3 mv? is equal to mgH, so its final speed is \/2gH.

All photons travel with the speed of light and so cannot go any faster. However, a
photon that falls through a height H can manifest the increase of mgH in its energy by
an increase in frequency from v to v' (Fig. 2.30). Because the frequency change is
extremely small in a laboratory-scale experiment, we can neglect the corresponding
change in the photon’s “mass” hv/c?.

o
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E:hv+;% gH=h'
c

KE = mgH o

Figure 2.30 A photon that falls in a gravitational field gains energy, just as a stone does. This gain in
energy is manifested as an increase in frequency from v to v"

Hence,
final photon energy = initial photon energy + increase in energy
hv' = hv + mgH
and so

h
hv' = hy + (—f)gH
c

Photon energy after

r_ H
falling through height H hv' = hV<1 + gc_z) (2.28)

Example 2.8

The increase in energy of a fallen photon was first observed in 1960 by Pound and Rebka at
Harvard. In their work H was 22.5 m. Find the change in frequency of a photon of red light
whose original frequency is 7.3 X 10'* Hz when it falls through 22.5 m.

Solution

From Eq. (2.28) the change in frequency is

~ (9.8 m/5)(22.5 m)(7.3 X 10" Hz)
a (3.0 X 10® m/s)?

=18Hz

Pound and Rebka actually used gamma rays of much higher frequency, as described in Exercise 53.
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Gravitational Red Shift

An interesting astronomical effect is suggested by the gravitational behavior of light. If
the frequency associated with a photon moving toward the earth increases, then the
frequency of a photon moving away from it should decrease.

The earth’s gravitational field is not particularly strong, but the fields of many stars
are. Suppose a photon of initial frequency v is emitted by a star of mass M and radius
R, as in Fig. 2.31. The potential energy of a mass m on the star’s surface is

_ GMm
R

PE =
where the minus sign is required because the force between M and m is attractive. The
potential energy of a photon of “mass” hv/c” on the stars surface is therefore

_ GMhv
R

PE =

and its total energy E, the sum of PE and its quantum energy hv, is

GMhv GM
E=h— — =hv(1— > )
R c°R

At a larger distance from the star, for instance at the earth, the photon is beyond
the star’s gravitational field but its total energy remains the same. The photon’s energy
is now entirely electromagnetic, and

E=hv

where v’ is the frequency of the arriving photon. (The potential energy of the photon
in the earth’s gravitational field is negligible compared with that in the stars field.)
Hence

GM
hv' = hv(l — 2—)
c°R
v oM
v c’R

Figure 2.31 The frequency of a photon emitted from the surface of a star decreases as it moves away
from the star.
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and the relative frequency change is

Gravit..altional Av _v—v _ 1 — v _GM (2.29)
red shift v v v R

The photon has a lower frequency at the earth, corresponding to its loss in energy as
it leaves the field of the star.

A photon in the visible region of the spectrum is thus shifted toward the red end,
and this phenomenon is accordingly known as the gravitational red shift. It is different
from the doppler red shift observed in the spectra of distant galaxies due to their
apparent recession from the earth, a recession that seems to be due to a general
expansion of the universe.

As we shall learn in Chap. 4, when suitably excited the atoms of every element emit
photons of certain specific frequencies only. The validity of Eq. (2.29) can therefore be
checked by comparing the frequencies found in stellar spectra with those in spectra
obtained in the laboratory. For most stars, including the sun, the ratio M/R is too small
for a gravitational red shift to be apparent. However, for a class of stars known as white
dwarfs, it is just on the limit of measurement—and has been observed. A white dwarf
is an old star whose interior consists of atoms whose electron structures have collapsed
and so it is very small: a typical white dwarf is about the size of the earth but has the
mass of the sun.

Black Holes

An interesting question is, what happens if a star is so dense that GM/c’R = 12 If this
is the case, then from Eq. (2.29) we see that no photon can ever leave the star, since
to do so requires more energy than its initial energy hw. The red shift would, in effect,
have then stretched the photon wavelength to infinity. A star of this kind cannot radi-
ate and so would be invisible—a black hole in space.

In a situation in which gravitational energy is comparable with total energy, as for
a photon in a black hole, general relativity must be applied in detail. The correct cri-
terion for a star to be a black hole turns out to be GM/c°R = 3. The Schwarzschild
radius Rs of a body of mass M is defined as

Quasars and Galaxies

n even the most powerful telescope, a quasar appears as a sharp point of light, just as a star

does. Unlike stars, quasars are powerful sources of radio waves; hence their name, a contrac-
tion of quast-stellar radio sources. Hundreds of quasars have been discovered, and there seem to
be many more. Though a typical quasar is smaller than the solar system, its energy output may
be thousands of times the output of our entire Milky Way galaxy.

Most astronomers believe that at the heart of every quasar is a black hole whose mass is at
least that of 100 million suns. As nearby stars are pulled toward the black hole, their matter is
squeezed and heated to produce the observed radiation. While being swallowed, a star may lib-
erate 10 times as much energy as it would have given off had it lived out a normal life. A diet
of a few stars a year seems enough to keep a quasar going at the observed rates. It is possible
that quasars are the cores of newly formed gafaxies. Did all galaxies once undergo a quasar phase?
Nobody can say as yet, but there is evidence that all galaxies, including the Milky Way, contain
massive black holes at their centers.

o
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Schwarzschild R = 2M (2.30)

radius C

The body is a black hole if all its mass is inside a sphere with this radius. The bound-
ary of a black hole is called its event horizon. The escape speed from a black hole is
equal to the speed of the light ¢ at the Schwarzschild radius, hence nothing at all can
ever leave a black hole. For a star with the sun’s mass, Rs is 3 km, a quarter of a mil-
lion times smaller than the sun’s present radius. Anything passing near a black hole
will be sucked into it, never to return to the outside world.

Since it is invisible, how can a black hole be detected? A black hole that is a mem-
ber of a double-star system (double stars are quite common) will reveal its presence
by its gravitational pull on the other star; the two stars circle each other. In addition,
the intense gravitational field of the black hole will attract matter from the other star,
which will be compressed and heated to such high temperatures that x-rays will be
emitted profusely. One of a number of invisible objects that astronomers believe on
this basis to be black holes is known as Cygnus X-1. Its mass is perhaps 8 times that
of the sun, and its radius may be only about 10 km. The region around a black hole
that emits x-rays should extend outward for several hundred kilometers.

Only very heavy stars end up as black holes. Lighter stars evolve into white dwarfs
and neutron stars, which as their name suggests consist largely of neutrons (see Sec.
9.11). But as time goes on, the strong gravitational fields of both white dwarfs and
neutron stars attract more and more cosmic dust and gas. When they have gathered
up enough mass, they too will become black holes. If the universe lasts long enough,
then everything in it may be in the form of black holes.

Black holes are also believed to be at the cores of galaxies. Again, the clues come
from the motions of nearby bodies and from the amount and type of radiation emit-
ted. Stars close to a galactic center are observed to move so rapidly that only the grav-
itational pull of an immense mass could keep them in their orbits instead of flying off.
How immense? As much as a billion times the sun’s mass. And, as in the case of black
holes that were once stars, radiation pours out of galactic centers so copiously that only
black holes could be responsible.

“Why,” said the Dodo, “the best way to explain it is to do it.” —Lewis Carroll, Alice’s Adventures in Wonderland

2.2 Blackbody Radiation

1. If Plancks constant were smaller than it is, would quantum
phenomena be more or less conspicuous than they are now?

2. Express the Planck radiation formula in terms of wavelength.

2.3 Photoelectric Effect

3. Is it correct to say that the maximum photoelectron energy
KE 4« is proportional to the frequency » of the incident light?
If not, what would a correct statement of the relationship
between KE,, .« and v be?

o

Compare the properties of particles with those of waves. Why
do you think the wave aspect of light was discovered earlier
than its particle aspect?

Find the energy of a 700-nm photon.
Find the wavelength and frequency of a 100-MeV photon.

A 1.00-kW radio transmitter operates at a frequency of
880 kHz. How many photons per second does it emit?

Under favorable circumstances the human eye can detect 1.0
X 107'® J of electromagnetic energy. How many 600-nm
photons does this represent?
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Light from the sun arrives at the earth, an average of 1.5

X 10" m away, at the rate of 1.4 X 10° W/m? of area perpendi-
cular to the direction of the light. Assume that sunlight is mono-
chromatic with a frequency of 5.0 X 10'* Hz. (a) How many
photons fall per second on each square meter of the earth’s sur-
face directly facing the sun? (b) What is the power output of the
sun, and how many photons per second does it emit? (¢) How
many photons per cubic meter are there near the earth?

A detached retina is being “welded” back in place using 20-ms
pulses from a 0.50-W laser operating at a wavelength of
632 nm. How many photons are in each pulse?

The maximum wavelength for photoelectric emission in tungsten
is 230 nm. What wavelength of light must be used in order for
electrons with a maximum energy of 1.5 eV to be ejected?

The minimum frequency for photoelectric emission in copper is
1.1 X 10" Hz. Find the maximum energy of the photoelec-
trons (in electronvolts) when light of frequency 1.5 X 10" Hz
is directed on a copper surface.

What is the maximum wavelength of light that will cause
photoelectrons to be emitted from sodium? What will the
maximum kinetic energy of the photoelectrons be if 200-nm
light falls on a sodium surface?

A silver ball is suspended by a string in a vacuum chamber and
ultraviolet light of wavelength 200 nm is directed at it. What
electrical potential will the ball acquire as a result?

1.5 mW of 400-nm light is directed at a photoelectric cell. If
0.10 percent of the incident photons produce photoelectrons,
find the current in the cell.

Light of wavelength 400 nm is shone on a metal surface in an

apparatus like that of Fig. 2.9. The work function of the metal
is 2.50 eV. (a) Find the extinction voltage, that is, the retarding
voltage at which the photoelectron current disappears. (b) Find
the speed of the fastest photoelectrons.

A metal surface illuminated by 8.5 X 10'* Hz light emits
electrons whose maximum energy is 0.52 eV. The same surface
illuminated by 12.0 X 10'* Hz hight emits electrons whose
maximum energy is 1.97 eV. From these data find Planck’s
constant and the work function of the surface.

The work function of a tungsten surface is 5.4 eV. When the
surface is illuminated by light of wavelength 175 nm, the maxi-
mum photoelectron energy is 1.7 eV. Find Planck’s constant
from these data.

Show that it is impossible for a photon to give up all its energy
and momentum to a free electron. This is the reason why the
photoelectric effect can take place only when photons strike
bound electrons.

2.5 X-Rays

20.

21.

What voltage must be applied to an x-ray tube for it to emit
x-rays with a minimum wavelength of 30 pm?

Electrons are accelerated in television tubes through potential
differences of about 10 kV. Find the highest frequency of the

electromagnetic waves emitted when these electrons strike the
screen of the tube. What kind of waves are these?

2.6 X-Ray Diffraction

22.

23.

24.

The smallest angle of Bragg scattering in potassium chloride
(KCD) is 28.4" for 0.30-nm x-rays. Find the distance between
atomic planes in potassium chloride.

The distance between adjacent atomic planes in calcite (CaCO5)
is 0.300 nm. Find the smallest angle of Bragg scattering for
0.030-nm x-rays.

Find the atomic spacing in a crystal of rock salt (NaCl), whose
structure is shown in Fig. 2.19. The density of rock salt is 2.16
X 10° kg/m’ and the average masses of the Na and Cl atoms
are respectively 3.82 X 107%° kg and 5.89 X 107%° kg.

2.7 Compton Effect

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

What is the frequency of an x-ray photon whose momentum is
1.1 X 107* kg - m/s?

How much energy must a photon have if it is to have the mo-
mentum of a 10-MeV proton?

In Sec. 2.7 the x-rays scattered by a crystal were assumed to un-
dergo no change in wavelength. Show that this assumption is
reasonable by calculating the Compton wavelength of a Na atom
and comparing it with the typical x-ray wavelength of 0.1 nm.

A monochromatic x-ray beam whose wavelength is 55.8 pm is
scattered through 46°. Find the wavelength of the scattered
beam.

A beam of x-rays is scattered by a target. At 45° from the beam
direction the scattered x-rays have a wavelength of 2.2 pm.
What is the wavelength of the x-rays in the direct beam?

An x-ray photon whose initial frequency was 1.5 X 10" Hz
emerges from a collision with an electron with a frequency of
1.2 X 10" Hz. How much kinetic energy was imparted to the
electron?

An x-ray photon of initial frequency 3.0 X 10'® Hz collides with
an electron and is scattered through 90°. Find its new frequency.

Find the energy of an x-ray photon which can impart a maxi-
mum energy of 50 keV to an electron.

At what scattering angle will incident 100-keV x-rays leave a
target with an energy of 90 keV?

(a) Find the change in wavelength of 80-pm x-rays that are
scattered 120° by a target. (b) Find the angle between the direc-
tions of the recoil electron and the incident photon. (¢) Find
the energy of the recoil electron.

A photon of frequency v is scattered by an electron initially at
rest. Verify that the maximum kinetic energy of the recoil elec-
tron is KE e = Qh20?/mc® /(1 + 2hv/mc?).

In a Compton-effect experiment in which the incident x-rays
have a wavelength of 10.0 pm, the scattered x-rays at a certain
angle have a wavelength of 10.5 pm. Find the momentum
(magnitude and direction) of the corresponding recoil electrons.

A photon whose energy equals the rest energy of the electron
undergoes a Compton collision with an electron. If the electron
moves off at an angle of 40° with the original photon direction,
what is the energy of the scattered photon?

o
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38.

A photon of energy E is scattered by a particle of rest energy
Eo. Find the maximum kinetic energy of the recoiling particle
in terms of E and E,.

2.8 Pair Production

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

A positron collides head on with an electron and both are anni-
hilated. Each particle had a kinetic energy of 1.00 MeV. Find
the wavelength of the resulting photons.

A positron with a kinetic energy of 2.000 MeV collides with an
electron at rest and the two particles are annihilated. Two pho-
tons are produced; one moves in the same direction as the in-

coming positron and the other moves in the opposite direction.
Find the energies of the photons.

Show that, regardless of its initial energy, a photon cannot un-
dergo Compton scattering through an angle of more than 60°
and still be able to produce an electron-positron pair. (Hint:
Start by expressing the Compton wavelength of the electron in
terms of the maximum photon wavelength needed for pair
production.)

(a) Verify that the minimum energy a photon must have to cre-
ate an electron-positron pair in the presence of a stationary nu-
cleus of mass M is 2mc*(1 + m/M), where m is the electron
rest mass. (b) Find the minimum energy needed for pair pro-
duction in the presence of a proton.

(a) Show that the thickness x, /, of an absorber required to
reduce the intensity of a beam of radiation by a factor of 2 is
given by x;,, = 0.693/p. (b) Find the absorber thickness
needed to produce an intensity reduction of a factor of 10.

(a) Show that the intensity of the radiation absorbed in a thick-
ness x of an absorber is given by Iopux when ux << 1. (b) If
mx = 0.100, what is the percentage error in using this formula
instead of Eq. (2.25)?

The linear absorption coefficient for 1-MeV gamma rays in lead
is 78 m~'. Find the thickness of lead required to reduce by
half the intensity of a beam of such gamma rays.

The linear absorption coefficient for 50-keV x-rays in sea-level
air is 5.0 X 1077 m™'. By how much is the intensity of a beam
of such x-rays reduced when it passes through 0.50 m of air?
Through 5.0 m of air?

The linear absorption coefficients for 2.0-MeV gamma rays are

49 m ! in water and 52 m~ " in lead. What thickness of water
would give the same shielding for such gamma rays as 10 mm

of lead?

The linear absorption coefficient of copper for 80-keV x-rays is
4.7 X 10" m~". Find the relative intensity of a beam of 80-keV
x-rays after it has passed through a 0.10-mm copper foil.

49.

50.

What thickness of copper is needed to reduce the intensity of
the beam in Exercise 48 by half?

The linear absorption coefficients for 0.05-nm x-rays in lead
and in iron are, respectively, 5.8 X 10" m~ "' and 1.1 X

10* m™". How thick should an iron shield be in order to pro-
vide the same protection from these x-rays as 10 mm of lead?

2.9 Photons and Gravity

51.

52.

53.

54.

55.

The sun’s mass is 2.0 X 10°° kg and its radius is 7.0 X 10° m.
Find the approximate gravitational red shift in light of wave-
length 500 nm emitted by the sun.

Find the approximate gravitational red shift in 500-nm light
emitted by a white dwarf star whose mass is that of the sun but
whose radius is that of the earth, 6.4 X 10° m.

As discussed in Chap. 12, certain atomic nuclei emit photons
in undergoing transitions from “excited” energy states to their
“ground” or normal states. These photons constitute gamma
rays. When a nucleus emits a photon, it recoils in the opposite
direction. (@) The 37Co nucleus decays by K capture to 54Fe,
which then emits a photon in losing 14.4 keV to reach its
ground state. The mass of a 54Fe atom is 9.5 X 10~ ° kg. By
how much is the photon energy reduced from the full

14.4 keV available as a result of having to share energy and
momentum with the recoiling atom? (b) In certain crystals the
atoms are so tightly bound that the entire crystal recoils when
a gamma-ray photon is emitted, instead of the individual atom.
This phenomenon is known as the Mossbauer effect. By how
much is the photon energy reduced in this situation if the ex-
cited 3¢Fe nucleus is part of a 1.0-g crystal? (¢) The essentially
recoil-free emission of gamma rays in situations like that of b
means that it is possible to construct a source of virtually
monoenergetic and hence monochromatic photons. Such a
source was used in the experiment described in Sec. 2.9. What
is the original frequency and the change in frequency of a
14.4-keV gamma-ray photon after it has fallen 20 m near the
earth’s surface?

Find the Schwarzschild radius of the earth, whose mass is
5.98 X 10** kg.

The gravitational potential energy U relative to infinity of a
body of mass m at a distance R from the center of a body of
mass M is U = —GmM/R. (a) If R is the radius of the body of
mass M, find the escape speed v, of the body, which is the
minimum speed needed to leave it permanently. (b) Obtain

a formula for the Schwarzschild radius of the body by setting
v, = ¢, the speed of light, and solving for R. (Of course, a
relativistic calculation is correct here, but it is interesting to
see what a classical calculation produces.)
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In a scanning electron microscope, an electron beam that scans a specimen causes secondary
electrons to be ejected in numbers that vary with the angle of the surface. A suitable data display
suggests the three-dimensional form of the specimen. The high resolution of this image of a red
spider mite on a leaf is a consequence of the wave nature of moving electrons.
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ooking back, it may seem odd that two decades passed between the 1905

discovery of the particle properties of waves and the 1924 speculation that

particles might show wave behavior. It is one thing, however, to suggest a rev-
olutionary concept to explain otherwise mysterious data and quite another to suggest
an equally revolutionary concept without a strong experimental mandate. The latter is
just what Louis de Broglie did in 1924 when he proposed that moving objects have
wave as well as particle characteristics. So different was the scientific climate at the
time from that around the turn of the century that de Broglie’s ideas soon received
respectful attention, whereas the earlier quantum theory of light of Planck and Einstein
had been largely ignored despite its striking empirical support. The existence of de
Broglie waves was experimentally demonstrated by 1927, and the duality principle they
represent provided the starting point for Schrodinger’s successful development of
quantum mechanics in the previous year.

3.1 DE BROGLIE WAVES

A moving body behaves in certain ways as though it has a wave nature
A photon of light of frequency v has the momentum

_w_h
b= c A

since Av = ¢. The wavelength of a photon is therefore specified by its momentum
according to the relation

A= h G.D

Photon wavelength

De Broglie suggested that Eq. (3.1) is a completely general one that applies to material
particles as well as to photons. The momentum of a particle of mass m and velocity v
is p = ymv, and its de Broglie wavelength is accordingly

De Broglie h
wavelength ymu

Louis de Broglie (1892-1987),
although coming from a French
family long identified with diplo-
macy and the military and initially
a student of history, eventually
followed his older brother
Maurice in a career in physics. His
doctoral thesis in 1924 contained
the proposal that moving bodies
have wave properties that com-
plement their particle properties:
these “seemingly incompatible
conceptions can each represent an

(3.2)

aspect of the truth. . . . They may serve in turn to represent
the facts without ever entering into direct conflict.” Part of
de Broglie’s inspiration came from Bohr’s theory of the hydro-
gen atom, in which the electron is supposed to follow only cer-
tain orbits around the nucleus. “This fact suggested to me the
idea that electrons . . . could not be considered simply as par-
ticles but that periodicity must be assigned to them also.” Two
years later Erwin Schrodinger used the concept of de Broglie
waves to develop a general theory that he and others applied
to explain a wide variety of atomic phenomena. The existence
of de Broglie waves was confirmed in diffraction experiments
with electron beams in 1927, and in 1929 de Broglie received
the Nobel Prize.

o
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The greater the particle’s momentum, the shorter its wavelength. In Eq. (3.2) vy is the
relativistic factor

1

y =
l—vz/c

2

As in the case of em waves, the wave and particle aspects of moving bodies can never
be observed at the same time. We therefore cannot ask which is the “correct” descrip-
tion. All that can be said is that in certain situations a moving body resembles a wave
and in others it resembles a particle. Which set of properties is most conspicuous depends
on how its de Broglie wavelength compares with its dimensions and the dimensions of
whatever it interacts with.

Example 3.1

Find the de Broglie wavelengths of (a) a 46-g golf ball with a velocity of 30 m/s, and (b) an
electron with a velocity of 107 m/s.

Solution
(a) Since v << ¢, we can let y = 1. Hence

h 663X 107" ] s e
A= — = =48X10 m
mv (0.046 kg)(30 m/s)

The wavelength of the golf ball is so small compared with its dimensions that we would not
expect to find any wave aspects in its behavior.

(b) Again v << ¢, so with m = 9.1 X 103! kg, we have

h 663X 10" ] s n
A= — = — - =73%x10 "'m
mv (9.1 X 10 kg)(10" m/s)

The dimensions of atoms are comparable with this figure—the radius of the hydrogen atom, for
instance, is 5.3 X 10~ " m. It is therefore not surprising that the wave character of moving elec-
trons is the key to understanding atomic structure and behavior.

Example 3.2

Find the kinetic energy of a proton whose de Broglie wavelength is 1.000 fm = 1.000 X
10~ m, which is roughly the proton diameter.

Solution

A relativistic calculation is needed unless pc for the proton is much smaller than the proton rest
energy of E, = 0.938 GeV. To find out, we use Eq. (3.2) to determine pc:

he (4136 X 107"7 eV - 5)(2.998 X 10° m/s)

= = — 1.240 X 10° eV
pe = (ymvle A 1.000 X 107" m ¢

1.2410 GeV

Since pc > Ey a relativistic calculation is required. From Eq. (1.24) the total energy of the proton is

E=VE + p’c = V(0.938 GeV)> + (1.2340 GeV)? = 1.555 GeV

o
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The corresponding kinetic energy is

KE = E — Ep = (1.555 — 0.938) GeV = 0.617 GeV = 617 MeV

De Broglie had no direct experimental evidence to support his conjecture. However,
he was able to show that it accounted in a natural way for the energy quantization—
the restriction to certain specific energy values—that Bohr had had to postulate in his
1913 model of the hydrogen atom. (This model is discussed in Chap. 4.) Within a few
years Eq. (3.2) was verified by experiments involving the diffraction of electrons by
crystals. Before we consider one of these experiments, let us look into the question of

what kind of wave phenomenon is involved in the matter waves of de Broglie.

3.2 WAVES OF WHAT?
Waves of probability

In water waves, the quantity that varies periodically is the height of the water surface.
In sound waves, it is pressure. In light waves, electric and magnetic fields vary. What

is it that varies in the case of matter waves?

The quantity whose variations make up matter waves is called the wave function,
symbol ¥ (the Greek letter psi). The value of the wave function associated with a mov-
ing body at the particular point x, y, z in space at the time ¢ is related to the likelihood

of finding the body there at the time.

Max Born (1882-1970) grew up in
Breslau, then a German city but to-
day part of Poland, and received a
doctorate in applied mathematics at
Gottingen in 1907. Soon afterward
he decided to concentrate on
physics, and was back in Gottingen
in 1909 as a lecturer. There he
worked on various aspects of the
theory of crystal lattices, his “cen-
tral interest” to which he often re-
turned in later years. In 1915, at
Planck’s recommendation, Born became professor of physics in
Berlin where, among his other activities, he played piano to
Einstein’s violin. After army service in World War I and a period
at Frankfurt University, Born was again in Gottingen, now as pro-
fessor of physics. There a remarkable center of theoretical physics
developed under his leadership: Heisenberg and Pauli were
among his assistants and Fermi, Dirac, Wigner, and Goeppert
were among those who worked with him, just to name future
Nobel Prize winners. In those days, Born wrote, “There was com-
plete freedom of teaching and learning in German universities,
with no class examinations, and no control of students. The Uni-
versity just offered lectures and the student had to decide for
himself which he wished to attend.”

Born was a pioneer in going from “the bright realm of classi-
cal physics into the still dark and unexplored underworld of the
new quantum mechanics;” he was the first to use the latter term.
From Born came the basic concept that the wave function ¥ of
a particle is related to the probability of finding it. He began with
an idea of Einstein, who “sought to make the duality of particles
(light quanta or photons) and waves comprehensible by inter-
preting the square of the optical wave amplitude as probability
density for the occurrence of photons. This idea could at once
be extended to the W-function: [W]* must represent the proba-
bility density for electrons (or other particles). To assert this was
easy; but how was it to be proved? For this purpose atomic scat-
tering processes suggested themselves.” Borns development of
the quantum theory of atomic scattering (collisions of atoms with
various particles) not only verified his “new way of thinking about
the phenomena of nature” but also founded an important branch
of theoretical physics.

Born left Germany in 1933 at the start of the Nazi period,
like so many other scientists. He became a British subject and
was associated with Cambridge and then Edinburg universities
until he retired in 1953. Finding the Scottish climate harsh and
wishing to contribute to the democratization of postwar Germany,
Born spent the rest of his life in Bad Pyrmont, a town near
Gottingen. His textbooks on modern physics and on optics were
standard works on these subjects for many years.

o
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The wave function W itself, however, has no direct physical significance. There is a
simple reason why W cannot by interpreted in terms of an experiment. The probabil-
ity that something be in a certain place at a given time must lie between 0 (the object
is definitely not there) and 1 (the object is definitely there). An intermediate proba-
bility, say 0.2, means that there is a 20% chance of finding the object. But the ampli-
tude of a wave can be negative as well as positive, and a negative probability, say —0.2,
is meaningless. Hence W by itself cannot be an observable quantity.

This objection does not apply to [W|*, the square of the absolute value of the wave
function, which is known as probability density:

The probability of experimentally finding the body described by the wave function
W at the point x, y, z, at the time ¢ is proportional to the value of [¥]* there at t.

A large value of |¥|* means the strong possibility of the body’s presence, while a small
value of [W]* means the slight possibility of its presence. As long as [¥|* is not actually
0 somewhere, however, there is a definite chance, however small, of detecting it there.
This interpretation was first made by Max Born in 1926.

There is a big difference between the probability of an event and the event itself. Al-
though we can speak of the wave function W that describes a particle as being spread
out in space, this does not mean that the particle itself is thus spread out. When an ex-
periment is performed to detect electrons, for instance, a whole electron is either found
at a certain time and place or it is not; there is no such thing as a 20 percent of an elec-
tron. However, it is entirely possible for there to be a 20 percent chance that the elec-
tron be found at that time and place, and it is this likelihood that is specified by [¥|*.

W. L. Bragg, the pioneer in x-ray diffraction, gave this loose but vivid interpreta-
tion: “The dividing line between the wave and particle nature of matter and radiation
is the moment now.” As this moment steadily advances through time it coagulates a
wavy future into a particle past. . . . Everything in the future is a wave, everything in
the past is a particle.” If “the moment ‘now’ ” is understood to be the time a measure-
ment is performed, this is a reasonable way to think about the situation. (The philoso-
pher Spren Kierkegaard may have been anticipating this aspect of modern physics when
he wrote, “Life can only be understood backwards, but it must be lived forwards.”)

Alternatively, if an experiment involves a great many identical objects all described
by the same wave function WV, the actual density (number per unit volume) of objects
at x, y, z at the time t is proportional to the corresponding value of [W|*. It is instruc-
tive to compare the connection between W and the density of particles it describes with
the connection discussed in Sec. 2.4 between the electric field E of an electromagnetic
wave and the density N of photons associated with the wave.

While the wavelength of the de Broglie waves associated with a moving body is
given by the simple formula A = h/ymv, to find their amplitude ¥ as a function of
position and time is often difficult. How to calculate ¥ is discussed in Chap. 5 and
the ideas developed there are applied to the structure of the atom in Chap. 6. Until
then we can assume that we know as much about W as each situation requires.

3.3 DESCRIBING A WAVE

A general formula for waves
How fast do de Broglie waves travel? Since we associate a de Broglie wave with a moving

body, we expect that this wave has the same velocity as that of the body. Let us see if
this is true.

o
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If we call the de Broglie wave velocity v,, we can apply the usual formula

U, = VA
to find v,. The wavelength A is simply the de Broglie wavelength A = h/ymv. To find
the frequency, we equate the quantum expression E = hv with the relativistic formula
for total energy E = ymc? to obtain

hy = ymc?
yme*
V =
h

The de Broglie wave velocity is therefore

De BToglie phase o= A = (’ymc2 )( h ) _ c_z (3.3)
velocity P h ymv v

Because the particle velocity v must be less than the velocity of light ¢, the de Broglie
waves always travel faster than light! In order to understand this unexpected result, we
must look into the distinction between phase velocity and group velocity. (Phase ve-
locity is what we have been calling wave velocity.)

Let us begin by reviewing how waves are described mathematically. For simplicity
we consider a string stretched along the x axis whose vibrations are in the y direction,
as in Fig. 3.1, and are simple harmonic in character. If we choose t = 0 when the
displacement y of the string at x = 0 is a maximum, its displacement at any future
time ¢ at the same place is given by the formula

y = A cos 2@t G4

SANVA VA W
NV ARV RN

Vibrating string

(a)

IANVANYA NN
NV

y =A cos 27t

(b)

Figure 3.1 (a) The appearance of a wave in a stretched string at a certain time. (b) How the
displacement of a point on the string varies with time.

o
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Figure 3.2 Wave propagation.

where A is the amplitude of the vibrations (that is, their maximum displacement on
either side of the x axis) and v their frequency.

Equation (3.4) tells us what the displacement of a single point on the string is as a
function of time t. A complete description of wave motion in a stretched string, how-
ever, should tell us what y is at any point on the string at any time. What we want is
a formula giving y as a function of both x and ¢.

To obtain such a formula, let us imagine that we shake the string at x = 0 when
t = 0, so that a wave starts to travel down the string in the +x direction (Fig. 3.2).
This wave has some speed v, that depends on the properties of the string. The wave
travels the distance x = vt in the time t, so the time interval between the formation
of the wave at x = 0 and its arrival at the point x is x/v,. Hence the displacement y
of the string at x at any time ¢ is exactly the same as the value of y at x = 0 at the
earlier time t — x/v,. By simply replacing t in Eq. (3.4) with t — x/v,, then, we have
the desired formula giving y in terms of both x and t:

v,

x
Wave formula y = A cos 277V(t - —) (3.5
3

As a check, we note that Eq. (3.5) reduces to Eq. (3.4) at x = 0.
Equation (3.5) may be rewritten

v,

2%
y = A cos 27T(Vt - —)
P

Since the wave speed v, is given by v, = vA we have

Wave formula y = A cos 27T<Vt — %) (3.6)

Equation (3.6) is often more convenient to use than Eq. (3.5).

Perhaps the most widely used description of a wave, however, is still another form
of Eq. (3.5). The quantities angular frequency w and wave number k are defined by
the formulas

o
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Angular frequency w =27y (3.7
2 w
Wave number k= — = — (3.8)
A v

The unit of w is the radian per second and that of k is the radian per meter. An-
gular frequency gets its name from uniform circular motion, where a particle that moves
around a circle v times per second sweeps out 27 rad/s. The wave number is equal
to the number of radians corresponding to a wave train 1 m long, since there are 27 rad
in one complete wave.

In terms of w and k, Eq. (3.5) becomes

Wave formula y = A cos (wt — kx) 3.9

In three dimensions k becomes a vector k normal to the wave fronts and x is re-
placed by the radius vector r. The scalar product k - r is then used instead of kx in
Eq. (3.9).

3.4 PHASE AND GROUP VELOCITIES

A group of waves need not have the same velocity as
the waves themselves

The amplitude of the de Broglie waves that correspond to a moving body reflects the
probability that it will be found at a particular place at a particular time. It is clear that
de Broglie waves cannot be represented simply by a formula resembling Eq. (3.9),
which describes an indefinite series of waves all with the same amplitude A. Instead,
we expect the wave representation of a moving body to correspond to a wave packet,
or wave group, like that shown in Fig. 3.3, whose waves have amplitudes upon which
the likelihood of detecting the body depends.

A familiar example of how wave groups come into being is the case of beats.
When two sound waves of the same amplitude but of slightly different frequencies
are produced simultaneously, the sound we hear has a frequency equal to the aver-
age of the two original frequencies and its amplitude rises and falls periodically.
The amplitude fluctuations occur as many times per second as the difference be-
tween the two original frequencies. If the original sounds have frequencies of,
say, 440 and 442 Hz, we will hear a fluctuating sound of frequency 441 Hz with
two loudness peaks, called beats, per second. The production of beats is illustrated
in Fig. 3.4.

A way to mathematically describe a wave group, then, is in terms of a superposi-
tion of individual waves of different wavelengths whose interference with one another
results in the variation in amplitude that defines the group shape. If the velocities of
the waves are the same, the velocity with which the wave group travels is the common
phase velocity. However, if the phase velocity varies with wavelength, the different

individual waves do not proceed together. This situation is called dispersion. As a I —
. . .. Wave group

result the wave group has a velocity different from the phase velocities of the waves

that make it up. This is the case with de Broglie waves. Figure 3.3 A wave group.

o
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Figure 3.4 Beats are produced by the superposition of two waves with different frequencies.

It is not hard to find the velocity v, with which a wave group travels. Let us sup-
pose that the wave group arises from the combination of two waves that have the same
amplitude A but differ by an amount Aw in angular frequency and an amount Ak in
wave number. We may represent the original waves by the formulas

y1 = A cos (wt — kx)
v, = Acos [(w + Aw)t — (kR + Ak)x]

The resultant displacement y at any time ¢ and any position x is the sum of y, and y,.
With the help of the identity

cosa + cos B = 2 cos 3(a + B) cos (@ — B)
and the relation
cos(—6) = cos 0
we find that

y=yvity
= 2A cos H[Qw + Aw)t — 2k + Ak)x] cos 2(Aw t — Ak x)

Since Aw and Ak are small compared with w and k respectively,

20 + Aw = 2w
2k + Ak = 2k

and so

Aw Ak ) (3.10)

Beats y = 2A cos (wt — kx) cos (Tt -

o
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Equation (3.10) represents a wave of angular frequency w and wave number k
that has superimposed upon it a modulation of angular frequency ;Aw and of wave
number TAk.

The effect of the modulation is to produce successive wave groups, as in Fig. 3.4.
The phase velocity v, is

Phase velocity v, = (3.11D)

and the velocity v, of the wave groups is

Aw
Group velocity Y%= AR (3.12)

When o and k have continuous spreads instead of the two values in the preceding
discussion, the group velocity is instead given by

dw
Group velocity v, = T (3.13)

Depending on how phase velocity varies with wave number in a particular situa-
tion, the group velocity may be less or greater than the phase velocities of its member
waves. If the phase velocity is the same for all wavelengths, as is true for light waves
in empty space, the group and phase velocities are the same.

The angular frequency and wave number of the de Broglie waves associated with a
body of mass m moving with the velocity v are

2arymc?
w =27y =
h
Angular frequency of _ 2mc’ (.14
de Broglie waves W1 -/ )
P = 27 2mymv
A h
Wave number of . 2mmu (3.15)
de Broglie waves W1 =2 / 2 :

Both w and k are functions of the body’s velocity v.
The group velocity v, of the de Broglie waves associated with the body is

_ do _ do/dv
YT T dk/dw
N d_w B 27Tmu
oW dv h(l _ Uz/cz)3/2
dk 2mm

Jv W1 — v2/2)Y?
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Figure 3.5 Because the wave-
lengths of the fast electrons in an
electron microscope are shorter
than those of the light waves in
an optical microscope, the elec-
tron microscope can produce
sharp images at higher magnifi-
cations. The electron beam in an
electron microscope is focused
by magnetic fields.

Electron Microscopes

he wave nature of moving electrons is the basis of the electron microscope, the first of

which was built in 1932. The resolving power of any optical instrument, which is limited
by diffraction, is proportional to the wavelength of whatever is used to illuminate the specimen.
In the case of a good microscope that uses visible light, the maximum useful magnification is
about 500X; higher magnifications give larger images but do not reveal any more detail. Fast
electrons, however, have wavelengths very much shorter than those of visible light and are eas-
ily controlled by electric and magnetic fields because of their charge. X-rays also have short wave-
lengths, but it is not (yet?) possible to focus them adequately.

In an electron microscope, current-carrying coils produce magnetic fields that act as lenses
to focus an electron beam on a specimen and then produce an enlarged image on a fluorescent
screen or photographic plate (Fig. 3.5). To prevent the beam from being scattered and thereby
blurring the image, a thin specimen is used and the entire system is evacuated.

The technology of magnetic “lenses” does not permit the full theoretical resolution of electron
waves to be realized in practice. For instance, 100-keV electrons have wavelengths of 0.0037 nm,
but the actual resolution they can provide in an electron microscope may be only about 0.1 nm.
However, this is still a great improvement on the ~200-nm resolution of an optical microscope,
and magnifications of over 1,000,000X have been achieved with electron microscopes.

Electron micrograph showing bacteriophage viruses in an An electron microscope.
Escherichia coli bacterium. The bacterium is approximately

1 pwm across.
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and so the group velocity turns out to be
De Broglie group
v, =v (3.16)

velocity

The de Broglie wave group associated with a moving body travels with the same
velocity as the body.

The phase velocity v, of de Broglie waves is, as we found earlier,

De Broglie phase v =2 = ° (3.3)
velocity k .

This exceeds both the velocity of the body v and the velocity of light ¢, since v < c.
However, v, has no physical significance because the motion of the wave group, not
the motion of the individual waves that make up the group, corresponds to the mo-
tion of the body, and v, < ¢ as it should be. The fact that v, > ¢ for de Broglie waves
therefore does not violate special relativity.

Example 3.3

An electron has a de Broglie wavelength of 2.00 pm = 2.00 X 10™'* m. Find its kinetic energy
and the phase and group velocities of its de Broglie waves.

Solution
(a) The first step is to calculate pc for the electron, which is

he (4.136 X 10~ "7 eV - $)(3.00 X 10° m/s) 5
— = 0 =6.20 X 10° eV
A 2,00 X 107" m

pc

620 keV

The rest energy of the electron is Eg = 511 keV, so

KE=F — Eo = VE + (p0? — Ey = V(511 keV)> + (620 keV)* — 511 keV
803 keV — 511 keV = 2092 keV

(b) The electron velocity can be found from

to be

Ej 511 keV \2
v:c\/l - = :c\/l - (76) = 0.771c
E 803 keV

Hence the phase and group velocities are respectively

2 C2

C
v = — = = 1.30c
v 0.771c

v, =v =077l

o
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Figure 3.6 The Davisson-Germer
experiment.

3.9 PARTICLE DIFFRACTION

An experiment that confirms the existence of de Broglie waves

A wave effect with no analog in the behavior of Newtonian particles is diffraction. In
1927 Clinton Davisson and Lester Germer in the United States and G. P Thomson in
England independently confirmed de Broglie’s hypothesis by demonstrating that elec-
tron beams are diffracted when they are scattered by the regular atomic arrays of crys-
tals. (All three received Nobel Prizes for their work. J. J. Thomson, G. P’ father, had
earlier won a Nobel Prize for verifying the particle nature of the electron: the wave-
particle duality seems to have been the family business.) We shall look at the experi-
ment of Davisson and Germer because its interpretation is more direct.

Davisson and Germer were studying the scattering of electrons from a solid using
an apparatus like that sketched in Fig. 3.6. The energy of the electrons in the primary
beam, the angle at which they reach the target, and the position of the detector could
all be varied. Classical physics predicts that the scattered electrons will emerge in all
directions with only a moderate dependence of their intensity on scattering angle and
even less on the energy of the primary electrons. Using a block of nickel as the target,
Davisson and Germer verified these predictions.

In the midst of their work an accident occurred that allowed air to enter their ap-
paratus and oxidize the metal surface. To reduce the oxide to pure nickel, the target
was baked in a hot oven. After this treatment, the target was returned to the appara-
tus and the measurements resumed.

Now the results were very different. Instead of a continuous variation of scattered
electron intensity with angle, distinct maxima and minima were observed whose
positions depended upon the electron energy! Typical polar graphs of electron intensity
after the accident are shown in Fig. 3.7. The method of plotting is such that the intensity
at any angle is proportional to the distance of the curve at that angle from the point
of scattering. If the intensity were the same at all scattering angles, the curves would
be circles centered on the point of scattering.

Two questions come to mind immediately: What is the reason for this new effect?
Why did it not appear until after the nickel target was baked?

De Broglie’s hypothesis suggested that electron waves were being diffracted by the
target, much as x-rays are diffracted by planes of atoms in a crystal. This idea received

Incident beam

40V 44V 48V 54V 60 V 64V 68 V

Figure 3.7 Results of the Davisson-Germer experiment, showing how the number of scattered elec-
trons varied with the angle between the incoming beam and the crystal surface. The Bragg planes of
atoms in the crystal were not parallel to the crystal surface, so the angles of incidence and scattering
relative to one family of these planes were both 65° (see Fig. 3.8).

o
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support when it was realized that heating a block of nickel at high temperature causes
the many small individual crystals of which it is normally composed to form into a
single large crystal, all of whose atoms are arranged in a regular lattice. .

Let us see whether we can verify that de Broglie waves are responsible for the findings
of Davisson and Germer. In a particular case, a beam of 54-eV electrons was directed
perpendicularly at the nickel target and a sharp maximum in the electron distribution
occurred at an angle of 50° with the original beam. The angles of incidence and
scattering relative to the family of Bragg planes shown in Fig. 3.8 are both 65°. The ,
spacing of the planes in this family, which can be measured by x-ray diffraction, is

0.091 nm. The Bragg equation for maxima in the diffraction pattern is Single crystal
of nickel

54-eV electrons

nA = 2d sin 6 (2.13)

Figure 3.8 The diffraction of the
Here d = 0.091 nm and 6 = 65° For n = 1 the de Broglie wavelength A of the  de Broglie waves by the target is

diffracted electrons is responsible for the results of
Davisson and Germer.

A = 2dsin 0 = (2)(0.091 nm)(sin65°) = 0.165 nm

Now we use de Broglies formula A = h/ymv to find the expected wavelength of
the electrons. The electron kinetic energy of 54 eV is small compared with its rest en-
ergy mc” of 0.51 MeV, so we can let y = 1. Since

KE = ‘mv’

the electron momentum mv is

mv =V 2mKE
- V@©.1 x 107 kg)(54 eV)(1.6 X 1077 J/eV)
=40 X 10"*" kg - m/s

The electron wavelength is therefore

h 6.63 X 10 %] -5 10
A= — = — =1.66 X 10 m = 0.166 nm
muv 4.0 X 10" kg - m/s

which agrees well with the observed wavelength of 0.165 nm. The Davisson-Germer
experiment thus directly verifies de Broglie’s hypothesis of the wave nature of moving
bodies.

Analyzing the Davisson-Germer experiment is actually less straightforward than in-
dicated above because the energy of an electron increases when it enters a crystal by
an amount equal to the work function of the surface. Hence the electron speeds in the
experiment were greater inside the crystal and the de Broglie wavelengths there shorter
than the values outside. Another complication arises from interference between waves
diffracted by different families of Bragg planes, which restricts the occurrence of maxima
to certain combinations of electron energy and angle of incidence rather than merely
to any combination that obeys the Bragg equation.

Electrons are not the only bodies whose wave behavior can be demonstrated. The
diffraction of neutrons and of whole atoms when scattered by suitable crystals has been
observed, and in fact neutron diffraction, like x-ray and electron diffraction, has been
used for investigating crystal structures.
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Figure 3.9 A particle confined to
a box of width L. The particle is
assumed to move back and forth
along a straight line between the
walls of the box.

>
I
wl=

DR

Figure 3.10 Wave functions of a
particle trapped in a box L wide.

Counts

Neutron diffraction by a quartz crystal. The peaks represent directions in which con-
structive interference occurred. (Courtesy Frank J. Rotella and Arthur J. Schultz, Argonne
National Laboratory)

3.6 PARTICLE IN A BOX

Why the energy of a trapped particle is quantized

The wave nature of a moving particle leads to some remarkable consequences when
the particle is restricted to a certain region of space instead of being able to move freely.
The simplest case is that of a particle that bounces back and forth between the walls of
a box, as in Fig. 3.9. We shall assume that the walls of the box are infinitely hard, so the
particle does not lose energy each time it strikes a wall, and that its velocity is sufficiently
small so that we can ignore relativistic considerations. Simple as it is, this model situation
requires fairly elaborate mathematics in order to be properly analyzed, as we shall learn in
Chap. 5. However, even a relatively crude treatment can reveal the essential results.

From a wave point of view, a particle trapped in a box is like a standing wave in a
string stretched between the box’s walls. In both cases the wave variable (transverse
displacement for the string, wave function W for the moving particle) must be O at
the walls, since the waves stop there. The possible de Broglie wavelengths of the par-
ticle in the box therefore are determined by the width L of the box, as in Fig. 3.10.
The longest wavelength is specified by A = 2L, the next by A = L, then A = 2L/3,
and so forth. The general formula for the permitted wavelengths is

De Broglie oL
2,3, .. (G.17)

wavelengths of
trapped particle

Because mv = h/A, the restrictions on de Broglie wavelength A imposed by the
width of the box are equivalent to limits on the momentum of the particle and, in turn,
to limits on its kinetic energy. The kinetic energy of a particle of momentum mv is

2 2
h

KE = ‘mv? = (mv)” _ >

2m 2mA

The permitted wavelengths are A, = 2L /n, and so, because the particle has no potential
energy in this model, the only energies it can have are
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n’h?

8mL?

Particle in a box E, =

n=12,3,... (3.18)

Each permitted energy is called an energy level, and the integer n that specifies an
energy level E, is called its quantum number.

We can draw three general conclusions from Eq. (3.18). These conclusions apply
to any particle confined to a certain region of space (even if the region does not have
a well-defined boundary), for instance an atomic electron held captive by the attraction
of the positively charged nucleus.

1 A trapped particle cannot have an arbitrary energy, as a free particle can. The fact
of its confinement leads to restrictions on its wave function that allow the particle to
have only certain specific energies and no others. Exactly what these energies are de-
pends on the mass of the particle and on the details of how it is trapped.

2 A trapped particle cannot have zero energy. Since the de Broglie wavelength of the
particle is A = h/mv, a speed of v = 0 means an infinite wavelength. But there is no
way to reconcile an infinite wavelength with a trapped particle, so such a particle must
have at least some kinetic energy. The exclusion of E = 0 for a trapped particle, like
the limitation of E to a set of discrete values, is a result with no counterpart in classi-
cal physics, where all non-negative energies, including zero, are allowed.

3 Because Planck’s constant is so small—only 6.63 X 10~ °* J - s—quantization of en-
ergy is conspicuous only when m and L are also small. This is why we are not aware
of energy quantization in our own experience. Two examples will make this clear.

Example 3.4

An electron is in a box 0.10 nm across, which is the order of magnitude of atomic dimensions.
Find its permitted energies.

Solution
-31 -10 ) 700
Herem = 9.1 X 107" kgand L = 0.10 nm = 1.0 X 10™ " m, so that the permitted electron
energies are
(n*)(6.63 X 107**J - 5) o0 e
n .63 X °S
"= — J —5 5 = 6.0 X 10 "%n?*]
(®)(9.1 X 1077 kg)(1.0 X 10" m) S0
= 38n” eV
The minimum energy the electron can have is 38 eV, corresponding to n = 1. The sequence of > 400
energy levels continues with E; = 152 eV, E5 = 342 eV, E;, = 608 eV, and so on (Fig. 3.11). If 5
such a box existed, the quantization of a trapped electron’s energy would be a prominent feature E n=3
of the system. (And indeed energy quantization is prominent in the case of an atomic electron.) w300
Example 3.5 200
n=2
A 10-g marble is in a box 10 c¢m across. Find its permitted energies.
100
Solution
n=1
Withm =10g =10 X 10 *kgand L = 10 em = 1.0 X 10" ' m, 0
b (n?)(6.63 X 103"+ 9)? _
n @)(1.0 X 10-2 ke)(1.0 X 10" m)? Figure 3.11 Er}ergy levels of an
electron confined to a box
=55X 10 °?]J 0.1 nm wide.
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A=?
S\~
—| Ax j—

Ax small
Ap large

(a)

| 2

— W\ —

| Ax |

Ax large
Ap small

(b)

Figure 3.12 (@) A narrow de
Broglie wave group. The position
of the particle can be precisely
determined, but the wavelength
(and hence the particle's momen-
tum) cannot be established be-
cause there are not enough waves
to measure accurately. (b) A wide
wave group. Now the wavelength
can be precisely determined but
not the position of the particle.

The minimum energy the marble can have is 5.5 X 10~°*J, corresponding to n = 1. A marble
with this kinetic energy has a speed of only 3.3 X 107°! m/s and therefore cannot be experi-
mentally distinguished from a stationary marble. A reasonable speed a marble might have is, say,
% m/s—which corresponds to the energy level of quantum number n = 10°°! The permissible
energy levels are so very close together, then, that there is no way to determine whether the
marble can take on only those energies predicted by Eq. (3.18) or any energy whatever. Hence
in the domain of everyday experience, quantum effects are imperceptible, which accounts for
the success of Newtonian mechanics in this domain.

3.7 UNCERTAINTY PRINCIPLE 1

We cannot know the future because we cannot know the present

To regard a moving particle as a wave group implies that there are fundamental limits
to the accuracy with which we can measure such “particle” properties as position and
momentum.

To make clear what is involved, let us look at the wave group of Fig. 3.3. The par-
ticle that corresponds to this wave group may be located anywhere within the group
at a given time. Of course, the probability density |W|* is a maximum in the middle of
the group, so it is most likely to be found there. Nevertheless, we may still find the
particle anywhere that |‘I’|2 is not actually 0.

The narrower its wave group, the more precisely a particle’s position can be speci-
fied (Fig. 3.12a). However, the wavelength of the waves in a narrow packet is not well
defined; there are not enough waves to measure A accurately. This means that since
A = h/ymuv, the particles momentum ymuv is not a precise quantity. If we make a series
of momentum measurements, we will find a broad range of values.

On the other hand, a wide wave group, such as that in Fig. 3.12b, has a clearly
defined wavelength. The momentum that corresponds to this wavelength is therefore
a precise quantity, and a series of measurements will give a narrow range of values. But
where is the particle located? The width of the group is now too great for us to be able
to say exactly where the particle is at a given time.

Thus we have the uncertainty principle:

It is impossible to know both the exact position and exact momentum of an ob-
ject at the same time.

This principle, which was discovered by Werner Heisenberg in 1927, is one of the
most significant of physical laws.

A formal analysis supports the above conclusion and enables us to put it on a quan-
titative basis. The simplest example of the formation of wave groups is that given in
Sec. 3.4, where two wave trains slightly different in angular frequency w and wave
number k were superposed to yield the series of groups shown in Fig. 3.4. A moving
body corresponds to a single wave group, not a series of them, but a single wave group
can also be thought of in terms of the superposition of trains of harmonic waves. How-
ever, an infinite number of wave trains with different frequencies, wave numbers, and
amplitudes is required for an isolated group of arbitrary shape, as in Fig. 3.13.

At a certain time t, the wave group W(x) can be represented by the Fourier integral

W) = f:g(k) cos kx dk (3.19)

o



bei48482 ch03 gxd 1/16/02 1:51 PM Page 109 $

Wave Properties of Particles 109

Figure 3.13 An isolated wave group is the result of superposing an infinite number of waves with dif-
ferent wavelengths. The narrower the wave group, the greater the range of wavelengths involved. A
narrow de Broglie wave group thus means a well-defined position (Ax smaller) but a poorly defined
wavelength and a large uncertainty Ap in the momentum of the particle the group represents. A wide
wave group means a more precise momentum but a less precise position.

where the function g(k) describes how the amplitudes of the waves that contribute to
W(x) vary with wave number k. This function is called the Fourier transform of W(x),
and it specifies the wave group just as completely as W(x) does. Figure 3.14 contains
graphs of the Fourier transforms of a pulse and of a wave group. For comparison, the
Fourier transform of an infinite train of harmonic waves is also included. There is only
a single wave number in this case, of course.

Strictly speaking, the wave numbers needed to represent a wave group extend from
k =0 to k = %, but for a group whose length Ax is finite, the waves whose ampli-
tudes g(k) are appreciable have wave numbers that lie within a finite interval Ak. As
Fig. 3.14 indicates, the narrower the group, the broader the range of wave numbers
needed to describe it, and vice versa.

The relationship between the distance Ax and the wave-number spread Ak depends
upon the shape of the wave group and upon how Ax and Ak are defined. The minimum
value of the product Ax Ak occurs when the envelope of the group has the familiar
bell shape of a Gaussian function. In this case the Fourier transform happens to be a
Gaussian function also. If Ax and Ak are taken as the standard deviations of the
respective functions W(x) and g(k), then this minimum value is Ax Ak = 3. Because
wave groups in general do not have Gaussian forms, it is more realistic to express the
relationship between Ax and Ak as

Ax Ak = ! (3.20)
v v v v
| W """\PVA"-’ « AAAAAAA- x 4A_. x
8 8 8 8
—, L | A
L >k k k k
(@) (b © (d)

Figure 3.14 The wave functions and Fourier transforms for (a) a pulse, (b) a wave group, (c) a wave
train, and (d) a Gaussian distribution. A brief disturbance needs a broader range of frequencies to
describe it than a disturbance of greater duration. The Fourier transform of a Gaussian function is
also a Gaussian function.
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Gaussian Function

hen a set of measurements is made of some quantity x in which the experimental errors

are random, the result is often a Gaussian distribution whose form is the bell-shaped
curve shown in Fig. 3.15. The standard deviation o of the measurements is a measure of the
spread of x values about the mean of xy, where o equals the square root of the average of the
squared deviations from x,. If N measurements were made,

. 1Y
Standard deviation 7=\ Z} (1 — x0)°

The width of a Gaussian curve at half its maximum value is 2.350.
The Gaussian function f(x) that describes the above curve is given by

. . 1
Gaussian function fo) = ——=—=e &~ x0)*/20°°
oV

where f(x) is the probability that the value x be found in a particular measurement. Gaussian
functions occur elsewhere in physics and mathematics as well. (Gabriel Lippmann had this to
say about the Gaussian function: “Experimentalists think that it is a mathematical theorem while
mathematicians believe it to be an experimental fact.”)

The probability that a measurement lie inside a certain range of x values, say between x; and
X, is given by the area of the f(x) curve between these limits. This area is the integral

P = "0 dx

An interesting questions is what fraction of a series of measurements has values within a stan-
dard deviation of the mean value x,. In this case x; = xo — o and x, = xo + o, and

Xo+ o
Poew=| 00 dx = 0683

Xo— O
Hence 68.3 percent of the measurements fall in this interval, which is shaded in Fig. 3.15. A
similar calculation shows that 95.4 percent of the measurements fall within two standard
deviations of the mean value.

fx)
1.0

0.5

X0 X

Figure 3.15 A Gaussian distribution. The probability of finding a value of x is given by the Gaussian
function f(x). The mean value of x is xo, and the total width of the curve at half its maximum value
is 2.350, where o is the standard deviation of the distribution. The total probability of finding a value
of x within a standard deviation of x is equal to the shaded area and is 68.3 percent.
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The de Broglie wavelength of a particle of momentum p is A=h/p and the
corresponding wave number is

2T 2p
k = — = —
N h
In terms of wave number the particles momentum is therefore
e
P 2m

Hence an uncertainty Ak in the wave number of the de Broglie waves associated with the
particle results in an uncertainty Ap in the particle’s momentum according to the formula

h Ak
A = —_—
P 2T
Since Ax Ak =1, Ak = 1/(2Ax) and
Uneertainy Ax Ap= - (.21
principle 4

This equation states that the product of the uncertainty Ax in the position of an ob-
ject at some instant and the uncertainty Ap in its momentum component in the x di-
rection at the same instant is equal to or greater than h/4r.

If we arrange matters so that Ax is small, corresponding to a narrow wave group,
then Ap will be large. If we reduce Ap in some way, a broad wave group is inevitable

and Ax will be large.

Werner Heisenberg (1901-1976)
was born in Duisberg, Germany,
and studied theoretical physics at
Munich, where he also became an
enthusiastic skier and moun-
taineer. At Gottingen in 1924 as an
assistant to Max Born, Heisenberg
became uneasy about mechanical
models of the atom: “Any picture
of the atom that our imagination
is able to invent is for that very
reason defective,” he later remarked. Instead he conceived an
abstract approach using matrix algebra. In 1925, together with
Born and Pascual Jordan, Heisenberg developed this approach
into a consistent theory of quantum mechanics, but it was so
difficult to understand and apply that it had very little impact
on physics at the time. Schrodingers wave formulation of
quantum mechanics the following year was much more suc-
cessful; Schrodinger and others soon showed that the wave and
matrix versions of quantum mechanics were mathematically
equivalent.

In 1927, working at Bohr’ institute in Copenhagen, Heisen-
berg developed a suggestion by Wolfgang Pauli into the uncer-
tainty principle. Heisenberg initially felt that this principle was
a consequence of the disturbances inevitably produced by any

il

measuring process. Bohr, on the other hand, thought that the
basic cause of the uncertainties was the wave-particle duality,
so that they were built into the natural world rather than solely
the result of measurement. After much argument Heisenberg
came around to Bohr’s view. (Einstein, always skeptical about
quantum mechanics, said after a lecture by Heisenberg on the
uncertainty principle: “Marvelous, what ideas the young people
have these days. But I don't believe a word of it.”) Heisenberg
received the Nobel Prize in 1932.

Heisenberg was one of the very few distinguished scientists
to remain in Germany during the Nazi period. In World War II
he led research there on atomic weapons, but little progress had
been made by the war’s end. Exactly why remains unclear, al-
though there is no evidence that Heisenberg, as he later claimed,
had moral qualms about creating such weapons and more or
less deliberately dragged his feet. Heisenberg recognized early
that “an explosive of unimaginable consequences” could be de-
veloped, and he and his group should have been able to have
gotten farther than they did. In fact, alarmed by the news that
Heisenberg was working on an atomic bomb, the U.S. govern-
ment sent the former Boston Red Sox catcher Moe Berg to shoot
Heisenberg during a lecture in neutral Switzerland in 1944.
Berg, sitting in the second row, found himself uncertain from
Heisenberg’s remarks about how advanced the German program
was, and kept his gun in his pocket.
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These uncertainties are due not to inadequate apparatus but to the imprecise charac-
ter in nature of the quantities involved. Any instrumental or statistical uncertainties that
arise during a measurement only increase the product Ax Ap. Since we cannot know ex-
actly both where a particle is right now and what its momentum is, we cannot say any-
thing definite about where it will be in the future or how fast it will be moving then. We
cannot know the futute for sure because we cannot know the present for sure. But our igno-
rance is not total: we can still say that the particle is more likely to be in one place than
another and that its momentum is more likely to have a certain value than another.

H-Bar

The quantity h/27 appears often in modern physics because it turns out to be the
basic unit of angular momentum. It is therefore customary to abbreviate h/27 by the
symbol 7 (“h-bar”):

h
hi=—=1054%X10"*]-s
2T
In the remainder of this book 7 is used in place of h/27. In terms of 7%, the uncer-
tainty principle becomes

Uncertainty
principle

Ax Ap = (3.22)

4
2
Example 3.6

A measurement establishes the position of a proton with an accuracy of =£1.00 X 10~ m. Find
the uncertainty in the protons position 1.00 s later. Assume v << c.

Solution

Let us call the uncertainty in the proton’s position Axy at the time t = 0. The uncertainty in its
momentum at this time is therefore, from Eq. (3.22),

Ap =
P 2AXQ

Since v << ¢, the momentum uncertainty is Ap = A(mv) = m Av and the uncertainty in the
proton’s velocity is
A 7
Av= L= 2

m 2m Axg
The distance x the proton covers in the time t cannot be known more accurately than

7t
2m Axg
Hence Ax is inversely proportional to Ax: the more we know about the proton’s position at
t = 0, the less we know about its later position at t > 0. The value of Ax at t = 1.00 s is

(1.054 X 107" J - $)(1.00 s)
(2)(1.672 X 1077 kg)(1.00 X 107" m)

=315%X10°m

Ax =t Av =

Ax =

This is 3.15 km—nearly 2 mi! What has happened is that the original wave group has spread
out to a much wider one (Fig. 3.16). This occurred because the phase velocities of the compo-
nent waves vary with wave number and a large range of wave numbers must have been present
to produce the narrow original wave group. See Fig. 3.14.
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Figure 3.16 The wave packet that corresponds to a moving packet is a composite of many individ-
ual waves, as in Fig. 3.13. The phase velocities of the individual waves vary with their wave lengths.
As a result, as the particle moves, the wave packet spreads out in space. The narrower the original
wavepacket—that is, the more precisely we know its position at that time—the more it spreads out
because it is made up of a greater span of waves with different phase velocities.

3.8 UNCERTAINTY PRINCIPLE II

A particle approach gives the same result

The uncertainty principle can be arrived at from the point of view of the particle prop-
erties of waves as well as from the point of view of the wave properties of particles.

We might want to measure the position and momentum of an object at a certain mo-
ment. To do so, we must touch it with something that will carry the required information
back to us. That is, we must poke it with a stick, shine light on it, or perform some sim-
ilar act. The measurement process itself thus requires that the object be interfered with in
some way. If we consider such interferences in detail, we are led to the same uncertainty
principle as before even without taking into account the wave nature of moving bodies.

Suppose we look at an electron using light of wavelength A, as in Fig. 3.17. Each
photon of this light has the momentum h/A. When one of these photons bounces
off the electron (which must happen if we are to “see” the electron), the electron’s

Incident
photon Reflected
photon
—_—
Original
momentum
of electron Final \
momentum

of electron

Figure 3.17 An electron cannot be observed without changing its momentum.
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original momentum will be changed. The exact amount of the change Ap cannot be
predicted, but it will be of the same order of magnitude as the photon momentum
h/A. Hence

h
Ap= — 3.23
P~ (3.23)

The longer the wavelength of the observing photon, the smaller the uncertainty in the
electron’s momentum.

Because light is a wave phenomenon as well as a particle phenomenon, we cannot
expect to determine the electron’s location with perfect accuracy regardless of the in-
strument used. A reasonable estimate of the minimum uncertainty in the measurement
might be one photon wavelength, so that

Ax =\ (3.24)

The shorter the wavelength, the smaller the uncertainty in location. However, if we use

light of short wavelength to increase the accuracy of the position measurement, there will

be a corresponding decrease in the accuracy of the momentum measurement because

the higher photon momentum will disturb the electron’s motion to a greater extent. Light

of long wavelength will give a more accurate momentum but a less accurate position.
Combining Egs. (3.23) and (3.24) gives

AxAp = h (325

This result is consistent with Eq. (3.22), Ax Ap = 7/2.

Arguments like the preceding one, although superficially attractive, must be
approached with caution. The argument above implies that the electron can possess a
definite position and momentum at any instant and that it is the measurement process
that introduces the indeterminacy in Ax Ap. On the contrary, this indeterminacy is
inherent in the nature of a moving body. The justification for the many “derivations” of
this kind is first, they show it is impossible to imagine a way around the uncertainty
principle; and second, they present a view of the principle that can be appreciated in
a more familiar context than that of wave groups.

3.9 APPLYING THE UNCERTAINTY PRINCIPLE

A useful tool, not just a negative statement
Planck’s constant h is so small that the limitations imposed by the uncertainty princi-
ple are significant only in the realm of the atom. On such a scale, however, this principle
is of great help in understanding many phenomena. It is worth keeping in mind that

the lower limit of /2 for Ax Ap is rarely attained. More usually Ax Ap = 7, or even
(as we just saw) Ax Ap = h.

Example 3.7

A typical atomic nucleus is about 5.0 X 10~'” m in radius. Use the uncertainty principle to
place a lower limit on the energy an electron must have if it is to be part of a nucleus.
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Solution
Letting Ax = 5.0 X 107° m we have

% 1.054 X 107°*] - s
= — =
2Ax 2)(5.0 X 107 m)

Ap =11X 10" kg m/s

If this is the uncertainty in a nuclear electron’s momentum, the momentum p itself must be at
least comparable in magnitude. An electron with such a momentum has a kinetic energy KE
many times greater than its rest energy mc®. From Eq. (1.24) we see that we can let KE = pc
here to a sufficient degree of accuracy. Therefore

KE = pc = (1.1 X 107 kg - m/s)(3.0 X 10° m/s) = 33 X 107'*]

Since 1 eV = 1.6 X 107? J, the kinetic energy of an electron must exceed 20 MeV if it is to
be inside a nucleus. Experiments show that the electrons emitted by certain unstable nuclei never
have more than a small fraction of this energy, from which we conclude that nuclei cannot con-
tain electrons. The electron an unstable nucleus may emit comes into being at the moment the
nucleus decays (see Secs. 11.3 and 12.5).

Example 3.8

A hydrogen atom is 5.3 X 107" m in radius. Use the uncertainty principle to estimate the min-
imum energy an electron can have in this atom.

Solution

Here we find that with Ax = 5.3 X 10~ m.
Ap = A =99 X 107> kg - m/s
2Ax ’

An electron whose momentum is of this order of magnitude behaves like a classical particle, and
its kinetic energy is

P° _ (9.9 X 10"* kg - m/s)?

2m (2)©9.1 X 1077 kg)

KE = =54%x10 "]
which is 3.4 eV. The kinetic energy of an electron in the lowest energy level of a hydrogen atom
is actually 13.6 eV.

Energy and Time

Another form of the uncertainty principle concerns energy and time. We might wish
to measure the energy E emitted during the time interval At in an atomic process. If
the energy is in the form of em waves, the limited time available restricts the accuracy
with which we can determine the frequency v of the waves. Let us assume that the
minimum uncertainty in the number of waves we count in a wave group is one wave.
Since the frequency of the waves under study is equal to the number of them we count
divided by the time interval, the uncertainty Av in our frequency measurement is

1
Ay = —
Y

o



bei48482 ch03 gxd 1/16/02 1:51 PM Page 116 $

116

Chapter Three

The corresponding energy uncertainty is
AE = h Av

and so

AE = or AEAt=h

h
At
A more precise calculation based on the nature of wave groups changes this result to

Uncertainties in

AE At =

(SIIN

(3.26)

energy and time

Equation (3.26) states that the product of the uncertainty AE in an energy meas-
urement and the uncertainty At in the time at which the measurement is made is equal
to or greater than %/2. This result can be derived in other ways as well and is a gen-
eral one not limited to em waves.

Example 3.9

An “excited” atom gives up its excess energy by emitting a photon of characteristic frequency,
as described in Chap. 4. The average period that elapses between the excitation of an atom and
the time it radiates is 1.0 X 107% s. Find the inherent uncertainty in the frequency of the
photon.

Solution
The photon energy is uncertain by the amount

Aps o 1054 10745 s 53 % 107
20 200x107%s) T .

The corresponding uncertainty in the frequency of light is
AE
Av = T =8 X 10° Hz

This is the irreducible limit to the accuracy with which we can determine the frequency of the
radiation emitted by an atom. As a result, the radiation from a group of excited atoms does not
appear with the precise frequency v. For a photon whose frequency is, say, 5.0 X 10'* Hz,
Av/v = 1.6 X 1072, In practice, other phenomena such as the doppler effect contribute more
than this to the broadening of spectral lines.
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Exercises

It is only the first step that takes the effort. —Marquise du Deffand

3.1 De Broglie Waves

1.

10.

11.

12.

A photon and a particle have the same wavelength. Can any-
thing be said about how their linear momenta compare? About
how the photon’s energy compares with the particles total
energy? About how the photon’s energy compares with the
particle’s kinetic energy?

Find the de Broglie wavelength of (a) an electron whose speed is
1.0 X 10® m/s, and (b) an electron whose speed is 2.0 X 10% m/s.

Find the de Broglie wavelength of a 1.0-mg grain of sand
blown by the wind at a speed of 20 m/s.

Find the de Broglie wavelength of the 40-keV electrons used in
a certain electron microscope.

By what percentage will a nonrelativistic calculation of the
de Broglie wavelength of a 100-keV electron be in error?

Find the de Broglie wavelength of a 1.00-MeV proton. Is a rela-
tivistic calculation needed?

The atomic spacing in rock salt, NaCl, is 0.282 nm. Find the
kinetic energy (in eV) of a neutron with a de Broglie wave-
length of 0.282 nm. Is a relativistic calculation needed? Such
neutrons can be used to study crystal structure.

Find the kinetic energy of an electron whose de Broglie wave-
length is the same as that of a 100-keV x-ray.

Green light has a wavelength of about 550 nm. Through what
potential difference must an electron be accelerated to have this
wavelength?

Show that the de Broglie wavelength of a particle of mass m
and kinetic energy KE is given by
he

V KE(KE + 2mc?)

Show that if the total energy of a moving particle greatly
exceeds its rest energy, its de Broglie wavelength is nearly the
same as the wavelength of a photon with the same total energy.

A=

(a) Derive a relativistically correct formula that gives the

de Broglie wavelength of a charged particle in terms of the po-
tential difference V through which it has been accelerated.

(b) What is the nonrelativistic approximation of this formula,
valid for eV << mc®?

3.4 Phase and Group Velocities

13.

14.

An electron and a proton have the same velocity. Compare the
wavelengths and the phase and group velocities of their
de Broglie waves.

An electron and a proton have the same kinetic energy.
Compare the wavelengths and the phase and group velocities of
their de Broglie waves.

15.

16.

17.

18.

19.

20.

21.

22.

Verify the statement in the text that, if the phase velocity is the
same for all wavelengths of a certain wave phenomenon (that
is, there is no dispersion), the group and phase velocities are
the same.

The phase velocity of ripples on a liquid surface is V27S/Ap,
where S is the surface tension and p the density of the liquid.
Find the group velocity of the ripples.

The phase velocity of ocean waves is V g\ /2, where g is the
acceleration of gravity. Find the group velocity of ocean waves.

Find the phase and group velocities of the de Broglie waves of
an electron whose speed is 0.900c.

Find the phase and group velocities of the de Broglie waves of
an electron whose kinetic energy is 500 keV.

Show that the group velocity of a wave is given by v, =

dv/d(1/N).

(a) Show that the phase velocity of the de Broglie waves of a
particle of mass m and de Broglie wavelength \ is given by

mcA \2
v, = ¢ 1+<—>
h

(b) Compare the phase and group velocities of an electron
whose de Broglie wavelength is exactly 1 X 107" m.

In his original paper, de Broglie suggested that E = hv and

p = h/\, which hold for electromagnetic waves, are also valid
for moving particles. Use these relationships to show that the
group velocity v, of a de Broglie wave group is given by dE/dp,
and with the help of Eq. (1.24), verify that v, = v for a particle
of velocity v.

3.5 Particle Diffraction

23.

24.

25.

26.

o

What effect on the scattering angle in the Davisson-Germer
experiment does increasing the electron energy have?

A beam of neutrons that emerges from a nuclear reactor contains
neutrons with a variety of energies. To obtain neutrons with an
energy of 0.050 eV, the beam is passed through a crystal whose
atomic planes are 0.20 nm apart. At what angles relative to the
original beam will the desired neutrons be diffracted?

In Sec. 3.5 it was mentioned that the energy of an electron en-
tering a crystal increases, which reduces its de Broglie wavelength.
Consider a beam of 54-eV electrons directed at a nickel target.
The potential energy of an electron that enters the target changes
by 26 eV. (@) Compare the electron speeds outside and inside the
target. (b) Compare the respective de Broglie wavelengths.

A beam of 50-keV electrons is directed at a crystal and
diffracted electrons are found at an angle of 50° relative to the
original beam. What is the spacing of the atomic planes of the
crystal? A relativistic calculation is needed for \.
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3.6 Particle in a Box

27.

28.

20.

Obtain an expression for the energy levels (in MeV) of a neu-
tron confined to a one-dimensional box 1.00 X 10~ ** m wide.
What is the neutron’s minimum energy? (The diameter of an
atomic nucleus is of this order of magnitude.)

The lowest energy possible for a certain particle trapped in a
certain box is 1.00 eV. (a) What are the next two higher ener-
gies the particle can have? (b) If the particle is an electron, how
wide is the box?

A proton in a one-dimensional box has an energy of 400 keV in
its first excited state. How wide is the box?

3.7 Uncertainty Principle I
3.8 Uncertainty Principle II
3.9 Applying the Uncertainty Principle

30.

31.

32.

33.

34.

Discuss the prohibition of E = 0 for a particle trapped in a
box L wide in terms of the uncertainty principle. How does
the minimum momentum of such a particle compare with the
momentum uncertainty required by the uncertainty principle if
we take Ax = L?

The atoms in a solid possess a certain minimum zero-point
energy even at O K, while no such restriction holds for the
molecules in an ideal gas. Use the uncertainty principle to
explain these statements.

Compare the uncertainties in the velocities of an electron and a
proton confined in a 1.00-nm box.

The position and momentum of a 1.00-keV electron are simulta-
neously determined. If its position is located to within 0.100 nm,
what is the percentage of uncertainty in its momentum?

(a) How much time is needed to measure the kinetic energy of
an electron whose speed is 10.0 m/s with an uncertainty of no
more than 0.100 percent? How far will the electron have

traveled in this period of time? (b) Make the same calculations

35.

36.

37.

38.

39.

40.

for a 1.00-g insect whose speed is the same. What do these
sets of figures indicate?

How accurately can the position of a proton with v << ¢ be
determined without giving it more than 1.00 keV of kinetic
energy?

(a) Find the magnitude of the momentum of a particle in a
box in its nth state. (b) The minimum change in the particle’s
momentum that a measurement can cause corresponds to a
change of *1 in the quantum number n. If Ax = L, show that
Ap Ax=7/2.

A marine radar operating at a frequency of 9400 MHz emits
groups of electromagnetic waves 0.0800 us in duration. The
time needed for the reflections of these groups to return
indicates the distance to a target. (a) Find the length of each
group and the number of waves it contains. (b) What is the
approximate minimum bandwidth (that is, spread of frequen-
cies) the radar receiver must be able to process?

An unstable elementary particle called the eta meson has a rest
mass of 549 MeV* and a mean lifetime of 7.00 X 107" s.
What is the uncertainty in its rest mass?

The frequency of oscillation of a harmonic oscillator of mass m
and spring constant C is ¥ = V C/m/27r. The energy of the
oscillator is E = p*/2m + Cx?/2, where p is its momentum
when its displacement from the equilibrium position is x. In
classical physics the minimum energy of the oscillator is

Epin = 0. Use the uncertainty principle to find an expression
for E in terms of x only and show that the minimum energy is
actually E,, = hv/2 by setting dE/dx = 0 and solving for E,,.

(@) Verify that the uncertainty principle can be expressed in the
form AL A6 = 7/2, where AL is the uncertainty in the angular
momentum of a particle and A6 is the uncertainty in its
angular position. (Hint: Consider a particle of mass m moving
in a circle of radius r at the speed v, for which L = mvr)

(b) At what uncertainty in L will the angular position of a parti-
cle become completely indeterminate?
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Solid-state infrared laser cutting 1.6-mm steel sheet. This laser uses an yttrium-aluminum-
garnet crystal doped with neodymium. The neodymium is pumped with radiation from
small semiconductor lasers, a highly efficient method.
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= Electron

Positively charged matter

Figure 4.1 The Thomson model
of the atom. The Rutherford scat-
tering experiment showed it to be
incorrect.

ar in the past people began to suspect that matter, despite appearing continu-

ous, has a definite structure on a microscopic level beyond the direct reach of

our senses. This suspicion did not take on a more concrete form until a little
over a century and a half ago. Since then the existence of atoms and molecules, the
ultimate particles of matter in its common forms, has been amply demonstrated, and
their own ultimate particles, electrons, protons, and neutrons, have been identified and
studied as well. In this chapter and in others to come our chief concern will be the
structure of the atom, since it is this structure that is responsible for nearly all the prop-
erties of matter that have shaped the world around us.

Every atom consists of a small nucleus of protons and neutrons with a number
of electrons some distance away. It is tempting to think that the electrons circle the
nucleus as planets do the sun, but classical electromagnetic theory denies the pos-
sibility of stable electron orbits. In an effort to resolve this paradox, Niels Bohr ap-
plied quantum ideas to atomic structure in 1913 to obtain a model which, despite
its inadequacies and later replacement by a quantum-mechanical description of
greater accuracy and usefulness, still remains a convenient mental picture of the
atom. Bohr’s theory of the hydrogen atom is worth examining both for this reason
and because it provides a valuable transition to the more abstract quantum theory
of the atom.

4.1 THE NUCLEAR ATOM

An atom is largely empty space

Most scientists of the late nineteenth century accepted the idea that the chemical
elements consist of atoms, but they knew almost nothing about the atoms themselves.
One clue was the discovery that all atoms contain electrons. Since electrons carry
negative charges whereas atoms are neutral, positively charged matter of some kind
must be present in atoms. But what kind? And arranged in what way?

One suggestion, made by the British physicist J. J. Thomson in 1898, was that atoms
are just positively charged lumps of matter with electrons embedded in them, like
raisins in a fruitcake (Fig. 4.1). Because Thomson had played an important role in
discovering the electron, his idea was taken seriously. But the real atom turned out to
be quite different.

The most direct way to find out what is inside a fruitcake is to poke a finger into
it, which is essentially what Hans Geiger and Ernest Marsden did in 1911. At the sug-
gestion of Ernest Rutherford, they used as probes the fast alpha particles emitted by
certain radioactive elements. Alpha particles are helium atoms that have lost two elec-
trons each, leaving them with a charge of +2e.

Geiger and Marsden placed a sample of an alpha-emitting substance behind a lead
screen with a small hole in it, as in Fig. 4.2, so that a narrow beam of alpha particles
was produced. This beam was directed at a thin gold foil. A zinc sulfide screen, which
gives off a visible flash of light when struck by an alpha particle, was set on the other
side of the foil with a microscope to see the flashes.

It was expected that the alpha particles would go right through the foil with hardly
any deflection. This follows from the Thomson model, in which the electric charge in-
side an atom is assumed to be uniformly spread through its volume. With only weak
electric forces exerted on them, alpha particles that pass through a thin foil ought to
be deflected only slightly, 1° or less.

o
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Figure 4.2 The Rutherford scattering experiment.

What Geiger and Marsden actually found was that although most of the alpha
particles indeed were not deviated by much, a few were scattered through very large
angles. Some were even scattered in the backward direction. As Rutherford remarked,
“It was as incredible as if you fired a 15-inch shell at a piece of tissue paper and it

came back and hit you.”

Alpha particles are relatively heavy (almost 8000 electron masses) and those used
in this experiment had high speeds (typically 2 X 10" m/s), so it was clear that
powerful forces were needed to cause such marked deflections. The only way to

Ernest Rutherford (1871-1937),
a native of New Zealand, was
on his familys farm digging pota-
toes when he learned that he had
won a scholarship for graduate
study at Cambridge University in
England. “This is the last potato I
will every dig,” he said, throwing
down his spade. Thirteen years
later he received the Nobel Prize in
chemistry.

At Cambridge, Rutherford was a research student under
J. J. Thomson, who would soon announce the discovery of the
electron. Rutherfords own work was on the newly found phe-
nomenon of radioactivity, and he quickly distinguished between
alpha and beta particles, two of the emissions of radioactive ma-
terials. In 1898 he went to McGill University in Canada, where
he found that alpha particles are the nuclei of helium atoms
and that the radioactive decay of an element gives rise to an-
other element. Working with the chemist Frederick Soddy and
others, Rutherford traced the successive transformations of ra-
dioactive elements, such as uranium and radium, until they end
up as stable lead.

In 1907 Rutherford returned to England as professor of physics
at Manchester, where in 1911 he showed that the nuclear model
of the atom was the only one that could explain the observed scat-
tering of alpha particles by thin metal foils. Rutherford’s last im-
portant discovery, reported in 1919, was the disintegration of
nitrogen nuclei when bombarded with alpha particles, the first
example of the artificial transmutation of elements into other el-
ements. After other similar experiments, Rutherford suggested that
all nuclei contain hydrogen nuclei, which he called protons. He
also proposed that a neutral particle was present in nuclei as well.

In 1919 Rutherford became director of the Cavendish Lab-
oratory at Cambridge, where under his stimulus great strides
in understanding the nucleus continued to be made. James
Chadwick discovered the neutron there in 1932. The Cavendish
Laboratory was the site of the first accelerator for producing
high-energy particles. With the help of this accelerator, fusion
reactions in which light nuclei unite to form heavier nuclei were
observed for the first time.

Rutherford was not infallible: only a few years before the
discovery of fission and the building of the first nuclear reac-
tor, he dismissed the idea of practical uses for nuclear energy
as “moonshine.” He died in 1937 of complications of a hernia
and was buried near Newton in Westminster Abbey.

o
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Figure 4.3 The Rutherford model
of the atom.

explain the results, Rutherford found, was to picture an atom as being composed of a
tiny nucleus in which its positive charge and nearly all its mass are concentrated, with
the electrons some distance away (Fig. 4.3). With an atom being largely empty space,
it is easy to see why most alpha particles go right through a thin foil. However, when
an alpha particle happens to come near a nucleus, the intense electric field there scat-
ters it through a large angle. The atomic electrons, being so light, do not appreciably
affect the alpha particles.

The experiments of Geiger and Marsden and later work of a similar kind also
supplied information about the nuclei of the atoms that composed the various tar-
get foils. The deflection of an alpha particle when it passes near a nucleus depends
on the magnitude of the nuclear charge. Comparing the relative scattering of alpha
particles by different foils thus provides a way to find the nuclear charges of the
atoms involved.

All the atoms of any one element turned out to have the same unique nuclear charge,
and this charge increased regularly from element to element in the periodic table. The
nuclear charges always turned out to be multiples of +e; the number Z of unit
positive charges in the nuclei of an element is today called the atomic number of the
element. We know now that protons, each with a charge +e, provide the charge on a
nucleus, so the atomic number of an element is the same as the number of protons in
the nuclei of its atoms.

Ordinary matter, then, is mostly empty space. The solid wood of a table, the steel
that supports a bridge, the hard rock underfoot, all are simply collections of tiny charged
particles comparatively farther away from one another than the sun is from the
planets. If all the actual matter, electrons and nuclei, in our bodies could somehow be
packed closely together, we would shrivel to specks just visible with a microscope.

Rutherford Scattering Formula

The formula that Rutherford obtained for alpha particle scattering by a thin foil on the
basis of the nuclear model of the atom is

Rutherford _ Nniz*e*
; N@©) = 2 2 o4
scattering formula (87r€p)*r* KE? sin*(6/2)

4.1

This formula is derived in the Appendix to this chapter. The symbols in Eq. (4.1) have
the following meanings:

N(6) = number of alpha particles per unit area that reach the screen at a
scattering angle of 6
N; = total number of alpha particles that reach the screen
n = number of atoms per unit volume in the foil
Z = atomic number of the foil atoms

r = distance of the screen from the foil
KE = kinetic energy of the alpha particles
t = foil thickness

The predictions of Eq. (4.1) agreed with the measurements of Geiger and Marsden,
which supported the hypothesis of the nuclear atom. This is why Rutherford is credited

o
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Figure 4.4 Rutherford scattering. N(6) is the number of alpha particles per unit area that reach the
screen at a scattering angle of 6; N(180°) is this number for backward scattering. The experimental
findings follow this curve, which is based on the nuclear model of the atom.

with the “discovery” of the nucleus. Because N(6) is inversely proportional to sin* (6/2)
the variation of N(0) with 6 is very pronounced (Fig. 4.4): only 0.14 percent of the
incident alpha particles are scattered by more than 1°.

Nuclear Dimensions

In his derivation of Eq. (4.1) Rutherford assumed that the size of a target nucleus is
small compared with the minimum distance R to which incident alpha particles
approach the nucleus before being deflected away. Rutherford scattering therefore gives
us a way to find an upper limit to nuclear dimensions.

Let us see what the distance of closest approach R was for the most energetic alpha
particles employed in the early experiments. An alpha particle will have its smallest R
when it approaches a nucleus head on, which will be followed by a 180° scattering.
At the instant of closest approach the initial kinetic energy KE of the particle is entirely
converted to electric potential energy, and so at that instant

1 2z
47750 R

KEjniia = PE =

since the charge of the alpha particle is 2e and that of the nucleus is Ze. Hence

Distance of closest 27¢?
R= —F1— 4.2)
approach 477€ OKE

o
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Proton

Figure 4.5 Force balance in the
hydrogen atom.

The maximum KE found in alpha particles of natural origin is 7.7 MeV, which is
1.2 X 107" J. Since 1/4me, = 9.0 X 10° N - m?*/C?,

(2)(9.0 X 10° N - m¥/CH(1.6 X 1072 0%z
12 X107

38X 107 Zm

The atomic number of gold, a typical foil material, is Z = 79, so that
R(AW =3.0X 10 "m

The radius of the gold nucleus is therefore less than 3.0 X 107" m, well under
10™* the radius of the atom as a whole.

In more recent years particles of much higher energies than 7.7 MeV have been
artificially accelerated, and it has been found that the Rutherford scattering formula
does indeed eventually fail to agree with experiment. These experiments and the in-
formation they provide on actual nuclear dimensions are discussed in Chap. 11.
The radius of the gold nucleus turns out to be about ¥ of the value of R (Au) found
above.

Neutron Stars

he density of nuclear matter is about 2.4 X 10" kg/m?, which is equivalent to 4 bil-

lion tons per cubic inch. As discussed in Sec. 9.11, neutron stars are stars whose atoms
have been so compressed that most of their protons and electrons have fused into neutrons,
which are the most stable form of matter under enormous pressures. The densities of neu-
tron stars are comparable to those of nuclei: a neutron star packs the mass of one or two
suns into a sphere only about 10 km in radius. If the earth were this dense, it would fit into
a large apartment house.

4.2 ELECTRON ORBITS

The planetary model of the atom and why it fails

The Rutherford model of the atom, so convincingly confirmed by experiment, pictures
a tiny, massive, positively charged nucleus surrounded at a relatively great distance by
enough electrons to render the atom electrically neutral as a whole. The electrons can-
not be stationary in this model, because there is nothing that can keep them in place
against the electric force pulling them to the nucleus. If the electrons are in motion,
however, dynamically stable orbits like those of the planets around the sun are pos-
sible (Fig. 4.5).

Let us look at the classical dynamics of the hydrogen atom, whose single electron
makes it the simplest of all atoms. We assume a circular electron orbit for convenience,
though it might as reasonably be assumed to be elliptical in shape. The centripetal
orce
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holding the electron in an orbit r from the nucleus is provided by the electric force

1 ¢
F_

= A
41re, 1

between them. The condition for a dynamically stable orbit is

F.=F.
2 2
mv 1 e
= — (4.3)
r 4meq
The electron velocity v is therefore related to its orbit radius r by the formula
Electron velocit ¢
v ————
Y Vamegmr 4.4

The total energy E of the electron in a hydrogen atom is the sum of its kinetic and
potential energies, which are

82

1 2
KE = —mv PE = —
2 41reqr

(The minus sign follows from the choice of PE =0 at r = oo, that is, when the
electron and proton are infinitely far apart.) Hence

mu* e’
E=KE + PE = -
2 4reqr
Substituting for v from Eq. (4.4) gives
e e
E= —
8meor 41r€eqr
Total f e’
ho al energy o o 4.5)
ydrogen atom 8reor

The total energy of the electron is negative. This holds for every atomic electron and
reflects the fact that it is bound to the nucleus. If E were greater than zero, an electron
would not follow a closed orbit around the nucleus.

Actually, of course, the energy E is not a property of the electron alone but is a prop-
erty of the system of electron + nucleus. The effect of the sharing of E between the
electron and the nucleus is considered in Sec. 4.7.

Example 4.1

Experiments indicate that 13.6 eV is required to separate a hydrogen atom into a proton and an
electron; that is, its total energy is E = —13.6 eV. Find the orbital radius and velocity of the
electron in a hydrogen atom.

o
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Figure 4.6 An atomic electron
should, classically, spiral rapidly
into the nucleus as it radiates
energy due to its acceleration.

Solution
Since 13.6 ¢V = 2.2 X 107*® J, from Eq. (4.5)
e? (1.6 X 1079 )

8meE (8m)(8.85 X 10 2 F/m)(—2.2 X 108 ])
53X 10 "'m

An atomic radius of this magnitude agrees with estimates made in other ways. The electron’s
velocity can be found from Eq. (4.4):

e 1.6 X 10 ¥ C
V= -
Viameomr  V(4m)(8.85 X 1072 F/m)(9.1 X 10! kg)(5.3 X 10" m)
=22 %X 10°m/s

Since v << ¢, we can ignore special relativity when considering the hydrogen atom.

The Failure of Classical Physics

The analysis above is a straightforward application of Newton’s laws of motion and
Coulomb’s law of electric force—both pillars of classical physics—and is in accord with
the experimental observation that atoms are stable. However, it is not in accord with
electromagnetic theory—another pillar of classical physics—which predicts that accel-
erated electric charges radiate energy in the form of em waves. An electron pursuing
a curved path is accelerated and therefore should continuously lose energy, spiraling
into the nucleus in a fraction of a second (Fig. 4.6).

But atoms do not collapse. This contradiction further illustrates what we saw in the
previous two chapters: The laws of physics that are valid in the macroworld do not
always hold true in the microworld of the atom.

Is Rutherford's Analysis Valid?

n interesting question comes up at this point. When he derived his scattering formula,
Rutherford used the same laws of physics that prove such dismal failures when applied
to atomic stability. Might it not be that this formula is not correct and that in reality the atom
does not resemble Rutherford’s model of a small central nucleus surrounded by distant elec-
trons? This is not a trivial point. It is a curious coincidence that the quantum-mechanical
analysis of alpha particle scattering by thin foils yields precisely the same formula that Ruther-
ford found.
To verify that a classical calculation ought to be at least approximately correct, we note
that the de Broglie wavelength of an alpha particle whose speed is 2.0 X 107 m/s is

Ao 6.63X10"J s
mv (6.6 X 10?7 kg)(2.0 X 10" m/s)
=50X10""m

As we saw in Sec. 4.1, the closest an alpha particle with this wavelength ever gets to a gold
nucleus is 3.0 X 107 m, which is six de Broglie wavelengths. It is therefore just reasonable to
regard the alpha particle as a classical particle in the interaction. We are correct in thinking of
the atom in terms of Rutherford’s model, though the dynamics of the atomic electrons—which
is another matter—requires a nonclassical approach.

o
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Classical physics fails to provide a meaningful analysis of atomic structure because
it approaches nature in terms of “pure” particles and “pure” waves. In reality particles
and waves have many properties in common, though the smallness of Planck’s con-
stant makes the wave-particle duality imperceptible in the macroworld. The usefulness
of classical physics decreases as the scale of the phenomena under study decreases, and
we must allow for the particle behavior of waves and the wave behavior of particles to
understand the atom. In the rest of this chapter we shall see how the Bohr atomic
model, which combines classical and modern notions, accomplishes part of the latter
task. Not until we consider the atom from the point of view of quantum mechanics,
which makes no compromise with the intuitive notions we pick up in our daily lives,
will we find a really successful theory of the atom.

4.3 ATOMIC SPECTRA

Each element has a characteristic line spectrum

Atomic stability is not the only thing that a successful theory of the atom must account
for. The existence of spectral lines is another important aspect of the atom that finds
no explanation in classical physics.

We saw in Chap. 2 that condensed matter (solids and liquids) at all temperatures
emits em radiation in which all wavelengths are present, though with different
intensities. The observed features of this radiation were explained by Planck without
reference to exactly how it was produced by the radiating material or to the nature of
the material. From this it follows that we are witnessing the collective behavior of a
great many interacting atoms rather than the characteristic behavior of the atoms of a
particular element.

At the other extreme, the atoms or molecules in a rarefied gas are so far apart on
the average that they only interact during occasional collisions. Under these circum-
stances we would expect any emitted radiation to be characteristic of the particular
atoms or molecules present, which turns out to be the case.

When an atomic gas or vapor at somewhat less than atmospheric pressure is suitably
“excited,” usually by passing an electric current through it, the emitted radiation has a
spectrum which contains certain specific wavelengths only. An idealized arrangement for
observing such atomic spectra is shown in Fig. 4.7; actual spectrometers use diffraction

N

Slit

-

Rarefied gas or vapor
excited by electric
discharge

Prism

Screen

Figure 4.7 An idealized spectrometer.
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Figure 4.8 Some of the principal lines in the emission spectra of hydrogen, helium, and mercury.
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Gas atoms excited by electric currents in these tubes radiate light
of wavelengths characteristic of the gas used.

gratings. Figure 4.8 shows the emission line spectra of several elements. Every element
displays a unique line spectrum when a sample of it in the vapor phase is excited. Spec-
troscopy is therefore a useful tool for analyzing the composition of an unknown substance.

When white light is passed through a gas, the gas is found to absorb light of cer-
tain of the wavelengths present in its emission spectrum. The resulting absorption line
spectrum consists of a bright background crossed by dark lines that correspond to the
missing wavelengths (Fig. 4.9); emission spectra consist of bright lines on a dark back-
ground. The spectrum of sunlight has dark lines in it because the luminous part of the

Absorption spectrum
of sodium vapor

Emission spectrum
of sodium vapor

Figure 4.9 The dark lines in the absorption spectrum of an element correspond to bright lines in its
emission spectrum.
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sun, which radiates very nearly like a blackbody heated to 5800 K, is surrounded by
an envelope of cooler gas that absorbs light of certain wavelengths only. Most other
stars have spectra of this kind.

The number, intensity, and exact wavelengths of the lines in the spectrum of an
element depend upon temperature, pressure, the presence of electric and magnetic
fields, and the motion of the source. It is possible to tell by examining its spectrum
not only what elements are present in a light source but much about their physical
state. An astronomer, for example, can establish from the spectrum of a star which
elements its atmosphere contains, whether they are ionized, and whether the star is
moving toward or away from the earth.

Spectral Series

A century ago the wavelengths in the spectrum of an element were found to fall into
sets called spectral series. The first such series was discovered by J. J. Balmer in 1885
in the course of a study of the visible part of the hydrogen spectrum. Figure 4.10 shows
the Balmer series. The line with the longest wavelength, 656.3 nm, is designated
H,, the next, whose wavelength is 486.3 nm, is designated Hg, and so on. As the
wave-length decreases, the lines are found closer together and weaker in intensity until
the series limit at 364.6 nm is reached, beyond which there are no further separate
lines but only a faint continuous spectrum. Balmer’s formula for the wavelengths of
this series is

1 1 1
Balmer " = R(? - ?> n=3 45 ... (4.6)

The quantity R, known as the Rydberg constant, has the value
Rydberg constant R=1.097 X 10’ m ' = 0.01097 nm™"

The H,, line corresponds to n = 3, the Hg line to n = 4, and so on. The series limit
corresponds to n = o, so that it occurs at a wavelength of 4/R, in agreement with
experiment.

The Balmer series contains wavelengths in the visible portion of the hydrogen spec-
trum. The spectral lines of hydrogen in the ultraviolet and infrared regions fall into
several other series. In the ultraviolet the Lyman series contains the wavelengths given

( LU

Hg

364.6 nm

Figure 4.10 The Balmer series of hydrogen. The H, line is red, the Hg line is blue, the H, and H;
lines are violet, and the other lines are in the near ultraviolet.
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5000+ - JPfund series [ l =R L — i n=2 3 4 4.7
20004 . }Brackett series A 12 n? T ’
10004 Paschen series
5004 Balmer In the infrared, three spectral series have been found whose lines have the wavelengths
series specified by the formulas
| 1 11
Paschen —=R|—= — — n=4%,56,... (4.8)
2504 A 3 n
1 1 1
200 Brackett — = R<_z - —2> n=>5 0,7, 4.9
A 4 n
| Pfund ! ( ! ! ) 6,7,8 (4.10)
- ~ =R — n=26,7,8, :
1504 un I\ 52 )
125+ These spectral series of hydrogen are plotted in terms of wavelength in Fig. 4.11; the
Brackett series evidently overlaps the Paschen and Pfund series. The value of R is the
i L same in Egs. (4.6) to (4.10).
yman S . .
100- series These observed regularities in the hydrogen spectrum, together with similar regu-
larities in the spectra of more complex elements, pose a definitive test for any theory
= of atomic structure.

Figure 4.11 The spectral series of
hydrogen. The wavelengths in
each series are related by simple
formulas.

4.4 THE BOHR ATOM

Electron waves in the atom

The first theory of the atom to meet with any success was put forward in 1913 by Niels
Bohr. The concept of matter waves leads in a natural way to this theory, as de Broglie
found, and this is the route that will be followed here. Bohr himself used a different
approach, since de Broglie’s work came a decade later, which makes his achievement
all the more remarkable. The results are exactly the same, however.

We start by examining the wave behavior of an electron in orbit around a hydro-
gen nucleus. (In this chapter, since the electron velocities are much smaller than c, we
will assume that y = 1 and for simplicity omit y from the various equations.) The de
Broglie wavelength of this electron is

where the electron velocity v is that given by Eq. (4.4):

4

V 4meomr

v =

Hence

Orbital electron h  [4mer
wavelength A= . m 1D
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By substituting 5.3 X 10~"" m for the radius r of the electron orbit (see Example
4.1), we find the electron wavelength to be

Lo 663 1074 -5 \/ (47)(8.85 X 1072 C¥N - m?)(5.3 X 10 "' m)
1.6 X 107'°C 9.1 X 10" kg

33X 107" ' m

This wavelength is exactly the same as the circumference of the electron orbit,

2ar=33X 107" m

The orbit of the electron in a hydrogen atom corresponds to one complete electron
wave joined on itself (Fig. 4.12)! , N

The fact that the electron orbit in a hydrogen atom is one electron wavelength in ( "
circumference provides the clue we need to construct a theory of the atom. If we con-
sider the vibrations of a wire loop (Fig. 4.13), we find that their wavelengths always - ~
fit an integral number of times into the loop’s circumference so that each wave joins |
smoothly with the next. If the wire were perfectly elastic, these vibrations would

continue indefinitely. Why are these the only vibrations possible in a wire loop? If . '

a fractional number of wavelengths is placed around the loop, as in Fig. 4.14, destructive

— Electron path
—— De Broglie electron wave

Circumference = 8 wavelengths

Figure 4.12 The orbit of the electron in a hydrogen atom corresponds to a complete electron de Broglie

joined itself.
wave Jored on fse Figure 4.13 Some modes of vi-

bration of a wire loop. In each
case a whole number of wave-
lengths fit into the circumference
of the loop.

Figure 4.14 A fractional number of wavelengths cannot persist because destructive interference will
oceutr.
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Niels Bohr (1884-1962) was
born and spent most of his life in
Copenhagen, Denmark. After re-
ceiving his doctorate at the uni-
versity there in 1911, Bohr went to
England to broaden his scientific
horizons. At Rutherfords labora-
tory in Manchester, Bohr was in-
troduced to the just-discovered
nuclear model of the atom, which
was in conflict with the existing
principles of physics. Bohr realized
that it was “hopeless” to try to make sense of the atom in
the framework of classical physics alone, and he felt that the
quantum theory of light must somehow be the key to under-
standing atomic structure.

Back in Copenhagen in 1913, a friend suggested to Bohr
that Balmers formula for one set of the spectral lines of hydro-
gen might be relevant to his quest. “As soon as I saw Balmer’s
formula the whole thing was immediately clear to me,” Bohr
said later. To construct his theory, Bohr began with two revo-
lutionary ideas. The first was that an atomic electron can circle
its nucleus only in certain orbits, and the other was that an
atom emits or absorbs a photon of light when an electron jumps
from one permitted orbit to another.

What is the condition for a permitted orbit? To find out,
Bohr used as a guide what became known as the correspon-
dence principle: When quantum numbers are very large, quan-
tum effects should not be conspicuous, and the quantum the-
ory must then give the same results as classical physics.
Applying this principle showed that the electron in a permit-
ted orbit must have an angular momentum that is a multiple

of A = h/2m. A decade later Louis de Broglie explained this
quantization of angular momentum in terms of the wave na-
ture of a moving electron.

Bohr was able to account for all the spectral series of hy-
drogen, not just the Balmer series, but the publication of the
theory aroused great controversy. Einstein, an enthusiastic sup-
porter of the theory (which “appeared to me like a miracle—
and appears to me as a miracle even today,” he wrote many years
later), nevertheless commented on its bold mix of classical and
quantum concepts, “One ought to be ashamed of the successes
[of the theory] because they have been earned according to the
Jesuit maxim, ‘Let not thy left hand know what the other doeth.”
Other noted physicists were more deeply disturbed: Otto Stern
and Max von Laue said they would quit physics if Bohr were
right. (They later changed their minds.) Bohr and others tried
to extend his model to many-electron atoms with occasional
success—for instance, the correct prediction of the properties of
the then-unknown element hafnium—but real progress had to
wait for Wolfgang Pauli’s exclusion principle of 1925.

In 1916 Bohr returned to Rutherfords laboratory, where he
stayed until 1919. Then an Institute of Theoretical Physics was
created for him in Copenhagen, and he directed it until his
death. The institute was a magnet for quantum theoreticians
from all over the world, who were stimulated by the exchange
of ideas at regular meetings there. Bohr received the Nobel Prize
in 1922. His last important work came in 1939, when he used
an analogy between a large nucleus and a liquid drop to ex-
plain why nuclear fission, which had just been discovered, oc-
curs in certain nuclei but not in others. During World War 11
Bohr contributed to the development of the atomic bomb at
Los Alamos, New Mexico. After the war, Bohr returned to
Copenhagen, where he died in 1962.

interference will occur as the waves travel around the loop, and the vibrations will die

out rapidly.

By considering the behavior of electron waves in the hydrogen atom as analogous

to the vibrations of a wire loop, then, we can say that

An electron can circle a nucleus only if its orbit contains an integral number of
de Broglie wavelengths.

This statement combines both the particle and wave characters of the electron since
the electron wavelength depends upon the orbital velocity needed to balance the pull
of the nucleus. To be sure, the analogy between an atomic electron and the standing
waves of Fig. 4.13 is hardly the last word on the subject, but it represents an illumi-
nating step along the path to the more profound and comprehensive, but also more
abstract, quantum-mechanical theory of the atom.

It is easy to express the condition that an electron orbit contain an integral number
of de Broglie wavelengths. The circumference of a circular orbit of radius r is 27rr, and
so the condition for orbit stability is

o
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Condition for orbit

stability nA =2, n=1,2,3,... (4.12)

where r, designates the radius of the orbit that contain n wavelengths. The integer n
is called the quantum number of the orbit. Substituting for A, the electron wavelength

given by Eq. (4.11), yields
nh | 4meqr,
— [——— =27,
e m

and so the possible electron orbits are those whose radii are given by

. ... 22
n“h7e

Orbital radii in ro= 2o n=1273 .. (4.13)

Bohr atom T me

The radius of the innermost orbit is customarily called the Bohr radius of the hydrogen
atom and is denoted by the symbol ay:

Bohr radius dy=1r=5292%X10"m
The other radii are given in terms of ay by the formula

r. = nag 4.19)

4.5 ENERGY LEVELS AND SPECTRA

A photon is emitted when an electron jumps from one energy level to a
lower level

The various permitted orbits involve different electron energies. The electron energy
E, is given in terms of the orbit radius r, by Eq. (4.5) as

62

E,=—
8meyr,

Substituting for r, from Eq (4.13), we see that
met 1 E;
Energy levels E,= _?(z)hz pes = — n=1 2,3, ... (4.15)

—2.18X 10718 =—-136eV

Ey

The energies specified by Eq. (4.15) are called the energy levels of the hydrogen atom
and are plotted in Fig. 4.15. These levels are all negative, which signifies that the elec-
tron does not have enough energy to escape from the nucleus. An atomic electron can
have only these energies and no others. An analogy might be a person on a ladder,
who can stand only on its steps and not in between.

o
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Free electron

Energy, J Energy, eV
q 0 0
-0.87 X107 —0.54
-136 X107 -0.85
242 X107 151

+ Excited states

543 X107 -3.40

—21.76 X107  -13.6 Ground state

Figure 4.15 Energy levels of the hydrogen atom.

The lowest energy level E; is called the ground state of the atom, and the higher
levels E,, Es, E,, . . . are called excited states. As the quantum number n increases,
the corresponding energy E, approaches closer to 0. In the limit of n = %, E, = 0
and the electron is no longer bound to the nucleus to form an atom. A positive
energy for a nucleus-electron combination means that the electron is free and has
no quantum conditions to fulfill; such a combination does not constitute an atom,
of course.

The work needed to remove an electron from an atom in its ground state is called
its ionization energy. The ionization energy is accordingly equal to —E,, the energy
that must be provided to raise an electron from its ground state to an energy of E = 0,
when it is free. In the case of hydrogen, the ionization energy is 13.6 eV since the
ground-state energy of the hydrogen atom is —13.6 eV. Figure 7.10 shows the ioniza-
tion energies of the elements.

o
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Example 4.2

An electron collides with a hydrogen atom in its ground state and excites it to a state of n
= 3. How much energy was given to the hydrogen atom in this inelastic (KE not conserved)
collision?

Solution

From Eq. (4.15) the energy change of a hydrogen atom that goes from an initial state of quan-
tum number n; to a final state of quantum number ny is

E, E, ( )
AE=F—-E=— - — =E|— - —=
/ v :
Here n; =1, ny = 3, and E, = —13.6 eV, so

11
AE=-136 (—2 - —2) eV =121 eV
31

Example 4.3

Hydrogen atoms in states of high quantum number have been created in the laboratory and
observed in space. They are called Rydberg atoms. (a) Find the quantum number of the Bohr
orbit in a hydrogen atom whose radius is 0.0100 mm. (b) What is the energy of a hydrogen
atom in this state?

Solution

(@) From Eq. (4.14) with r, = 1.00 X 107> m,
Ty 1.00 X 107° m
n= —_— = S L = 435
do 529 X 107" m

E, —136¢V .
E,b=— =————=-719X 107 eV
n (435)

(b) From Eq. (4.15),

Rydberg atoms are obviously extremely fragile and are easily ionized, which is why they are
found in nature only in the near-vacuum of space. The spectra of Rydberg atoms range down
to radio frequencies and their existence was established from radio telescope data.

Origin of Line Spectra

We must now confront the equations developed above with experiment. An especially
striking observation is that atoms exhibit line spectra in both emission and absorption.
Do such spectra follow from our model?

The presence of discrete energy levels in the hydrogen atom suggests the connec-
tion. Let us suppose that when an electron in an excited state drops to a lower state,
the lost energy is emitted as a single photon of light. According to our model, elec-
trons cannot exist in an atom except in certain specific energy levels. The jump of an
electron from one level to another, with the difference in energy between the levels
being given off all at once in a photon rather than in some more gradual manner, fits
in well with this model.

o
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Quantization in the Atomic World

S equences of energy levels are characteristic of all atoms, not just those of hydrogen. As in
the case of a particle in a box, the confinement of an electron to a region of space leads to
restrictions on its possible wave functions that in turn limit the possible energies to well-defined
values only. The existence of atomic energy levels is a further example of the quantization, or
graininess, of physical quantities on a microscopic scale.

In the world of our daily lives, matter, electric charge, energy, and so forth appear to be con-
tinuous. In the world of the atom, in contrast, matter is composed of elementary particles that
have definite rest masses, charge always comes in multiples of +¢ or —e, electromagnetic waves
of frequency v appear as streams of photons each with the energy hv, and stable systems of par-
ticles, such as atoms, can possess only certain energies. As we shall find, other quantities in na-
ture are also quantized, and this quantization enters into every aspect of how electrons, protons,
and neutrons interact to endow the matter around us (and of which we consist) with its famil-
iar properties.

If the quantum number of the initial (higher-energy) state is n; and the quantum
number of the final (lower-energy) state is ny, we are asserting that
Initial energy — final energy = photon energy

E —E = hv (4.16)

where v is the frequency of the emitted photon. From Eq. (4.15) we have

1 1 1 1
Ei—EfZEl F—?? = —F ;?—F

We recall that E; is a negative quantity (—13.6 eV, in fact), so —E, is a positive quan-
tity. The frequency of the photon released in this transition is therefore

E—FE  E (1 1
V= L = ——1(—2 - —2> 4.17)

Since A = ¢/v, 1/A = v/c and

R

spectrum A ch

Hyd 1 B/l 1
yerosen = ——1( ) (4.18)

Equation (4.18) states that the radiation emitted by excited hydrogen atoms
should contain certain wavelengths only. These wavelengths, furthermore, fall into
definite sequences that depend upon the quantum number n; of the final energy
level of the electron (Fig. 4.16). Since n; > ny in each case, in order that there be
an excess of energy to be given off as a photon, the calculated formulas for the first
five series are

1 E, /1 1
Lyman nf=1: X:_E ?—? n=2,34,...

o
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n= ¥ E=0
n=5-—— I Y ﬁ

n=4% * * ¥
n=3
Y
n=2
Series
limit
TEnergy
Y
n=1
v N —
Lyman Balmer Paschen  Brackett
series series series series

Figure 4.16 Spectral lines originate in transitions between energy levels. Shown are the spectral series
of hydrogen. When n = o, the electron is free.

Bal 2 ! El(l 1) 3, 4,5
ng= 2. — = ———\\— - —= n =

almer n X a5 2 > Ty,

Pasch 3 2 El(l 1) 4,56
aschen ng = 5. — = -\ = - — n =

f /\ c 32 nz s 25 Y,

Brackett PR El(l 1) 5,6,7
racke ng = 4. — = ———\—— - — n =

L ) c B 2

bhund s LolBLLy g,
un T’lf : A h 52 n2 n , [, 0, ..

These sequences are identical in form with the empirical spectral series discussed earlier.
The Lyman series corresponds to ny = 1; the Balmer series corresponds to ny = 2; the
Paschen series corresponds to ny = 3; the Brackett series corresponds to ny = 4; and the
Pfund series corresponds to ny = 5.

Our final step is to compare the value of the constant term in the above equations with
that of the Rydberg constant in Egs. (4.6) to (4.10). The value of the constant term is

Ey me*

ch  8eich’

(9.109 X 107" kg)(1.602 X 107 O)*
(8)(8.854 X 107'% C*/N - m?)(2.998 X 10® m/s)(6.626 X 10 >* ] - s)*

1.097 X 10" m™ !

o
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which is indeed the same as R. Bohr’s model of the hydrogen atom is therefore in accord
with the spectral data.

Example 4.4
Find the longest wavelength present in the Balmer series of hydrogen, corresponding to the H, line.
Solution

In the Balmer series the quantum number of the final state is n; = 2. The longest wavelength in
this series corresponds to the smallest energy difference between energy levels. Hence the initial
state must be n; = 3 and

LY T P Y L
A n} n’ 22 32 ’

1 1
= = —— =6.56 X 10" 'm = 656 nm
0.1390R  0.139(1.097 X 10'm™")

This wavelength is near the red end of the visible spectrum.

4.6 CORRESPONDENCE PRINCIPLE

The greater the quantum number, the closer quantum physics approaches
classical physics

Quantum physics, so different from classical physics in the microworld beyond reach
of our senses, must nevertheless give the same results as classical physics in the
macroworld where experiments show that the latter is valid. We have already seen that
this basic requirement is true for the wave theory of moving bodies. We shall now find
that it is also true for Bohr’s model of the hydrogen atom.

According to electromagnetic theory, an electron moving in a circular orbit radi-
ates em waves whose frequencies are equal to its frequency of revolution and to har-
monics (that is, integral multiples) of that frequency. In a hydrogen atom the electron’s
speed is

e

V4e mr

v =

according to Eq. (4.4), where r is the radius of its orbit. Hence the frequency of
revolution f of the electron is

electron speed v e

orbit circumference 27y 27NV 4mregmr>

The radius r, of a stable orbit is given in terms of its quantum number n by Eq. (4.13)
as

n*h%e,

’771’1’162

Iy =

o
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and so the frequency of revolution is
Frequency of B me* (2 _ —E (2
wtuion 1= sawl) = ) (19
Example 4.5

(a) Find the frequencies of revolution of electrons in n = 1 and n = 2 Bohr orbits. (b) What is
the frequency of the photon emitted when an electron in an n = 2 orbit drops to an n = 1 or-
bit? (¢) An electron typically spends about 10 s in an excited state before it drops to a lower
state by emitting a photon. How many revolutions does an electron in an n = 2 Bohr orbit make
in 1.00 X 107%s?

Solution

(a) From Eq. (4.19),

—E (2 218X 10718 .
= == ) =658%1
fi h (13> ( 663X 10 "] - (2) =6.58 0" rev/s
)
b= - (;) = % = 0.823 X 10 rev/s

(b) From Eq. (4.17),

—E (1 1 2.18 X 10718 1 1 s
v = e — — — —5 | =288x 10" Hz
h \nf n 6.63 X105 J\ 1 2

This frequency is intermediate between f; and f,.

(¢) The number of revolutions the electron makes is
N =f, At = (8.23 X 10" rev/s)(1.00X 10 %s) = 8.23 X 10° rev

The earth takes 8.23 million y to make this many revolutions around the sun.

Under what circumstances should the Bohr atom behave classically? If the electron
orbit is so large that we might be able to measure it directly, quantum effects ought
not to dominate. An orbit 0.01 mm across, for instance, meets this specification. As
we found in Example 4.3, its quantum number is n = 435.

What does the Bohr theory predict such an atom will radiate? According to Eq.
(4.17), a hydrogen atom dropping from the n;th energy level to the nsth energy level
emits a photon whose frequency is

—El(l 1)
v = - _
h nfr n?

Let us write n for the initial quantum number n; and n — p (where p = 1, 2,3, .. )
for the final quantum number n;. With this substitution,
—El[ 1 1] —El[ZHp—pz]
V= _—— — | =
h (n — p)2 n’ h | n?(n — p)2

When n; and ny are both very large, n is much greater than p, and

2np — p2 ~ 2np

(n—p)* =n’

o
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so that
Frequency of _~E/(2p
photon v h n> (4.20)

When p = 1, the frequency » of the radiation is exactly the same as the frequency
of rotation f of the orbital electron given in Eq. (4.19). Multiples of this frequency are
radiated when p = 2, 3,4, . . . . Hence both quantum and classical pictures of the
hydrogen atom make the same predictions in the limit of very large quantum num-
bers. When n = 2, Eq. (4.19) predicts a radiation frequency that differs from that given
by Eq. (4.20) by almost 300 percent. When n = 10,000, the discrepancy is only about
0.01 percent.

The requirement that quantum physics give the same results as classical physics in
the limit of large quantum numbers was called by Bohr the correspondence princi-
ple. It has played an important role in the development of the quantum theory of
matter.

Bohr himself used the correspondence principle in reverse, so to speak, to look for
the condition for orbit stability. Starting from Eq. (4.19) he was able to show that stable
orbits must have electron orbital angular momenta of

o h
Condition for mor=—-  n=1,2,3,... “21)
orbital stability 2

Since the de Broglie electron wavelength is A = h/mv, Eq. (4.21) is the same as
Eq. (4.12), nA = 217, which states that an electron orbit must contain an integral num-
ber of wavelengths.

4.7 NUCLEAR MOTION

The nuclear mass affects the wavelengths of spectral lines

Thus far we have been assuming that the hydrogen nucleus (a proton) remains
stationary while the orbital electron revolves around it. What must actually happen, of
course, is that both nucleus and electron revolve around their common center of mass,
which is very close to the nucleus because the nuclear mass is much greater than that
of the electron (Fig. 4.17). A system of this kind is equivalent to a single particle of
mass m’ that revolves around the position of the heavier particle. (This equivalence is

Electron

Figure 417 Both the electron and nucleus of a hydrogen atom revolve around a common center of
mass (not to scale !).

o
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demonstrated in Sec. 8.6.) If m is the electron mass and M the nuclear mass, then m’
is given by

mM

Reduced mass m = 4.22)

The quantity m’ is called the reduced mass of the electron because its value is less
than m.

To take into account the motion of the nucleus in the hydrogen atom, then, all we
need do is replace the electron with a particle of mass m'. The energy levels of the
atom then become

Energy levels met (1 m'\( E,
corrected for E,=— 82 (?) = ( o )(?> (4.23)

nuclear motion

Owing to motion of the nucleus, all the energy levels of hydrogen are changed by the
fraction

m’ M
= — = 0.99945
m M+ m

This represents an increase of 0.055 percent because the energies E,, being smaller in
absolute value, are therefore less negative.

The use of Eq. (4.23) in place of (4.15) removes a small but definite discrepancy
between the predicted wavelengths of the spectral lines of hydrogen and the measured
ones. The value of the Rydberg constant R to eight significant figures without correct-
ing for nuclear motion is 1.0973731 X 10" m™"; the correction lowers it to 1.0967758
X 10" m™ ",

The notion of reduced mass played an important part in the discovery of deuterium,
a variety of hydrogen whose atomic mass is almost exactly double that of ordinary
hydrogen because its nucleus contains a neutron as well as a proton. About one
hydrogen atom in 6000 is a deuterium atom. Because of the greater nuclear mass, the
spectral lines of deuterium are all shifted slightly to wavelengths shorter than the
corresponding ones of ordinary hydrogen. Thus the H,, line of deuterium, which arises
from a transition from the n = 3 to the n = 2 energy level, occurs at a wavelength of
656.1 nm, whereas the H, line of hydrogen occurs at 656.3 nm. This difference in
wavelength was responsible for the identification of deuterium in 1932 by the
American chemist Harold Urey.

Example 4.6

A positronium “atom” is a system that consists of a positron and an electron that orbit each
other. Compare the wavelengths of the spectral lines of positronium with those of ordinary
hydrogen.

Solution
Here the two particles have the same mass m, so the reduced mass is

. mM m?
m+ M 2m
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Photon

() —

Figure 4.18 Excitation by colli-
sion. Some of the available energy
is absorbed by one of the atoms,
which goes into an excited energy
state. The atom then emits a pho-
ton in returning to its ground
(normal) state.

where m is the electron mass. From Eq. (4.23) the energy levels of a positronium “atom” are

, m'\ E; E,
En = | — —2 = —2
m/ n 2n

This means that the Rydberg constant—the constant term in Eq. (4.18)—for positronium is half
as large as it is for ordinary hydrogen. As a result the wavelengths in the positronium spectral
lines are all twice those of the corresponding lines in the hydrogen spectrum.

Example 4.7

A muon is an unstable elementary particle whose mass is 207m, and whose charge is either +e
or —e. A negative muon (u™ ) can be captured by a nucleus to form a muonic atom. (a) A proton
captures a u~ . Find the radius of the first Bohr orbit of this atom. (b) Find the ionization energy
of the atom.

Solution

(a) Here m = 207m, and M = 1836m,, so the reduced mass is

mM (207m,)(1836m,)
m = = = 186m,
m+ M 207m, + 1836m,

According to Eq. (4.13) the orbit radius corresponding to n = 1 is
h’e,
= —
L ame?

where 1} = dag = 5.29 X 10~ "' m. Hence the radius r’ that corresponds to the reduced mass
m' is

m me _
H=—]r= ap =2.85%X 10" m
m’ 186m,

The muon is 186 times closer to the proton than an electron would be, so a muonic hydrogen
atom is much smaller than an ordinary hydrogen atom.

(b) From Eq. (4.23) we have, withn = 1 and E; = —13.6 eV,

E| = (ﬂ)fz, = 186F, = —2.53 X 10° eV = —2.53 keV
m

The ionization energy is therefore 2.53 keV, 186 times that for an ordinary hydrogen atom.

4.8 ATOMIC EXCITATION

How atoms absorb and emit energy

There are two main ways in which an atom can be excited to an energy above its
ground state and thereby become able to radiate. One of these ways is by a collision
with another particle in which part of their joint kinetic energy is absorbed by the
atom. Such an excited atom will return to its ground state in an average of 10™° s by
emitting one or more photons (Fig. 4.18).

To produce a luminous discharge in a rarefied gas, an electric field is established
that accelerates electrons and atomic ions until their kinetic energies are sufficient to

o
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Auroras are caused by streams of fast protons and electrons from the sun that excite atoms in
the upper atmosphere. The green hues of an auroral display come from oxygen, and the reds
originate in both oxygen and nitrogen. This aurora occurred in Alaska.

excite atoms they collide with. Because energy transfer is a maximum when the colliding
particles have the same mass (see Fig. 12.22), the electrons in such a discharge are
more effective than the ions in providing energy to atomic electrons. Neon signs and
mercury-vapor lamps are familiar examples of how a strong electric field applied
between electrodes in a gas-filled tube leads to the emission of the characteristic spec-
tral radiation of that gas, which happens to be reddish light in the case of neon and
bluish light in the case of mercury vapor.

Another excitation mechanism is involved when an atom absorbs a photon of light
whose energy is just the right amount to raise the atom to a higher energy level. For
example, a photon of wavelength 121.7 nm is emitted when a hydrogen atom in the
n = 2 state drops to the n = 1 state. Absorbing a photon of wavelength 121.7 nm by
a hydrogen atom initially in the n = 1 state will therefore bring it up to the n = 2
state (Fig. 4.19). This process explains the origin of absorption spectra.

T~ Photon of
/ N\ wavelength A
_— ( @ ) + Ao Spectrum
\ /
N —

Photon of T~
wavelength A / \\
(VA VaS 2 =+ ( @ / — Spectrum
\ /
~ —

Origin of absorption spectra

Figure 4.19 How emission and absorption spectral lines originate.
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Figure 4.20 The dark lines in an absorption spectrum are never totally dark.

When white light, which contains all wavelengths, is passed through hydrogen gas,
photons of those wavelengths that correspond to transitions between energy levels are
absorbed. The resulting excited hydrogen atoms reradiate their excitation energy almost
at once, but these photons come off in random directions with only a few in the same
direction as the original beam of white light (Fig. 4.20). The dark lines in an absorp-
tion spectrum are therefore never completely black but only appear so by contrast with
the bright background. We expect the lines in the absorption spectrum of any element
to coincide with those in its emission spectrum that represent transitions to the ground

state, which agrees with observation (see Fig. 4.9).

Franck-Hertz Experiment

Atomic spectra are not the only way to investigate energy levels inside atoms. A series
of experiments based on excitation by collision was performed by James Franck and
Gustav Hertz (a nephew of Heinrich Hertz) starting in 1914. These experiments demon-
strated that atomic energy levels indeed exist and, furthermore, that the ones found in
this way are the same as those suggested by line spectra.

Franck and Hertz bombarded the vapors of various elements with electrons of known
energy, using an apparatus like that shown in Fig. 4.21. A small potential difference
Vo between the grid and collecting plate prevents electrons having energies less than
a certain minimum from contributing to the current I through the ammeter. As the
accelerating potential V is increased, more and more electrons arrive at the plate and

I rises (Fig. 4.22).

Filament

Grid Plate

3

{n .

Vo

Figure 4.21 Apparatus for the Franck-Hertz experiment.

o
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Figure 4.22 Results of the Franck-Hertz experiment, showing critical potentials in mercury vapor.
If KE is conserved when an electron collides with one of the atoms in the vapor,
the electron merely bounces off in a new direction. Because an atom is much heavier
than an electron, the electron loses almost no KE in the process. After a certain criti-
cal energy is reached, however, the plate current drops abruptly. This suggests that an
electron colliding with one of the atoms gives up some or all of its KE to excite the
atom to an energy level above its ground state. Such a collision is called inelastic, in
contrast to an elastic collision in which KE is conserved. The critical electron energy
equals the energy needed to raise the atom to its lowest excited state. AU aVaVYVaVa Vs
Then, as the accelerating potential V is raised further, the plate current again
increases, since the electrons now have enough energy left to reach the plate after under- TN
going an inelastic collision on the way. Eventually another sharp drop in plate current SANNNNNNNSWN
occurs, which arises from the excitation of the same energy level in other atoms by the Ordinary light
electrons. As Fig. 4.22 shows, a series of critical potentials for a given atomic vapor is
obtained. Thus the higher potentials result from two or more inelastic collisions and ~ N/ N\ S S
are multiples of the lowest one. AU
To check that the critical potentials were due to atomic energy levels, Franck and
Hertz observed the emission spectra of vapors during electron bombardment. In the < " """\
case of mercury vapor, for example, they found that a minimum electron energy of Monochromatic,
4.9 eV was required to excite the 253.6-nm spectral line of mercury—and a photon incoherent light
of 253.6-nm light has an energy of just 4.9 eV. The Franck-Hertz experiments were
performed shortly after Bohr announced his theory of the hydrogen atom, and they NSNS
independently confirmed his basic ideas. I Y Ve W W N
VA VA VO Ve WaN

Monochromatic,
coherent light

4.9 THE LASER

Figure 4.23 A laser produces a
beam of light whose waves all
have the same frequency (mono-
chromatic) and are in phase with
one another  (coherent). The
beam is also well collimated and
so spreads out very little, even
over long distances.

How to produce light waves all in step
The laser is a device that produces a light beam with some remarkable properties:

1 The light is very nearly monochromatic.
2 The light is coherent, with the waves all exactly in phase with one another (Fig.4.23).

o



bei48482 ch04.gxd 1/14/02 12:20 AM Page 146 $

146

Chapter Four

0 10785
O O v
Ordinary °
excited state
AAN>
Metastable P
excited state
AAN>
Ground state — Vv

Figure 4.24 An atom can exist in a metastable energy level for a longer time before radiating than it
can in an ordinary energy level.

3 A laser beam diverges hardly at all. Such a beam sent from the earth to a mirror left
on the moon by the Apollo 11 expedition remained narrow enough to be detected on
its return to the earth, a total distance of over three-quarters of a million kilometers.
A light beam produced by any other means would have spread out too much for this
to be done.

4 The beam is extremly intense, more intense by far than the light from any other
source. To achieve an energy density equal to that in some laser beams, a hot object
would have to be at a temperature of 10°° K.

The last two of these properties follow from the second of them.

The term laser stands for light amplification by stimulated emission of radiation.
The key to the laser is the presence in many atoms of one or more excited energy lev-
els whose lifetimes may be 107> s or more instead of the usual 10™% s. Such relatively
long-lived states are called metastable (temporarily stable); see Fig. 4.24.

Three kinds of transition involving electromagnetic radiation are possible between
two energy levels, Ey and E;, in an atom (Fig. 4.25). If the atom is initially in the
lower state Ey, it can be raised to E; by absorbing a photon of energy E, — Eq =
hv. This process is called stimulated absorption. If the atom is initially in the upper
state E, it can drop to Ey by emitting a photon of energy hv. This is spontaneous
emission.

Einstein, in 1917, was the first to point out a third possibility, stimulated emis-
sion, in which an incident photon of energy hv causes a transition from E; to Ey.
In stimulated emission, the radiated light waves are exactly in phase with the
incident ones, so the result is an enhanced beam of coherent light. Einstein
showed that stimulated emission has the same probability as stimulated absorp-
tion (see Sec. 9.7). That is, a photon of energy hv incident on an atom in the upper

Ey
hv
AAA>
NAN> NN NAN>
hv hv hv VNN
hv
Ey . ;
Stimulated Spontaneous Stimulated
absorption  emission emission

Figure 4.25 Transitions between two energy levels in an atom can occur by stimulated absorption,
spontaneous emission, and stimulated emission.
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Charles H. Townes (1915— ) was
born in Greenville, South Carolina,
and attended Furman University
there. After graduate study at Duke
University and the California Insti-
tute of Technology, he spent 1939
to 1947 at the Bell Telephone
Laboratories  designing  radar-
controlled  bombing  systems.
Townes then joined the physics de-
partment of Columbia University.
In 1951, while sitting on a park
bench, the idea for the maser (microwave amplification by
stimulated emission of radiation) occurred to him as a way to
produce high-intensity microwaves, and in 1953 the first maser
began operating. In this device ammonia (NH3) molecules were
raised to an excited vibrational state and then fed into a reso-
nant cavity where, as in a laser, stimulated emission produced
a cascade of photons of identical wavelength, here 1.25 cm in
the microwave part of the spectrum. “Atomic clocks” of great
accuracy are based on this concept, and solid-state maser am-
plifiers are used in such applications as radioastronomy.

In 1958 Townes and Arthur Schawlow attracted much at-
tention with a paper showing that a similar scheme ought to
be possible at optical wavelengths. Slightly earlier Gordon
Gould, then a graduate student at Columbia, had come to the
same conclusion, but did not publish his calculations at once
since that would prevent securing a patent. Gould tried to de-
velop the laser—his term—in private industry, but the De-
fense Department classified as secret the project (and his orig-
inal notebooks) and denied him clearance to work on it.
Finally, twenty years later, Gould succeeded in establishing his
priority and received two patents on the laser, and still later,
a third. The first working laser was built by Theodore Maiman
at Hughes Research Laboratories in 1960. In 1964 Townes,
along with two Russian laser pioneers, Aleksander Prokhorov
and Nikolai Basov, was awarded a Nobel Prize. In 1981
Schawlow shared a Nobel Prize for precision spectroscopy
using lasers.

Soon after its invention, the laser was spoken of as a “solu-
tion looking for a problem” because few applications were then
known for it. Today, of course, lasers are widely employed for
a variety of purposes.

state E; has the same likelihood of causing the emission of another photon of
energy hv as its likelihood of being absorbed if it is incident on an atom in the lower
state Ej.

Stimulated emission involves no novel concepts. An analogy is a harmonic oscilla-
tor, for instance a pendulum, which has a sinusoidal force applied to it whose period
is the same as its natural period of vibration. If the applied force is exactly in phase
with the pendulum swings, the amplitude of the swings increases. This corresponds
to stimulated absorption. However, if the applied force is 180° out of phase with the
pendulum swings, the amplitude of the swings decreases. This corresponds to stimu-
lated emission.

A three-level laser, the simplest kind, uses an assembly of atoms (or molecules)
that have a metastable state hv in energy above the ground state and a still higher ex-
cited state that decays to the metastable state (Fig. 4.26). What we want is more atoms
in the metastable state than in the ground state. If we can arrange this and then shine
light of frequency v on the assembly, there will be more stimulated emissions from
atoms in the metastable state than stimulated absorptions by atoms in the ground state.
The result will be an amplification of the original light. This is the concept that un-
derlies the operation of the laser.

The term population inversion describes an assembly of atoms in which the ma-
jority are in energy levels above the ground state; normally the ground state is occu-
pied to the greatest extent.

A number of ways exist to produce a population inversion. One of them, called
optical pumping, is illustrated in Fig. 4.27. Here an external light source is used some
of whose photons have the right frequency to raise ground-state atoms to the excited
state that decays spontaneously to the desired metastable state.

Why are three levels needed? Suppose there are only two levels, a metastable state
hv above the ground state. The more photons of frequency » we pump into the assembly

o
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Figure 4.26 The principle of the laser.

of atoms, the more upward transitions there will be from the ground state to the
metastable state. However, at the same time the pumping will stimulate downward
transitions from the metastable state to the ground state. When half the atoms are in
each state, the rate of stimulated emissions will equal the rate of stimulated absorp-
tions, so the assembly cannot ever have more than half its atoms in the metastable
state. In this situation laser amplification cannot occur. A population inversion is only
possible when the stimulated absorptions are to a higher energy level than the
metastable one from which the stimulated emission takes place, which prevents the
pumping from depopulating the metastable state.

In a three-level laser, more than half the atoms must be in the metastable state for
stimulated induced emission to predominate. This is not the case for a four-level laser.

Cr’*ion
2.25eV
Xenon flash lamp Radiationless transition
1.79 eV Metastable state
Mirror — Partly transparent
Tnirror Optical pumping Laser transition
Ruby rod 550 nm 694.3 nm
Ground state

Figure 4.27 The ruby laser. In order for stimulated emission to exceed stimulated absorption, more than half the Cr’* ions in the ruby
rod must be in the metastable state. This laser produces a pulse of red light after each flash of the lamp.
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Figure 4.28 A four-level laser.

As in Fig. 4.28, the laser transition from the metastable state ends at an unstable in-
termediate state rather than at the ground state. Because the intermediate state decays
rapidly to the ground state, very few atoms are in the intermediate state. Hence even
a modest amount of pumping is enough to populate the metastable state to a greater
extent than the intermediate state, as required for laser amplification.

Practical Lasers

The first successful laser, the ruby laser, is based on the three energy levels in the
chromium ion Cr’* shown in Fig. 4.27. A ruby is a crystal of aluminum oxide, Al,Os,

A robot arm carries a laser for cutting fabric in a clothing factory.

o
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in which some of the AI’* ions are replaced by Cr’* ions, which are responsible for
the red color. A Cr’* ion has a metastable level whose lifetime is about 0.003 s. In the
ruby laser, a xenon flash lamp excites the Cr’* ions to a level of higher energy from
which they fall to the metastable level by losing energy to other ions in the crystal.
Photons from the spontaneous decay of some Cr’* ions are reflected back and forth
between the mirrored ends of the ruby rod, stimulating other excited Cr’* ions to ra-
diate. After a few microseconds the result is a large pulse of monochromatic, coherent
red light from the partly transparent end of the rod.

The rod’s length is made precisely an integral number of half-wavelengths long, so
the radiation trapped in it forms an optical standing wave. Since the stimulated emis-
sions are induced by the standing wave, their waves are all in step with it.

The common helium-neon gas laser achieves a population inversion in a differ-
ent way. A mixture of about 10 parts of helium and 1 part of neon at a low pressure
(~1 torr) is placed in a glass tube that has parallel mirrors, one of them partly trans-
parent, at both ends. The spacing of the mirrors is again (as in all lasers) equal to an
integral number of half-wavelengths of the laser light. An electric discharge is pro-
duced in the gas by means of electrodes outside the tube connected to a source of
high-frequency alternating current, and collisions with electrons from the discharge
excite He and Ne atoms to metastable states respectively 20.61 and 20.66 eV above
their ground states (Fig. 4.29). Some of the excited He atoms transfer their energy to
ground-state Ne atoms in collisions, with the 0.05 eV of additional energy being pro-
vided by the kinetic energy of the atoms. The purpose of the He atoms is thus to help
achieve a population inversion in the Ne atoms.

The laser transition in Ne is from the metastable state at 20.66 eV to an ex-
cited state at 18.70 eV, with the emission of a 632.8-nm photon. Then another
photon is spontaneously emitted in a transition to a lower metastable state; this
transition yields only incoherent light. The remaining excitation energy is lost in
collisions with the tube walls. Because the electron impacts that excite the He and
Ne atoms occur all the time, unlike the pulsed excitation from the xenon flash lamp
in a ruby laser, a He-Ne laser operates continuously. This is the laser whose narrow
red beam is used in supermarkets to read bar codes. In a He-Ne laser, only a tiny

Helium Neon
atom Collisi atom
ollision
20.61 eV i 20.66 eV — .
. bl ; Laser transition
Metastable state  Metastable state y 632.8nm
18.70 eV——S
pontaneous
—— emission
Electron
impact
Radiationless
transition
Ground Ground
state state

Figure 4.29 The helium-neon laser. In a four-level laser such as this, continuous operation is possi-
ble. Helium-neon lasers are commonly used to read bar codes.
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Chirped Pulse Amplification

he most powerful lasers are pulsed, which produces phenomenal outputs for very short

periods. The petawatt (10" W) threshold was crossed in 1996 with pulses less than a
trillionth of a second long—not all that much energy per pulse, but at a rate of delivery over
1000 times that of the entire electrical grid of the United States. An ingenious method called
chirped pulse amplification made this possible without the laser apparatus itself being destroyed
in the process. What was done was to start with a low-power laser pulse that was quite short,
only 0.1 picosecond (10~ "% s). Because the pulse was short, it consisted of a large span of wave-
lengths, as discussed in Sec. 3.7 (see Figs. 3.13 and 3.14). A diffraction grating then spread out
the light into different paths according to wavelength, which stretched the pulse to 3 nanosec-
onds (3 X 1077 s), 30,000 times longer. The result was to decrease the peak power so that laser
amplifiers could boost the energy of each beam. Finally the amplified beams, each of slightly
different wavelength, were recombined by another grating to produce a pulse less than 0.5 pi-
coseconds long whose power was 1.3 petawatts.

fraction (one in millions) of the atoms present participates in the laser process at
any moment.

Many other types of laser have been devised. A number of them employ molecules
rather than atoms. Chemical lasers are based on the production by chemical reactions
of molecules in metastable excited states. Such lasers are efficient and can be very pow-
erful: one chemical laser, in which hydrogen and fluorine combine to form hydrogen
fluoride, has generated an infrared beam of over 2 MW. Dye lasers use dye molecules
whose energy levels are so close together that they can “lase” over a virtually continu-
ous range of wavelengths (see Sec. 8.7). A dye laser can be tuned to any desired
wavelength in its range. Nd:YAG lasers, which use the glassy solid yttrium aluminum
garnet with neodymium as an impurity, are helpful in surgery because they seal small
blood vessels while cutting through tissue by vaporizing water in the path of their
beams. Powerful carbon dioxide gas lasers with outputs up to many kilowatts are
used industrially for the precise cutting of almost any material, including steel, and for
welding.

Tiny semiconductor lasers by the million process and transmit information today.
(How such lasers work is described in Chap. 10.) In a compact disk player, a semi-
conductor laser beam is focused to a spot a micrometer (107° m) across to read data
coded as pits that appear as dark spots on a reflective disk 12 cm in diameter. A com-
pact disk can store over 600 megabytes of digital data, about 1000 times as much as
the floppy disks used in personal computers. If the stored data is digitized music, the
playing time can be over an hour.

Semiconductor lasers are ideal for fiber-optic transmission lines in which the elec-
tric signals that would normally be sent along copper wires are first converted into a
series of pulses according to a standard code. Lasers then turn the pulses into flashes
of infrared light that travel along thin (5-50 um diameter) glass fibers and at the other
end are changed back into electric signals. Over a million telephone conversations can
be carried by a single fiber; by contrast, no more than 32 conversations can be carried
at the same time by a pair of wires. Telephone fiber-optic systems today link many
cities and exchanges within cities everywhere, and fiber-optic cables span the world’s
seas and oceans.
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Rutherford Scattering

utherfords model of the atom was accepted because he was able to arrive at a

formula to describe the scattering of alpha patrticles by thin foils on the basis of

this model that agreed with the experimental results. He began by assuming that
the alpha particle and the nucleus it interacts with are both small enough to be consid-
ered as point masses and charges; that the repulsive electric force between alpha particle
and nucleus (which are both positively charged) is the only one acting; and that the nu-
cleus is so massive compared with the alpha particle that it does not move during their
interaction. Let us see how these assumptions lead to Eq. (4.1).

Scattering Angle

Owing to the variation of the electric force with 1/r*, where r is the instantaneous sep-
aration between alpha particle and nucleus, the alpha particle’s path is a hyperbola with
the nucleus at the outer focus (Fig. 4.30). The impact parameter b is the minimum
distance to which the alpha particle would approach the nucleus if there were no force
between them, and the scattering angle 6 is the angle between the asymptotic direc-
tion of approach of the alpha particle and the asymptotic direction in which it recedes.
Our first task is to find a relationship between b and 6.

As a result of the impulse [ F dt given it by the nucleus, the momentum of the
alpha particle changes by Ap from the initial value p, to the final value p,. That is,

Ap=p, —pr=[Fdt (4.24)

Because the nucleus remains stationary during the passage of the alpha particle, by hy-
pothesis, the alpha-particle kinetic energy is the same before and after the scattering.
Hence the magnitude of its momentum is also the same before and after, and

p1 = p = mv

@ Alpha particle

0 = scattering angle ; 9
b = impact parameter ¥

Target nucleus @ 4

Figure 4.30 Rutherford scattering.
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Here v is the alpha-particle velocity far from the nucleus.
From Fig. 4.31 we see that according to the law of sines,
Ap mv
sin 0 sin ™0
2
. 1 0
Since sin—(7 — 0) = cos—
2 2
. 0
and sin = 2 sin— cos—
2 2
we have for the magnitude of the momentum change
.0
Ap =2mv sin— (4.25)

Because the impulse [ F di is in the same direction as the momentum change Ap,
its magnitude is

|/ Fdt|=[Fcose dt (4.26)

where ¢ is the instantaneous angle between F and Ap along the path of the alpha
particle. Inserting Eqs. (4.25) and (4.26) in Eq. (4.24),

0 o0
vasing :J’ F cos¢ dt

To change the variable on the right-hand side from t to ¢, we note that the limits of
integration will change to —; (7 — 6) and +; (m — 6), corresponding to ¢ at t = —
and t = % respectively, and so

2mv sin— =

+(m—6)/2
b j F cos¢ % do 4.27)

—(m—0)/2

X
//9 P2
P1
%m—m

Target nucleus

Figure 4.31 Geometrical relationships in Rutherford scattering.
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The quantity d¢p/dt is just the angular velocity w of the alpha particle about the nucleus
(this is evident from Fig. 4.31).

The electric force exerted by the nucleus on the alpha particle acts along the radius
vector joining them, so there is no torque on the alpha particle and its angular
momentum mwr* is constant. Hence

d
mer® = constant = mr’ d—(f = mvb
from which we obtain
dat
dp  vb

Substituting this expression for dt/d¢ in Eq. (4.27) gives

L, 6 +a-0/2
2mvhb smz = f o Fr° cos ¢ d¢ (4.28)
— (77— 2

As we recall, F is the electric force exerted by the nucleus on the alpha particle. The
charge on the nucleus is Ze, corresponding to the atomic number Z, and that on the
alpha particle is 2e. Therefore

1 27
2

4mey T

47eqmu’h 0 +(m—0)/2 0
— —J COS(}')d(l):zCOSz

and
Ze? 2 —(r—0)/2

The scattering angle 6 is related to the impact parameter b by the equation

0 2megmv’
ot — = ———
2 Ze?

It is more convenient to specify the alpha-particle energy KE instead of its mass and
velocity separately; with this substitution,

Scattering angle COtE = — (4.29)

Figure 4.32 is a schematic representation of Eq. (4.29); the rapid decrease in 6 as b
increases is evident. A very near miss is required for a substantial deflection.

Rutherford Scattering Formula
Equation (4.29) cannot be directly confronted with experiment because there is no way

of measuring the impact parameter corresponding to a particular observed scattering
angle. An indirect strategy is required.
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%— >> (k’[arget nucleus
Area = b?

Figure 4.32 The scattering angle decreases with increasing impact parameter.

Our first step is to note that all alpha particles approaching a target nucleus with
an impact parameter from O to b will be scattered through an angle of # or more, where
0 is given in terms of b by Eq. (4.29). This means that an alpha particle that is initially
directed anywhere within the area 77b* around a nucleus will be scattered through @
or more (Fig. 4.32). The area wb* is accordingly called the cross section for the
interaction. The general symbol for cross section is o, and so here

Cross section o = mh? (4.30)

Of course, the incident alpha particle is actually scattered before it reaches the imme-
diate vicinity of the nucleus and hence does not necessarily pass within a distance b
of it.

Now we consider a foil of thickness t that contains n atoms per unit volume. The
number of target nuclei per unit area is nt, and an alpha-particle beam incident upon
an area A therefore encounters ntA nuclei. The aggregate cross section for scatterings
of 6 or more is the number of target nuclei ntA multiplied by the cross section o for
such scattering per nucleus, or ntAo. Hence the fraction f of incident alpha particles
scattered by 6 or more is the ratio between the aggregate cross section ntAo for such
scattering and the total target area A. That is,

alpha particles scattered by 6 or more

f:

incident alpha particles

_ aggregate Cross section ntAo

target area A

= ntarb?

Substituting for b from Eq. (4.30),

6
cot’ — (4.31)

Ze? )2
2

47re KE

f=7mt<

In this calculation it was assumed that the foil is sufficiently thin so that the cross sec-
tions of adjacent nuclei do not overlap and that a scattered alpha particle receives its
entire deflection from an encounter with a single nucleus.

o
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Example 4.8

Find the fraction of a beam of 7.7-MeV alpha patrticles that is scattered through angles of more
than 45° when incident upon a gold foil 3 X 10~ m thick. These values are typical of the alpha-
particle energies and foil thicknesses used by Geiger and Marsden. For comparison, a human
hair is about 10™* m in diameter.

Solution
We begin by finding n, the number of gold atoms per unit volume in the foil, from the relationship

atoms mass/m’
n= — =
m mass/atom

Since the density of gold is 1.93 X 10% kg/m’, its atomic mass is 197 u, and 1 u = 1.66 X
107%" kg, we have
1.93 X 10" kg/m®
(197 watom)(1.66 X 10~ " kg/w)
=5.90 X 10°° atoms/m’

The atomic number Z of gold is 79, a kinetic energy of 7.7 MeV is equal to 1.23 X 107'2 J,
and 6 = 45° from these figures we find that

f=7x10"

of the incident alpha particles are scattered through 45° or more—only 0.007 percent! A foil
this thin is quite transparent to alpha particles.

In an actual experiment, a detector measures alpha particles scattered between 6
and 6 + df, as in Fig. 4.33. The fraction of incident alpha particles so scattered is
found by differentiating Eq. (4.31) with respect to 6, which gives

rdo

de
rsin 6
Foil

6 0
5d

Area = 472 sin 3 cos

Figure 4.33 In the Rutherford experiment, particles are detected that have been scattered between 6
and 6 + d6.

o
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Zer 2 6 0
df = —amnt (7e> cot— csc? —do (4.32)
41e KE 2 2

The minus sign expresses the fact that f decreases with increasing 6.

As we saw in Fig. 4.2, Geiger and Marsden placed a fluorescent screen a distance
1 from the foil and the scattered alpha particles were detected by means of the scintil-
lations they caused. Those alpha particles scattered between 6 and 6 + df reached a
zone of a sphere of radius r whose width is r df. The zone radius itself is + sin 0, and
so the area dS of the screen struck by these particles is

dS = Qar sin0)(r d) = 271 sin 6 do

= 4711% sin 2 cos —do
2 2

If a total of N; alpha particles strike the foil during the course of the experiment, the
number scattered into df at 6 is N;df. The number N(6) per unit area striking the screen
at 0, which is the quantity actually measured, is

2 2
Nynt <L) CO[Q csczgde

41reoKE 2
Nild 0
N = N . 00
ds 4717 sin— cos— d6@
2 2
Rutherford NB) = NntZ%e? @1

scattering formula (87ep)*r* KE? sin' (6/2)

Equation (4.1) is the Rutherford scattering formula. Figure 4.4 shows how N(0) varies
with 6.

It isn't that they can't see the solution. It is that they can't see the problem. —Gilbert Chesterton

4.1 The Nuclear Atom frequency of the electron oscillations for the case of the hydro-
gen atom and compare it with the frequencies of the spectral
1. The great majority of alpha particles pass through gases and lines of hydrogen.

thin metal foils with no deflections. To what conclusion about

atomic structure does this observation lead? 3. Determine the distance of closest approach of 1.00-MeV pro-

tons incident on gold nuclei.
2. The electric field intensity at a distance r from the center of a

uniformly charged sphere of radius R and total charge Q is 4.2 Flectron Orbits

Qr/4me,R® when r < R. Such a sphere corresponds to the

Thomson model of the atom. Show that an electron in this 4. Find the frequency of revolution of the electron in the classical
sphere executes simple harmonic motion about its center and model of the hydrogen atom. In what region of the spectrum
derive a formula for the frequency of this motion. Evaluate the are electromagnetic waves of this frequency?

o
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4.3

5.

Atomic Spectra

What is the shortest wavelength present in the Brackett series of
spectral lines?

What is the shortest wavelength present in the Paschen series of
spectral lines?

4.4 The Bohr Atom

7.

10.

11.

12.

13.

4.5

14.

In the Bohr model, the electron is in constant motion. How can
such an electron have a negative amount of energy?

Lacking de Broglie’s hypothesis to guide his thinking, Bohr ar-
rived at his model by postulating that the angular momentum
of an orbital electron must be an integral multiple of 7 . Show
that this postulate leads to Eq. (4.13).

The fine structure constant is defined as & = ¢*/2€,hc. This
quantity got its name because it first appeared in a theory by
the German physicist Arnold Sommerfeld that tried to explain
the fine structure in spectral lines (multiple lines close together
instead of single lines) by assuming that elliptical as well as cir-
cular orbits are possible in the Bohr model. Sommerfeld’s ap-
proach was on the wrong track, but a has nevertheless turned
out to be a useful quantity in atomic physics. (a) Show that «
= vy/c, where v, is the velocity of the electron in the ground
state of the Bohr atom. (b) Show that the value of & is very
close to 1/137 and is a pure number with no dimensions. Be-
cause the magnetic behavior of a moving charge depends on its
velocity, the small value of « is representative of the relative
magnitudes of the magnetic and electric aspects of electron be-
havior in an atom. (¢) Show that aay = Ao/2, where aj is the
radius of the ground-state Bohr orbit and A is the Compton
wavelength of the electron.

An electron at rest is released far away from a proton, toward
which it moves. (a) Show that the de Broglie wavelength of the
electron is proportional to V7, where r is the distance of the
electron from the proton. (b) Find the wavelength of the elec-
tron when it is g from the proton. How does this compare
with the wavelength of an electron in a ground-state Bohr or-
bit? (¢) In order for the electron to be captured by the proton
to form a ground-state hydrogen atom, energy must be lost by
the system. How much energy?

Find the quantum number that characterizes the earth’s orbit
around the sun. The earth’s mass is 6.0 X 10°* kg, its orbital
radius is 1.5 X 10"" m, and its orbital speed is 3.0 X 10% m/s.

Suppose a proton and an electron were held together in a hy-
drogen atom by gravitational forces only. Find the formula for
the energy levels of such an atom, the radius of its ground-state
Bohr orbit, and its ionization energy in eV.

Compare the uncertainty in the momentum of an electron con-
fined to a region of linear dimension ay with the momentum of
an electron in a ground-state Bohr orbit.

Energy Levels and Spectra

When radiation with a continuous spectrum is passed through
a volume of hydrogen gas whose atoms are all in the ground
state, which spectral series will be present in the resulting ab-
sorption spectrum?

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

What effect would you expect the rapid random motion of the
atoms of an excited gas to have on the spectral lines they
produce?

A beam of 13.0-eV electrons is used to bombard gaseous hy-
drogen. What series of wavelengths will be emitted?

A proton and an electron, both at rest initially, combine to form
a hydrogen atom in the ground state. A single photon is emit-
ted in this process. What is its wavelength?

How many different wavelengths would appear in the spectrum
of hydrogen atoms initially in the n = 5 state?

Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n = 10 state to the ground
state. In what part of the spectrum is this?

Find the wavelength of the spectral line that corresponds to a
transition in hydrogen from the n = 6 state to the n = 3 state.
In what part of the spectrum is this?

A beam of electrons bombards a sample of hydrogen.
Through what potential difference must the electrons have
been accelerated if the first line of the Balmer series is to be
emitted?

How much energy is required to remove an electron in the
n = 2 state from a hydrogen atom?

The longest wavelength in the Lyman series is 121.5 nm and
the shortest wavelength in the Balmer series is 364.6 nm. Use
the figures to find the longest wavelength of light that could
ionize hydrogen.

The longest wavelength in the Lyman series is 121.5 nm. Use
this wavelength together with the values of ¢ and h to find the
ionization energy of hydrogen.

An excited hydrogen atom emits a photon of wavelength A in
returning to the ground state. (a) Derive a formula that gives
the quantum number of the initial excited state in terms of A
and R. (b) Use this formula to find n; for a 102.55-nm
photon.

An excited atom of mass m and initial speed v emits a photon
in its direction of motion. If v << ¢, use the requirement that
linear momentum and energy must both be conserved to show
that the frequency of the photon is higher by Av/v = v/c than it
would have been if the atom had been at rest. (See also Exer-
cise 16 of Chap. 1.)

When an excited atom emits a photon, the linear momentum of
the photon must be balanced by the recoil momentum of the
atom. As a result, some of the excitation energy of the atom
goes into the kinetic energy of its recoil. (@) Modify Eq. (4.16)
to include this effect. (b) Find the ratio between the recoil en-
ergy and the photon energy for the n = 3 —> n = 2 transition
in hydrogen, for which E; — E; = 1.9 eV. Is the effect a major
one? A nonrelativistic calculation is sufficient here.

4.6 Correspondence Principle

28.

Of the following quantities, which increase and which decrease

in the Bohr model as n increases? Frequency of revolution, elec-
tron speed, electron wavelength, angular momentum, potential

energy, kinetic energy, total energy.

o
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Exercises

29.

Show that the frequency of the photon emitted by a hydrogen
atom in going from the level n + 1 to the level n is always
intermediate between the frequencies of revolution of the
electron in the respective orbits.

4.7 Nuclear Motion

30.

31.

32.

33.

34.

35.

An antiproton has the mass of a proton but a charge of —e. If a
proton and an antiproton orbited each other, how far apart
would they be in the ground state of such a system? Why
might you think such a system could not occur?

A p” muon is in the n = 2 state of a muonic atom whose nu-
cleus is a proton. Find the wavelength of the photon emitted
when the muonic atom drops to its ground state. In what part
of the spectrum is this wavelength?

Compare the ionization energy in positronium with that in
hydrogen.

A mixture of ordinary hydrogen and tritium, a hydrogen iso-
tope whose nucleus is approximately 3 times more massive
than ordinary hydrogen, is excited and its spectrum observed.
How far apart in wavelength will the H, lines of the two kinds
of hydrogen be?

Find the radius and speed of an electron in the ground state of
doubly ionized lithium and compare them with the radius and
speed of the electron in the ground state of the hydrogen atom.
(Li** has a nuclear charge of 3e.)

(a) Derive a formula for the energy levels of a hydrogenic
atom, which is an ion such as He* or Li’>" whose nuclear
charge is +Ze and which contains a single electron.

(b) Sketch the energy levels of the He " ion and compare
them with the energy levels of the H atom. (¢) An electron
joins a bare helium nucleus to form a He™* ion. Find the
wavelength of the photon emitted in this process if the
electron is assumed to have had no kinetic energy when it
combined with the nucleus.

4.9 The Laser

36.

37.

For laser action to occur, the medium used must have at least
three energy levels. What must be the nature of each of these
levels? Why is three the minimum number?

A certain ruby laser emits 1.00-] pulses of light whose wave-
length is 694 nm. What is the minimum number of Cr’* ions
in the ruby?

38.

Steam at 100°C can be thought of as an excited state of water
at 100°C. Suppose that a laser could be built based upon the
transition from steam to water, with the energy lost per mole-
cule of steam appearing as a photon. What would the fre-
quency of such a photon be? To what region of the spectrum
does this correspond? The heat of vaporization of water is
2260 kJ/kg and its molar mass is 18.02 kg/kmol.

Appendix: Rutherford Scattering

39.

40.

41.

42.

43.

44,

45.

46.

47.

The Rutherford scattering formula fails to agree with the data at
very small scattering angles. Can you think of a reason?

Show that the probability for a 2.0-MeV proton to be scattered
by more than a given angle when it passes through a thin foil is
the same as that for a 4.0-MeV alpha particle.

A 5.0-MeV alpha particle approaches a gold nucleus with an
impact parameter of 2.6 X 10™"> m. Through what angle will it
be scattered?

What is the impact parameter of a 5.0-MeV alpha particle scat-
tered by 10° when it approaches a gold nucleus?

What fraction of a beam of 7.7-MeV alpha particles incident upon
a gold foil 3.0 X 10~7 m thick is scattered by less than 1°?

What fraction of a beam of 7.7-MeV alpha particles incident
upon a gold foil 3.0 X 1077 m thick is scattered by 90° or
more?

Show that twice as many alpha particles are scattered by a foil
through angles between 60° and 90° as are scattered through
angles of 90° or more.

A beam of 8.3-MeV alpha particles is directed at an aluminum
foil. It is found that the Rutherford scattering formula ceases to
be obeyed at scattering angles exceeding about 60°. If the
alpha-particle radius is assumed small enough to neglect here,
find the radius of the aluminum nucleus.

In special relativity, a photon can be thought of as having a
“mass” of m = E,/c*. This suggests that we can treat a photon
that passes near the sun in the same way as Rutherford treated
an alpha particle that passes near a nucleus, with an attractive
gravitational force replacing the repulsive electrical force. Adapt
Eq. (4.29) to this situation and find the angle of deflection 6 for
a photon that passes b = Ry, from the center of the sun. The
mass and radius of the sun are respectively 2.0 X 10°° kg and
7.0 X 10° m. In fact, general relativity shows that this result is
exactly half the actual deflection, a conclusion supported by ob-
servations made during solar eclipses as mentioned in Sec. 1.10.
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Scanning tunneling micrograph of gold atoms on a carbon (graphite) substrate.
The cluster of gold atoms is about 1.5 nm across and three atoms high.
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Ithough the Bohr theory of the atom, which can be extended further than was

done in Chap. 4, is able to account for many aspects of atomic phenomena, it

has a number of severe limitations as well. First of all, it applies only to hy-
drogen and one-electron ions such as He ™ and Li*"—it does not even work for ordinary
helium. The Bohr theory cannot explain why certain spectral lines are more intense
than others (that is, why certain transitions between energy levels have greater
probabilities of occurrence than others). It cannot account for the observation that
many spectral lines actually consist of several separate lines whose wavelengths differ
slightly. And perhaps most important, it does not permit us to obtain what a really suc-
cessful theory of the atom should make possible: an understanding of how individual
atoms interact with one another to endow macroscopic aggregates of matter with the
physical and chemical properties we observe.

The preceding objections to the Bohr theory are not put forward in an unfriendly
way, for the theory was one of those seminal achievements that transform scientific
thought, but rather to emphasize that a more general approach to atomic phenomena
is required. Such an approach was developed in 1925 and 1926 by Erwin Schrodinger,
Werner Heisenberg, Max Born, Paul Dirac, and others under the apt name of quantum
mechanics. “The discovery of quantum mechanics was nearly a total surprise. It de-
scribed the physical world in a way that was fundamentally new. It seemed to many
of us a miracle,” noted Eugene Wigner, one of the early workers in the field. By the
early 1930s the application of quantum mechanics to problems involving nuclei, atoms,
molecules, and matter in the solid state made it possible to understand a vast body of
data (“a large part of physics and the whole of chemistry,” according to Dirac) and—
vital for any theory—Ied to predictions of remarkable accuracy. Quantum mechanics
has survived every experimental test thus far of even its most unexpected conclusions.

5.1 QUANTUM MECHANICS

Classical mechanics is an approximation of quantum mechanics

The fundamental difference between classical (or Newtonian) mechanics and quantum
mechanics lies in what they describe. In classical mechanics, the future history of a par-
ticle is completely determined by its initial position and momentum together with the
forces that act upon it. In the everyday world these quantities can all be determined
well enough for the predictions of Newtonian mechanics to agree with what we find.

Quantum mechanics also arrives at relationships between observable quantities, but
the uncertainty principle suggests that the nature of an observable quantity is differ-
ent in the atomic realm. Cause and effect are still related in quantum mechanics, but
what they concern needs careful interpretation. In quantum mechanics the kind of cer-
tainty about the future characteristic of classical mechanics is impossible because the
initial state of a particle cannot be established with sufficient accuracy. As we saw in
Sec. 3.7, the more we know about the position of a particle now, the less we know
about its momentum and hence about its position later.

The quantities whose relationships quantum mechanics explores are probabilities.
Instead of asserting, for example, that the radius of the electron’s orbit in a ground-
state hydrogen atom is always exactly 5.3 X 10~ ' m, as the Bohr theory does, quantum
mechanics states that this is the most probable radius. In a suitable experiment most
trials will yield a different value, either larger or smaller, but the value most likely to
be found will be 5.3 X 107" m.

o
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Quantum mechanics might seem a poor substitute for classical mechanics. However,
classical mechanics turns out to be just an approximate version of quantum mechanics.
The certainties of classical mechanics are illusory, and their apparent agreement with
experiment occurs because ordinary objects consist of so many individual atoms that
departures from average behavior are unnoticeable. Instead of two sets of physical prin-
ciples, one for the macroworld and one for the microworld, there is only the single set
included in quantum mechanics.

Wave Function

As mentioned in Chap. 3, the quantity with which quantum mechanics is concerned
is the wave function W of a body. While W itself has no physical interpretation, the
square of its absolute magnitude |W|* evaluated at a particular place at a particular time
is proportional to the probability of finding the body there at that time. The linear mo-
mentum, angular momentum, and energy of the body are other quantities that can be
established from W. The problem of quantum mechanics is to determine W for a body
when its freedom of motion is limited by the action of external forces.

Wave functions are usually complex with both real and imaginary parts. A proba-
bility, however, must be a positive real quantity. The probability density [¥|* for a com-
plex W is therefore taken as the product W*W of ¥ and its complex conjugate V*.
The complex conjugate of any function is obtained by replacing i(=V—1) by —i
wherever it appears in the function. Every complex function W can be written in the
form

Wave function ¥ =A+iB

where A and B are real functions. The complex conjugate ¥* of W is

Complex conjugate P+ =A —iB

and so |W|* = U*W¥ = A® — i°B* = A” + B’

since i* = —1. Hence [W|* = W*W is always a positive real quantity, as required.
Normalization

Even before we consider the actual calculation of ¥, we can establish certain require-
ments it must always fulfill. For one thing, since [¥|* is proportional to the probabil-
ity density P of finding the body described by W, the integral of |[W|* over all space
must be finite—the body is somewhere, after all. If

f P dv =0

the particle does not exist, and the integral obviously cannot be o and still mean any-
thing. Furthermore, [W|* cannot be negative or complex because of the way it is de-
fined. The only possibility left is that the integral be a finite quantity if ¥ is to describe
properly a real body.

It is usually convenient to have |W|* be equal to the probability density P of find-
ing the particle described by W, rather than merely be proportional to P If [¥|* is to

o
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equal P, then it must be true that

Normalization f P> dv =1 (5.1)

since if the particle exists somewhere at all times,

f Pdv=1

A wave function that obeys Eq. (5.1) is said to be normalized. Every acceptable
wave function can be normalized by multiplying it by an appropriate constant; we shall
shortly see how this is done.

Well-Behaved Wave Functions

Besides being normalizable, ¥ must be single-valued, since P can have only one value at
a particular place and time, and continuous. Momentum considerations (see Sec. 5.6)
require that the partial derivatives 9W/dx, dW/dy, 9W/dz be finite, continuous, and single-
valued. Only wave functions with all these properties can yield physically meaningful
results when used in calculations, so only such “well-behaved” wave functions are ad-
missible as mathematical representations of real bodies. To summarize:

1 ¥ must be continuous and single-valued everywhere.

2 9V¥/dx, aW/ay, 9W/dz must be continuous and single-valued everywhere.

3 W must be normalizable, which means that ¥ must go to 0 as x — *%, y — *o,
7 — %o in order that [ |W]*> dV over all space be a finite constant.

These rules are not always obeyed by the wave functions of particles in model
situations that only approximate actual ones. For instance, the wave functions of a par-
ticle in a box with infinitely hard walls do not have continuous derivatives at the walls,
since ¥ = 0 outside the box (see Fig. 5.4). But in the real world, where walls are never
infinitely hard, there is no sharp change in ¥ at the walls (see Fig. 5.7) and the de-
rivatives are continuous. Exercise 7 gives another example of a wave function that is
not well-behaved.

Given a normalized and otherwise acceptable wave function W, the probability that
the particle it describes will be found in a certain region is simply the integral of the
probability density |[¥]* over that region. Thus for a particle restricted to motion in the
x direction, the probability of finding it between x, and x, is given by

Probability P, = f WP dx (5.2)

We will see examples of such calculations later in this chapter and in Chap. 6.

5.2 THE WAVE EQUATION
It can have a variety of solutions, including complex ones
Schrodinger’s equation, which is the fundamental equation of quantum mechanics in

the same sense that the second law of motion is the fundamental equation of New-
tonian mechanics, is a wave equation in the variable W,

o
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Before we tackle Schrodinger’s equation, let us review the wave equation

Wave equation — = — —= (5.3)

which governs a wave whose variable quantity is y that propagates in the x direction
with the speed v. In the case of a wave in a stretched string, y is the displacement of
the string from the x axis; in the case of a sound wave, y is the pressure difference; in
the case of a light wave, y is either the electric or the magnetic field magnitude.
Equation (5.3) can be derived from the second law of motion for mechanical waves
and from Maxwells equations for electromagnetic waves.

Partial Derivatives

S uppose we have a function f(x, y) of two variables, x and y, and we want to know how f
varies with only one of them, say x. To find out, we differentiate f with respect to x while
treating the other variable y as a constant. The result is the partial derivative of f with respect
to x, which is written df/dx

ey
0x dx y=constant

The rules for ordinary differentiation hold for partial differentiation as well. For instance, if
f= o

d
—f = 2cx
dx
and so, if f = X2,
af ( df)
— == = 2yx
ax dx y=constant

The partial derivative of f = yx* with respect to the other variable, y, is
4 (4
By d_}/ X=constant

Second order partial derivatives occur often in physics, as in the wave equation. To find
8’f/ax>, we first calculate 9f/ax and then differentiate again, still keeping y constant:

of i(a_f)
axz dx \ dx
Forf=yx2,
?f 9
— = —Q =2
ax” ax( yX) Y
L P _ 8,
Similarly 3y = 3y x)=0

Solutions of the wave equation may be of many kinds, reflecting the variety of
waves that can occur—a single traveling pulse, a train of waves of constant amplitude
and wavelength, a train of superposed waves of the same amplitudes and
wavelengths, a train of superposed waves of different amplitudes and wavelengths,
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y =A cos ot — x/v)

Figure 5.1 Waves in the xy plane traveling in the +x direction along a stretched string lying on the
X axis.

a standing wave in a string fastened at both ends, and so on. All solutions must be
of the form

y = F(t + %) G4

where F is any function that can be differentiated. The solutions F(t — x/v) represent
waves traveling in the +x direction, and the solutions F(t + x/v) represent waves trav-
eling in the —x direction.

Let us consider the wave equivalent of a “free particle,” which is a particle that is
not under the influence of any forces and therefore pursues a straight path at constant
speed. This wave is described by the general solution of Eq. (5.3) for undamped (that
is, constant amplitude A), monochromatic (constant angular frequency w) harmonic
waves in the +x direction, namely

y= Ae*iw(t*x/v) (55)
In this formula y is a complex quantity, with both real and imaginary parts.
Because
e =cosf—isin@

Eq. (5.5) can be written in the form

y=Acosw<t—£>—iAsinw<t—£> (5.6)
v v

Only the real part of Eq. (5.6) [which is the same as Eq. (3.5)] has significance in the case
of waves in a stretched string. There y represents the displacement of the string from its
normal position (Fig. 5.1), and the imaginary part of Eq. (5.6) is discarded as irrelevant.

Example 5.1
Verify that Eq. (5.5) is a solution of the wave equation.
Solution

The derivative of an exponential function " is

d du
— () =e"—
dx dx
The partial derivative of y with respect to x (which means t is treated as a constant) from Eq. (5.5)
is therefore
Gy _ o

ax v

o
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and the second partial derivative is

since i* = —1. The partial derivative of y with respect to t (now holding x constant) is

dy )
— = —iw
at Y

and the second partial derivative is

Combining these results gives

jo)
=
¥)
<
N)
D
=
N)

which is Eq. (5.3). Hence Eq. (5.5) is a solution of the wave equation.

5.3 SCHRODINGER’S EQUATION: TIME-DEPENDENT FORM

A basic physical principle that cannot be derived from anything else

In quantum mechanics the wave function ¥ corresponds to the wave variable y of
wave motion in general. However, W, unlike y, is not itself a measurable quantity and
may therefore be complex. For this reason we assume that ¥ for a particle moving
freely in the +x direction is specified by

P = A i@/ (5.7)
Replacing w in the above formula by 27rv and v by Av gives
P = Ae*Z’n’i(V!*x/)\) (58)

This is convenient since we already know what v and A are in terms of the total energy
E and momentum p of the particle being described by W. Because

E=hv =2mhv and /\=h=M
p p

we have

Free particle P = Ae~ W/WE=PO (5.9)

Equation (5.9) describes the wave equivalent of an unrestricted particle of total
energy E and momentum p moving in the +x direction, just as Eq. (5.5) describes, for
example, a harmonic displacement wave moving freely along a stretched string.

The expression for the wave function ¥ given by Eq. (5.9) is correct only for freely
moving particles. However, we are most interested in situations where the motion of
a particle is subject to various restrictions. An important concern, for example, is an
electron bound to an atom by the electric field of its nucleus. What we must now do
is obtain the fundamental differential equation for ¥, which we can then solve for ¥
in a specific situation. This equation, which is Schrodinger’s equation, can be arrived
at in various ways, but it cannot be rigorously derived from existing physical principles:

o
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the equation represents something new. What will be done here is to show one route
to the wave equation for ¥ and then to discuss the significance of the result.
We begin by differentiating Eq. (5.9) for ¥ twice with respect to x, which gives

Qv p -
ot k2
0*w
2\1, — _ﬁZ
p a2

Differentiating Eq. (5.9) once with respect to ¢t gives

o

ot h

by BV
i ot

(5.10)

(5.11)

At speeds small compared with that of light, the total energy E of a patrticle is the
sum of its kinetic energy p?/2m and its potential energy U, where U is in general a

function of position x and time t:

2

E=L 4 Uk p
2m

(5.12)

The function U represents the influence of the rest of the universe on the particle. Of
course, only a small part of the universe interacts with the particle to any extent; for

Erwin Schrodinger (1887-1961) was
born in Vienna to an Austrian father and
a half-English mother and received his
doctorate at the university there. After
World War I, during which he served
as an artillery officer, Schrodinger had
appointments  at German
universities before becoming professor
of physics in Zurich, Switzerland. Late
in November, 1925, Schrodinger gave a
talk on de Broglies notion that a moving particle has a wave
character. A colleague remarked to him afterward that to deal
properly with a wave, one needs a wave equation. Schrodinger
took this to heart, and a few weeks later he was “struggling with
anew atomic theory. If only I knew more mathematics! I am very
optimistic about this thing and expect that if I can only . . . solve
it, it will be very beautiful.” (Schrodinger was not the only physicist
to find the mathematics he needed difficult; the eminent mathe-
matician David Hilbert said at about this time, “Physics is much
too hard for physicists.”)

The struggle was successful, and in January 1926 the first of
four papers on “Quantization as an Eigenvalue Problem” was
completed. In this epochal paper Schrodinger introduced the
equation that bears his name and solved it for the hydrogen atom,

several

thereby opening wide the door to the modern view of the atom
which others had only pushed ajar. By June Schrodinger had
applied wave mechanics to the harmonic oscillator, the diatomic
molecule, the hydrogen atom in an electric field, the absorption
and emission of radiation, and the scattering of radiation by
atoms and molecules. He had also shown that his wave me-
chanics was mathematically equivalent to the more abstract
Heisenberg-Born-Jordan matrix mechanics.

The significance of Schrodinger’s work was at once realized.
In 1927 he succeeded Planck at the University of Berlin but left
Germany in 1933, the year he received the Nobel Prize, when
the Nazis came to power. He was at Dublin’s Institute for Ad-
vanced Study from 1939 until his return to Austria in 1956. In
Dublin, Schrodinger became interested in biology, in particular
the mechanism of heredity. He seems to have been the first to
make definite the idea of a genetic code and to identify genes
as long molecules that carry the code in the form of variations
in how their atoms are arranged. Schrodinger’s 1944 book What
Is Life? was enormously influential, not only by what it said but
also by introducing biologists to a new way of thinking—that
of the physicist—about their subject. What Is Life? started James
Watson on his search for “the secret of the gene,” which he and
Francis Crick (a physicist) discovered in 1953 to be the struc-
ture of the DNA molecule.
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instance, in the case of the electron in a hydrogen atom, only the electric field of the
nucleus must be taken into account.
Multiplying both sides of Eq. (5.12) by the wave function ¥ gives

2

o AL A (5.13)
2m

Now we substitute for E¥ and p*¥ from Egs. (5.10) and (5.11) to obtain the time-
dependent form of Schrodinger’s equation:

Time-dependent

5di A4 n o'
Schrqdmger g CR. S (5.14)
equation in one ot 2m 9dx
dimension

In three dimensions the time-dependent form of Schrodinger’s equation is

0w I R 2
i = ——( - A E’)Jr U (5.15)
at 2m\ ox ay 0z

where the particle’s potential energy U is some function of x, y, z, and t.

Any restrictions that may be present on the particles motion will affect the potential-
energy function U. Once U is known, Schrodinger’s equation may be solved for the
wave function W of the particle, from which its probability density |¥|* may be de-
termined for a specified x, y, 2, t.

Validity of Schrodinger’s Equation

Schrodinger’s equation was obtained here using the wave function of a freely moving
particle (potential energy U = constant). How can we be sure it applies to the general
case of a particle subject to arbitrary forces that vary in space and time [U =
U(x, vy, z, D]? Substituting Egs. (5.10) and (5.11) into Eq. (5.13) is really a wild leap
with no formal justification; this is true for all other ways in which Schrodinger’s equa-
tion can be arrived at, including Schrodinger’s own approach.

What we must do is postulate Schrodinger’s equation, solve it for a variety of phys-
ical situations, and compare the results of the calculations with the results of experi-
ments. If both sets of results agree, the postulate embodied in Schrodinger’s equation
is valid. If they disagree, the postulate must be discarded and some other approach
would then have to be explored. In other words,

Schrodinger’s equation cannot be derived from other basic principles of physics;
it is a basic principle in itself.

What has happened is that Schrodinger’s equation has turned out to be remarkably
accurate in predicting the results of experiments. To be sure, Eq. (5.15) can be used
only for nonrelativistic problems, and a more elaborate formulation is needed when
particle speeds near that of light are involved. But because it is in accord with experi-
ence within its range of applicability, we must consider Schrodinger’s equation as a
valid statement concerning certain aspects of the physical world.

It is worth noting that Schrodinger’s equation does not increase the number of
principles needed to describe the workings of the physical world. Newton’s second law

o



bei48482 ch05.gxd 1/17/02 12:17 AM Page 169 $

Quantum Mechanics

169

of motion F = ma, the basic principle of classical mechanics, can be derived from
Schrodinger’s equation provided the quantities it relates are understood to be averages
rather than precise values. (Newton’s laws of motion were also not derived from any
other principles. Like Schrodinger’s equation, these laws are considered valid in their
range of applicability because of their agreement with experiment.)

9.4 LINEARITY AND SUPERPOSITION

Wave functions add, not probabilities

An important property of Schrodinger’s equation is that it is linear in the wave function
W. By this is meant that the equation has terms that contain ¥ and its derivatives but
no terms independent of W or that involve higher powers of W or its derivatives. As
a result, a linear combination of solutions of Schrodinger’s equation for a given system
is also itself a solution. If W, and W, are two solutions (that is, two wave functions
that satisfy the equation), then

v = a]\I,] + az\llz

is also a solution, where a, and a, are constants (see Exercise 8). Thus the wave func-
tions W, and W, obey the superposition principle that other waves do (see Sec. 2.1)
and we conclude that interference effects can occur for wave functions just as they can
for light, sound, water, and electromagnetic waves. In fact, the discussions of Secs. 3.4
and 3.7 assumed that de Broglie waves are subject to the superposition principle.

Let us apply the superposition principle to the diffraction of an electron beam. Fig-
ure 5.2a shows a pair of slits through which a parallel beam of monoenergetic elec-
trons pass on their way to a viewing screen. If slit 1 only is open, the result is the
intensity variation shown in Fig. 5.2b that corresponds to the probability density

Py = |\I’1|2 = \I,qul
If slit 2 only is open, as in Fig. 5.2¢, the corresponding probability density is
Py = |‘I'z|2 = WiV,

We might suppose that opening both slits would give an electron intensity variation
described by P, + P5, as in Fig. 5.2d. However, this is not the case because in quantum

Electrons Screen
/
H\H Slit 2
Races o
o> o
o—>
o—>
o o—>
o—
X
IS Slit 1
o—> o>
L L -
RARE AL AR AR A A
(@) b © @ (e)

Figure 5.2 (a) Arrangement of double-slit experiment. (b) The electron intensity at the screen with
only slit 1 open. (¢) The electron intensity at the screen with only slit 2 open. (d) The sum of the
intensities of (b) and (c). (¢) The actual intensity at the screen with slits 1 and 2 both open. The wave
functions ¥, and ¥, add to produce the intensity at the screen, not the probability densities [¥,|*
and [W,|*.
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mechanics wave functions add, not probabilities. Instead the result with both slits open
is as shown in Fig. 5.2¢, the same pattern of alternating maxima and minima that oc-
curs when a beam of monochromatic light passes through the double slit of Fig. 2.4.
The diffraction pattern of Fig. 5.2¢ arises from the superposition ¥ of the wave
functions W, and W, of the electrons that have passed through slits 1 and 2:

’\P:\I,I‘F\I,Z

The probability density at the screen is therefore

P=W) =¥, +W,[> =W + )W, +T,)
=P, + P, + Vi, + ¥,

The two terms at the right of this equation represent the difference between Fig. 5.2d and
e and are responsible for the oscillations of the electron intensity at the screen. In Sec. 6.8
a similar calculation will be used to investigate why a hydrogen atom emits radiation when
it undergoes a transition from one quantum state to another of lower energy.

9.9 EXPECTATION VALUES

How to extract information from a wave function

Once Schrodinger’s equation has been solved for a particle in a given physical situa-
tion, the resulting wave function W(x, y, z, t) contains all the information about the
particle that is permitted by the uncertainty principle. Except for those variables that
are quantized this information is in the form of probabilities and not specific numbers.

As an example, let us calculate the expectation value (x) of the position of a
particle confined to the x axis that is described by the wave function W(x, t). This
is the value of x we would obtain if we measured the positions of a great many
particles described by the same wave function at some instant t and then averaged
the results.

To make the procedure clear, we first answer a slightly different question: What is
the average position x of a number of identical particles distributed along the x axis in
such a way that there are N, particles at x;, N, particles at x,, and so on? The average
position in this case is the same as the center of mass of the distribution, and so

lel + NzXz + N3X3 + .- o ZN,’Xl'

5.16
N1+N2+N3+ le ( )

.)_C:

When we are dealing with a single particle, we must replace the number N; of
particles at x; by the probability P; that the particle be found in an interval dx at x;.
This probability is

P, = |W|* dx (5.17)

where W; is the particle wave function evaluated at x = x;. Making this substitution
and changing the summations to integrals, we see that the expectation value of the

o



bei48482 ch05.gxd 1/17/02 12:17 AM Page 171 $

Quantum Mechanics 171
position of the single particle is
j W[ dx
) =—F— (5.18)
LGS

If W is a normalized wave function, the denominator of Eq. (5.18) equals the prob-
ability that the particle exists somewhere between x = — and x = % and therefore
has the value 1. In this case

Expectation value (x) = foo x| WP dx (5.19)
for position = .

Example 5.2

A particle limited to the x axis has the wave function ¥ = ax betweenx = 0and x = 1; ¥ = 0
elsewhere. (a) Find the probability that the particle can be found between x = 0.45 and x =
0.55. (b) Find the expectation value (x) of the particle’s position.

Solution

(a) The probability is
X, 0.55 3 70.55
f W2 dx = a? f dx = az[%} = 0.0251d?
x 0.45 0.45
(b) The expectation value is
49 2

1 1
<x>=f x|\If|2dx=a2f x3dx=a2[x—] =L
0 4 4

0 0

The same procedure as that followed above can be used to obtain the expectation
value (G(x)) of any quantity—for instance, potential energy U(x)—that is a function of
the position x of a particle described by a wave function W. The result is

Expectation value (Gx)) = f G(X)|‘I’|2 dx (5.20)

The expectation value {p) for momentum cannot be calculated this way because,
according to the uncertainty principles, no such function as p(x) can exist. If we specify
x, so that A x = 0, we cannot specify a corresponding p since Ax Ap = /2. The same
problem occurs for the expectation value (E) for energy because AEAt = /2 means
that, if we specify ¢, the function E(t) is impossible. In Sec. 5.6 we will see how (p)
and (E) can be determined.

In classical physics no such limitation occurs, because the uncertainty principle can
be neglected in the macroworld. When we apply the second law of motion to the
motion of a body subject to various forces, we expect to get p(x, t) and E(x, ) from
the solution as well as x(t). Solving a problem in classical mechanics gives us the en-
tire future course of the body’s motion. In quantum physics, on the other hand, all we
get directly by applying Schrodinger’s equation to the motion of a particle is the wave
function W, and the future course of the particles motion—Ilike its initial state—is a
matter of probabilities instead of certainties.
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5.6 OPERATORS

Another way to find expectation values

A hint as to the proper way to evaluate {p) and (E) comes from differentiating the free-
particle wave function ¥ = Ae™ “/MEP with respect to x and to . We find that

o i

_ = — \If
0x ﬁp
v i
— = ——FV¥
ot h

which can be written in the suggestive forms

/]
VY =—— 521
P i ox ( )
4 0
EV = 1ﬁ5\1’ (5.22)

Evidently the dynamical quantity p in some sense corresponds to the differential
operator (f/i) d/dx and the dynamical quantity E similarly corresponds to the differ-
ential operator if d/dt.

An operator tells us what operation to carry out on the quantity that follows it.
Thus the operator i 9/dt instructs us to take the partial derivative of what comes after
it with respect to t and multiply the result by ifi. Equation (5.22) was on the postmark
used to cancel the Austrian postage stamp issued to commemorate the 100th
anniversary of Schrodingers birth.

It is customary to denote operators by using a caret, so that p is the operator that
corresponds to momentum p and E is the operator that corresponds to total energy E.
From Egs. (5.21) and (5.22) these operators are

h o
Momentum p=—— (5.23)
operator i ox
Total-energy .0
operator E= lﬁa_t o

Though we have only shown that the correspondences expressed in Egs. (5.23)
and (5.24) hold for free particles, they are entirely general results whose validity is
the same as that of Schrodinger’s equation. To support this statement, we can re-
place the equation E = KE + U for the total energy of a particle with the operator
equation

E=KE+U (5.25)

The operator U is just U(¥). The kinetic energy KE is given in terms of momen-
tum p by
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and so we have
~2 2 2
inetic- . 1 /R 0\2 A 0o
Kinetic-energy KE = b e (5.26)
operator 2m 2m\ i dx 2m 0x
Equation (5.25) therefore reads
) h* 92
ih—=—-—"—5+U (5.27)
Jat 2m ox

Now we multiply the identity ¥ = ¥ by Eq. (5.27) and obtain

0w h* 0°w
h——=————
Jat 2m ox

+ Uv¥

which is Schrodinger’s equation. Postulating Eqgs. (5.23) and (5.24) is equivalent to
postulating Schrodinger’s equation.

Operators and Expectation Values

Because p and E can be replaced by their corresponding operators in an equation, we
can use these operators to obtain expectation values for p and E. Thus the expectation
value for p is

ho
i ox

® * N v
o= wiva= [ vt va=t [ v 9
e . i) X

and the expectation value for E is

v
at

<E>:fxqr*éqfdxzrqf*(m%)wax=m r\y* (529

Both Egs. (5.28) and (5.29) can be evaluated for any acceptable wave function W (x, t).

Let us see why expectation values involving operators have to be expressed in the
form

)= [ wepw ds
The other alternatives are
°° ho(* 9 h o
f PV dx = — f —(U*W) dx = f[\lf*\P] =0
—oo i Joe Ox i .
since ¥* and W must be 0 at x = *oo, and
* h [~ ad
f V*Wp dx = _'J PP — dx
— 1 —o0 aX
which makes no sense. In the case of algebraic quantities such as x and V(x), the order

of factors in the integrand is unimportant, but when differential operators are involved,
the correct order of factors must be observed.
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Every observable quantity G characteristic of a physical system may be represented
by a suitable quantum-mechanical operator G. To obtain this operator, we express G
in terms of x and p and then replace p by (/i) 9/dx. If the wave function ¥ of the
system is known, the expectation value of G(x, p) is

Expectation value

of an operator (G, p)> N f—oc Ve dx (5.30)
In this way all the information about a system that is permitted by the uncertainty
principle can be obtained from its wave function W.

5.7 SCHRODINGER’S EQUATION: STEADY-STATE FORM

Eigenvalues and eigenfunctions

In a great many situations the potential energy of a particle does not depend on time
explicitly; the forces that act on it, and hence U, vary with the position of the particle
only. When this is true, Schrodinger’s equation may be simplified by removing all
reference to t.

We begin by noting that the one-dimensional wave function W of an unrestricted
particle may be written

P = Ae*(i/ﬁ)(Et*px) — Ae*(iE/ﬁ)LeJr(ip/ﬁ)x — lpef(iE/h)t (531)

Evidently W is the product of a time-dependent function ¢~ “¥#* and a position-
dependent function . As it happens, the time variations of all wave functions of
particles acted on by forces independent of time have the same form as that of an
unrestricted particle. Substituting the W of Eq. (5.31) into the time-dependent form of
Schrodinger’s equation, we find that

2 2
oS o—GE/ Y

E e*(iE/ﬁ)l —
v 2m ax*

+ Udle*(iE/ﬁ)L

Dividing through by the common exponential factor gives

Steady-state 5
Schrodinger equation 9 ‘é’ + 2_72” E-Ug=0 (5.32)
in one dimension Ix h

Equation (5.32) is the steady-state form of Schrodinger’s equation. In three dimen-
sions it is

Steady-state

Schrédinger *Y *Y 0*Y 2m

+ + S (E- U= :
equation in three x> ay* 97 h? (E-Uy=0 (533
dimensions

An important property of Schrodinger’s steady-state equation is that, if it has one
or more solutions for a given system, each of these wave functions corresponds to a
specific value of the energy E. Thus energy quantization appears in wave mechanics as
a natural element of the theory, and energy quantization in the physical world is re-
vealed as a universal phenomenon characteristic of all stable systems.

o
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A familiar and quite close analogy to the manner in which energy quantization occurs
in solutions of Schrodinger’s equation is with standing waves in a stretched string of
length L that is fixed at both ends. Here, instead of a single wave propagating indefi-
nitely in one direction, waves are traveling in both the +x and —x directions simul-
taneously. These waves are subject to the condition (called a boundary condition) that
the displacement y always be zero at both ends of the string. An acceptable function
y(x, t) for the displacement must, with its derivatives (except at the ends), be as well-
behaved as ¢ and its derivatives—that is, be continuous, finite, and single-valued. In
this case y must be real, not complex, as it represents a directly measurable quantity.
The only solutions of the wave equation, Eq. (5.3), that are in accord with these various
limitations are those in which the wavelengths are given by

A, = 2L =0,1,2,3
o+ TR S r=2L n-01,23 ...
n+1

as shown in Fig. 5.3. It is the combination of the wave equation and the restrictions Figure 5.3 Standing waves in a
placed on the nature of its solution that leads us to conclude that y(x, t) can exist only ~ stretched string fastened at both
for certain wavelengths A.. ends.

Eigenvalues and Eigenfunctions

The values of energy E, for which Schrédinger’s steady-state equation can be solved
are called eigenvalues and the corresponding wave functions ¢, are called eigen-
functions. (These terms come from the German Eigenwert, meaning “proper or char-
acteristic value,” and Eigenfunktion, “proper or characteristic function.”) The discrete
energy levels of the hydrogen atom

me” 1
EHZ—W? n=12,3 ...

are an example of a set of eigenvalues. We shall see in Chap. 6 why these particular
values of E are the only ones that yield acceptable wave functions for the electron in
the hydrogen atom.

An important example of a dynamical variable other than total energy that is found
to be quantized in stable systems is angular momentum L. In the case of the hydro-
gen atom, we shall find that the eigenvalues of the magnitude of the total angular
momentum are specified by

L=VIIl+Dnh =0

1,2,...,(n—1D

Of course, a dynamical variable G may not be quantized. In this case measurements
of G made on a number of identical systems will not yield a unique result but instead
a spread of values whose average is the expectation value

- 2
@ =l a
In the hydrogen atom, the electron’s position is not quantized, for instance, so that we
must think of the electron as being present in the vicinity of the nucleus with a cer-
tain probability [|* per unit volume but with no predictable position or even orbit in
the classical sense. This probabilistic statement does not conflict with the fact that
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experiments performed on hydrogen atoms always show that each one contains a whole
electron, not 27 percent of an electron in a certain region and 73 percent elsewhere.
The probability is one of finding the electron, and although this probability is smeared
out in space, the electron itself is not.

Operators and Eigenvalues

The condition that a certain dynamical variable G be restricted to the discrete values
G,—in other words, that G be quantized—is that the wave functions s, of the system
be such that

Eigenvalue equation Gy, = G, (5.34)

where G is the operator that corresponds to G and each G, is a real number. When
Eq. (5.34) holds for the wave functions of a system, it is a fundamental postulate of
quantum mechanics that any measurement of G can only yield one of the values G,.
If measurements of G are made on a number of identical systems all in states described
by the particular eigenfunction s, each measurement will yield the single value G,.

Example 5.3
An eigenfunction of the operator d*/dx” is = ¢**. Find the corresponding eigenvalue.
Solution
Here G = d?/dx?, so
d

~ _iz Zx_ii 2x _i 2x\ 2x
Gy = dxz(e )—dx[dxz(e )]—dx(le ) = 4e

But ¢** = ¢, so
G = 4
From Eq. (5.34) we see that the eigenvalue G here is just G = 4.

In view of Egs. (5.25) and (5.26) the total-energy operator E of Eq. (5.24) can also
be written as

Hamiltonian = _h_za_z +U (5.35)
operator 2m ox

and is called the Hamiltonian operator because it is reminiscent of the Hamiltonian
function in advanced classical mechanics, which is an expression for the total energy
of a system in terms of coordinates and momenta only. Evidently the steady-state
Schrodinger equation can be written simply as

Schrodinger’s .
Hyn, = Eqipn (5.36)

equation
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Table 5.1 Operators Associated with Various
Observable Quantities
Quantity Operator
Position, x X
) A9
Linear momentum, p -
i 0x
Potential energy, U(x) U(x)
K. . KE pz hZ 32
inetic energy, = — -
& 2m 2m ox*
d
Total energy, E ih E
o9
Total energy (Hamiltonian form), H -——— + U(x)
2m ox

so we can say that the various E, are the eigenvalues of the Hamiltonian operator H.
This kind of association between eigenvalues and quantum-mechanical operators is quite
general. Table 5.1 lists the operators that correspond to various observable quantities.

5.8 PARTICLE IN A BOX

How boundary conditions and normalization determine wave functions

To solve Schrodinger’s equation, even in its simpler steady-state form, usually requires
elaborate mathematical techniques. For this reason the study of quantum mechanics
has traditionally been reserved for advanced students who have the required profi-
ciency in mathematics. However, since quantum mechanics is the theoretical structure
whose results are closest to experimental reality, we must explore its methods and ap-
plications to understand modern physics. As we shall see, even a modest mathemati-
cal background is enough for us to follow the trains of thought that have led quantum
mechanics to its greatest achievements.

The simplest quantum-mechanical problem is that of a particle trapped in a box
with infinitely hard walls. In Sec. 3.6 we saw how a quite simple argument yields the
energy levels of the system. Let us now tackle the same problem in a more formal way,
which will give us the wave function ¢, that corresponds to each energy level.

We may specify the particle’s motion by saying that it is restricted to traveling along =~ o -
the x axis between x = 0 and x = L by infintely hard walls. A particle does not lose
energy when it collides with such walls, so that its total energy stays constant. From a
formal point of view the potential energy U of the particle is infinite on both sides of
the box, while U is a constant—say 0 for convenience—on the inside (Fig. 5.4). Because
the particle cannot have an infinite amount of energy, it cannot exist outside the box,
and so its wave function ¢ is 0 for x = 0 and x = L. Our task is to find what ¢ is X
within the box, namely, between x = 0 and x = L. 0 L

Within the box Schrodinger’s equation becomes

Figure 5.4 A square potential well
5 2 with infinitely high barriers at
[x’) + zm Flr = 3 each end corresponds to a box
2 > Ep=0 (5.37)
dx ) with infinitely hard walls.
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since U = 0 there. (The total derivative d*Js/dx* is the same as the partial derivative
9%r/9x” because ¢ is a function only of x in this problem.) Equation (5.37) has the
solution

E x + B cos X (5.38)

Y = A sin

which we can verify by substitution back into Eq. (5.37). A and B are constants to be
evaluated.

This solution is subject to the boundary conditions that ¢ = 0 for x = 0 and for
x = L. Since cos0 = 1, the second term cannot describe the particle because it does
not vanish at x = 0. Hence we conclude that B = 0. Since sin0 = 0, the sine term
always yields ¢y = 0 at x = 0, as required, but ¢ will be 0 at x = L only when

2mE
7 L=nmw n=123 ... (5.39)
This result comes about because the sines of the angles 7, 27, 37, . . . are all 0.

From Eq. (5.39) it is clear that the energy of the particle can have only certain val-
ues, which are the eigenvalues mentioned in the previous section. These eigenvalues,
constituting the energy levels of the system, are found by solving Eq. (5.39) for E,,
which gives

n’mh?

—_— =1,2,3,... 5.40
L2 n (5.40)

Particle in a box E, =

Equation (5.40) is the same as Eq. (3.18) and has the same interpretation [see the
discussion that follows Eq. (3.18) in Sec. 3.6].

Wave Functions

The wave functions of a particle in a box whose energies are E, are, from Eq. (5.38)
with B = 0,

2mE
P, = A sin —;n ©x (5.41)
Substituting Eq. (5.40) for E, gives
b, = A sin% (5.42)

for the eigenfunctions corresponding to the energy eigenvalues E,.

It is easy to verify that these eigenfunctions meet all the requirements discussed in
Sec. 5.1: for each quantum number n, ¢, is a finite, single-valued function of x, and
i, and 9,/ dx are continuous (except at the ends of the box). Furthermore, the integral

o
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of [if,|* over all space is finite, as we can see by integrating [i,|* dx from x = 0 to
x =L (since the particle is confined within these limits). With the help of the
trigonometric identity sin = (1 — cos20) we find that

niwx

[ dotscm ot ()

L= [os(2) o]

A? L _ 2nmx b (L
—Ix — (—) sin =A <—> (5.43)
2 2nmr L 1y 2

To normalize ¢ we must assign a value to A such that [i,|* dx is equal to the prob- ~ ¥3
ability P dx of finding the particle between x and x + dx, rather than merely propor-

tional to P dx. If |¢p,|* dx is to equal P dx, then it must be true that

f i W,|* dx =1 (5.44)
—o0 15

Comparing Eqgs. (5.43) and (5.44), we see that the wave functions of a particle in a

box are normalized if
A= |+ 5.45 1
. (5.45)

The normalized wave functions of the particle are therefore

Particle in a b g = |2 g T 1,2.3 (5.46) /\/\/\
article in a bo W= | — sin— n=12,3,... .
* L L I3l

The normalized wave functions ¢, >, and ¢ together with the probability densities
|t1]?, |th2]?, and [if|* are plotted in Fig. 5.5. Although , may be negative as well as
positive, |f,|* is never negative and, since #, is normalized, its value at a given x is /\/\
equal to the probability density of finding the particle there. In every case |¢,]* = 0 at lal2
x = 0 and x = L, the boundaries of the box.

At a particular place in the box the probability of the particle being present may be
very different for different quantum numbers. For instance, |¢]* has its maximum
value of 2/L in the middle of the box, while |i),|*> = 0 there. A particle in the lowest
energy level of n = 1 is most likely to be in the middle of the box, while a particle in |¢1|2/\
the next higher state of n = 2 is never there! Classical physics, of course, suggests the
same probability for the particle being anywhere in the box.

The wave functions shown in Fig. 5.5 resemble the possible vibrations of a string x=0 x=L
fixed at both ends, such as those of the stretched string of Fig. 5.2. This follows from
the fact that waves in a stretched string and the wave representing a moving particle  Figyre 55 Wave functions and
are described by equations of the same form, so that when identical restrictions are  probability densities of a particle
placed upon each kind of wave, the formal results are identical. confined to a box with rigid walls.
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Example 5.4

Find the probability that a particle trapped in a box L wide can be found between 0.45L and
0.55L for the ground and first excited states.

Solution

This part of the box is one-tenth of the boxs width and is centered on the middle of the box
(Fig. 5.6). Classically we would expect the particle to be in this region 10 percent of the time.
Quantum mechanics gives quite different predictions that depend on the quantum number of
the particles state. From Egs. (5.2) and (5.46) the probability of finding the particle between x;
and x, when it is in the nth state is

X
PX1,X2 =
X1

[ X 1 . 2nmx ]XZ
sin

2 *2 nmwx

2 i 02

/ dx = — J sin® —— dx
n| L X, L

L 2nm L

Here x; = 0.45L and x, = 0.55L. For the ground state, which corresponds to n = 1, we have
Py, = 0.198 = 19.8 percent

This is about twice the classical probability. For the first excited state, which corresponds to
n = 2, we have

Py, «, = 0.0065 = 0.65 percent

This low figure is consistent with the probability density of |¢h,|> = 0 at x = 0.5L.

2 N

lgry]2

Figure 5.6 The probability P, ., of finding a particle in the box of Fig. 5.5 between x; = 0.45L and
x> = 0.55L is equal to the area under the [t/]* curves between these limits.
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Example 5.5

Find the expectation value (x) of the position of a particle trapped in a box L wide.

Solution

From Egs. (5.19) and (5.46) we have

. 2 (r nx

2 s 2
x) = X dx= — | xsin"——
) f ] LL 3

_ E{x_z B x sin(2narx/L) B cos(2nmx/L) ]’-

Ll 4 4nm/L 8(nm/L)? |,

Since sinnar = 0, cos 2nm = 1, and cos 0 = 1, for all the values of n the expectation value of

X is
w3

This result means that the average position of the particle is the middle of the box in all quan-

tum states. There is no conflict with the fact that |l[/|2 =0atL/2inthen =2, 4,6,...states
because {x) is an average, not a probability, and it reflects the symmetry of [t)|* about the middle
of the box.

Momentum

Finding the momentum of a particle trapped in a one-dimensional box is not as straight-

forward as finding (x). Here
vt =g = |2 sin X
! L L

dys 2 nw nx
-4 = | = — cos——
dx L L L

and so, from Eq. (5.30),

o0 o0 ﬁ d
= il dx = *(——) dx
2 _oodjpl’[j —oolp i dx 4
L
—ﬁg—nﬂfs‘n C e dx
i L L Jo L

We note that

. 1 .
fsmaxcosaxdxz 2—smzax
a
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With a = nw/L we have

since sin? 0 = sin? nr =0 n=1 23 ...
The expectation value (p) of the particle’s momentum is 0.
At first glance this conclusion seems strange. After all, E = 102 /2m, and so we would

anticipate that

Momentum

(5.47)

eigenvalues for pn=%V2mE, = =
trapped particle

The = sign provides the explanation: The particle is moving back and forth, and so
its average momentum for any value of n is

_ (+nwh/L) + (—nmh/L) _
2

Pav

0

which is the expectation value.

According to Eq. (5.47) there should be two momentum eigenfunctions for every
energy eigenfunction, corresponding to the two possible directions of motion. The gen-
eral procedure for finding the eigenvalues of a quantum-mechanical operator, here p,
is to start from the eigenvalue equation

p(/jn = pnl;bn (548)

where each p, is a real number. This equation holds only when the wave functions ,
are eigenfunctions of the momentum operator p, which here is

are not also momentum eigenfunctions, because

ﬁi( Esin—m-m)—ﬁﬂ ECOS—MTX;& U,
i WL L i L VL L7 P

To find the correct momentum eigenfunctions, we note that

0 _ —if
sinf =" = e
2i 2i 2i

o
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Hence each energy eigenfunction can be expressed as a linear combination of the two
wave functions

1 2

+ _ = ~  inmx/L
Momentum N 2i i € (5.49)
eigenfunctions for
trapped particle 3 1 2
lﬂn — z_l I e inmx/L (550)

Inserting the first of these wave functions in the eigenvalue equation, Eq. (5.48), we

have
Py = i
Bl gy Bl [20T o TR e
so that P = +n7;ﬁ (5.51)
Similarly the wave function i, leads to the momentum eigenvalues
= mzh (5.52)

We conclude that ¢, and ¢, are indeed the momentum eigenfunctions for a parti-
cle in a box, and that Eq. (5.47) correctly states the corresponding momentum
eigenvalues.

9.9 FINITE POTENTIAL WELL

The wave function penetrates the walls, which lowers the energy levels

Potential energies are never infinite in the real world, and the box with infinitely hard
walls of the previous section has no physical counterpart. However, potential wells
with barriers of finite height certainly do exist. Let us see what the wave functions and
energy levels of a particle in such a well are.

Figure 5.7 shows a potential well with square corners that is U high and L wide
and contains a particle whose energy E is less than U. According to classical — 1y
mechanics, when the particle strikes the sides of the well, it bounces off without
entering regions I and III. In quantum mechanics, the particle also bounces back
and forth, but now it has a certain probability of penetrating into regions I and III
even though E < U. X 0 L +x

In regions I and III Schrodingers steady-state equation is

Energy

Figure 5.7 A square potential well
5 with finite barriers. The energy E
d_‘// + Z_m (E—-U=0 of the trapped particle is less than
dx? = the height U of the barriers.

o



bei48482 ch05.gxd 1/17/02 12:17 AM Page 184 $

184

Chapter Five

<\
(

x=0 x=L
512 =
[ifr|2
|(/,1|2 he—
x=0 x=L

Figure 5.8 Wave functions and
probability densities of a particle
in a finite potential well. The
particle has a certain probability
of being found outside the wall.

which we can rewrite in the more convenient form

a? x<0
% —aY=0 oy (5.33)
where
V2m(U — E)

a= (5.54)

The solutions to Eq. (5.53) are real exponentials:

Yy = Ce™ + De™ ™ (5.55)
Y = Fe™ + Ge™ ™ (5.56)

—ax

Both ; and ¢;; must be finite everywhere. Since e”* — © as x — —® and ¢ — ®
as x — o, the coefficients D and F must therefore be 0. Hence we have

P = Ce™ (5.57)
= Ge™ ™ (5.58)
These wave functions decrease exponentially inside the barriers at the sides of the well.

Within the well Schrodinger’s equation is the same as Eq. (5.37) and its solution is
again

) E
Yy = A sin x + B cos

X (5.59)

In the case of a well with infinitely high barriers, we found that B = 0 in order that
¢ = 0atx = 0and x = L Here, however, ¥ = Cat x = 0O and ¢y = Gat x = L,
so both the sine and cosine solutions of Eq. (5.59) are possible.

For either solution, both ¢ and di/dx must be continuous at x = 0 and x = L: the
wave functions inside and outside each side of the well must not only have the same
value where they join but also the same slopes, so they match up perfectly. When these
boundary conditions are taken into account, the result is that exact matching only oc-
curs for certain specific values E, of the particle energy. The complete wave functions
and their probability densities are shown in Fig. 5.8.

Because the wavelengths that fit into the well are longer than for an infinite well of
the same width (see Fig. 5.5), the corresponding particle momenta are lower (we re-
call that X = h/p). Hence the energy levels E, are lower for each n than they are for a
particle in an infinite well.

9.10 TUNNEL EFFECT

A particle without the energy to pass over a potential barrier may still
tunnel through it

Although the walls of the potential well of Fig. 5.7 were of finite height, they were
assumed to be infinitely thick. As a result the particle was trapped forever even though
it could penetrate the walls. We next look at the situation of a particle that strikes a
potential barrier of height U, again with E < U, but here the barrier has a finite width
(Fig. 5.9). What we will find is that the particle has a certain probability—not

o
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Figure 5.9 When a particle of energy E < U approaches a potential barrier, according to classical
mechanics the particle must be reflected. In quantum mechanics, the de Broglie waves that correspond
to the particle are partly reflected and partly transmitted, which means that the particle has a finite
chance of penetrating the barrier.

necessarily great, but not zero either—of passing through the barrier and emerging
on the other side. The particle lacks the energy to go over the top of the barrier, but
it can nevertheless tunnel through it, so to speak. Not surprisingly, the higher the
barrier and the wider it is, the less the chance that the particle can get through.

The tunnel effect actually occurs, notably in the case of the alpha particles emit-
ted by certain radioactive nuclei. As we shall learn in Chap. 12, an alpha particle whose
kinetic energy is only a few MeV is able to escape from a nucleus whose potential wall
is perhaps 25 MeV high. The probability of escape is so small that the alpha particle
might have to strike the wall 10°® or more times before it emerges, but sooner or later
it does get out. Tunneling also occurs in the operation of certain semiconductor diodes
(Sec. 10.7) in which electrons pass through potential barriers even though their kinetic
energies are smaller than the barrier heights.

Let us consider a beam of identical particles all of which have the kinetic energy E.
The beam is incident from the left on a potential barrier of height U and width L, as
in Fig. 5.9. On both sides of the barrier U = 0, which means that no forces act on the
particles there. The wave function . represents the incoming particles moving to the
right and ¢, represents the reflected particles moving to the left; y;; represents the
transmitted particles moving to the right. The wave function ¢, represents the parti-
cles inside the barrier, some of which end up in region III while the others return to
region 1. The transmission probability T for a particle to pass through the barrier is
equal to the fraction of the incident beam that gets through the barrier. This proba-
bility is calculated in the Appendix to this chapter. Its approximate value is given by

Approximate
transmission T=e¢ 2kl (5.60)
probability
where
VanU = B
Ry = % (5.61)

and L is the width of the barrier.
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The tungsten probe of a scanning
tunneling microscope.

Example 5.6

Electrons with energies of 1.0 eV and 2.0 eV are incident on a barrier 10.0 eV high and 0.50 nm
wide. (a) Find their respective transmission probabilities. (b) How are these affected if the barrier
is doubled in width?

Solution

(a) For the 1.0-eV electrons
\V2mU — E)
f

V(2)(9.1 X 1077 kg)[(10.0 — 1.0) eVI(1.6 X 10~ ' J/eV)
1.054 X 107°*] - s

kzz

1.6 X 1019 m™!

Since L = 0.50 nm = 5.0 X 10 °m, 2k,L = 2)(1.6 X 10" m 1)(5.0 X 107 % m) = 16,
and the approximate transmission probability is

T,=e¢ 2l=¢"10=11x10""

One 1.0-eV electron out of 8.9 million can tunnel through the 10-eV barrier on the average. For
the 2.0-eV electrons a similar calculation gives T, = 2.4 X 1077, These electrons are over twice
as likely to tunnel through the barrier.

(b) 1f the barrier is doubled in width to 1.0 nm, the transmission probabilities become

Ty =13x10"" T, =51x10""

Evidently T is more sensitive to the width of the barrier than to the particle energy here.

Scanning Tunneling Microscope

he ability of electrons to tunnel through a potential barner is used in an ingenious way in

the scanning tunneling microscope (STM) to study surfaces on an atomic scale of size.
The STM was invented in 1981 by Gert Binning and Heinrich Rohrer, who shared the 1986
Nobel Prize in physics with Ernst Ruska, the inventor of the electron microscope. In an STM, a
metal probe with a point so fine that its tip is a single atom is brought close to the surface of a
conducting or semiconducting material. Normally even the most loosely bound electrons in an
atom on a surface need several electron-volts of energy to escape—this is the work function
discussed in Chap. 2 in connection with the photoelectric effect. However, when a voltage of
only 10 mV or so is applied between the probe and the surface, electrons can tunnel across the
gap between them if the gap is small enough, a nanometer or two.

According to Eq. (5.60) the electron transmission probability is proportional to e, where
L is the gap width, so even a small change in L (as little as 0.01 nm, less than a twentieth the
diameter of most atoms) means a detectable change in the tunneling current. What is done is
to move the probe across the surface in a series of closely spaced back-and-forth scans in about
the same way an electron beam traces out an image on the screen of a television picture tube.
The height of the probe is continually adjusted to give a constant tunneling current, and the ad-
justments are recorded so that a map of surface height versus position is built up. Such a map
is able to resolve individual atoms on a surface.

How can the position of the probe be controlled precisely enough to reveal the outlines of
individual atoms? The thickness of certain ceramics changes when a voltage is applied across
them, a property called piezoelectricity. The changes might be several tenths of a nanometer
per volt. In an STM, piezoelectric controls move the probe in x and y directions across a surface
and in the z direction perpendicular to the surface.

o
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Silicon atoms on the surface of a silicon crystal form a regular, repeated pattern in this image produced
by an STM.

Actually, the result of an STM scan is not a true topographical map of surface height but
a contour map of constant electron density on the surface. This means that atoms of different
elements appear differently, which greatly increases the value of the STM as a research tool.

Although many biological materials conduct electricity, they do so by the flow of ions rather
than of electrons and so cannot be studied with STMs. A more recent development, the atomic
force microscope (AFM) can be used on any surface, although with somewhat less resolution
than an STM. In an AFM, the sharp tip of a fractured diamond presses gently against the atoms
on a surface. A spring keeps the pressure of the tip constant, and a record is made of the
deflections of the tip as it moves across the surface. The result is a map showing contours of
constant repulsive force between the electrons of the probe and the electrons of the surface atoms.
Even relatively soft biological materials can be examined with an AFM and changes in them
monitored. For example, the linking together of molecules of the blood protein fibrin, which
occurs when blood clots, has been watched with an AFM.

9.11 HARMONIC OSCILLATOR

Its energy levels are evenly spaced

Harmonic motion takes place when a system of some kind vibrates about an equilib-
rium configuration. The system may be an object supported by a spring or floating in
a liquid, a diatomic molecule, an atom in a crystal lattice—there are countless examples
on all scales of size. The condition for harmonic motion is the presence of a restoring
force that acts to return the system to its equilibrium configuration when it is disturbed.
The inertia of the masses involved causes them to overshoot equilibrium, and the system
oscillates indefinitely if no energy is lost.

In the special case of simple harmonic motion, the restoring force F on a particle
of mass m is linear; that is, F is proportional to the particle’s displacement x from its
equilibrium position and in the opposite direction. Thus

Hooke’s law F= —kx

This relationship is customarily called Hooke’s law. From the second law of motion,
F = ma, we have
d’x

—kx = m?

o
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Energy

kx2
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-A 0 +A

Figure 5.10 The potential energy
of a harmonic oscillator is pro-
portional to x*, where x is the
displacement from the equilib-
rium position. The amplitude A
of the motion is determined by
the total energy E of the oscillator,
which classically can have any
value.

Harmonic d*x k
oscillator - * ZX = (5.62)

There are various ways to write the solution to Eq. (5.62). A common one is
x = A cos Qmvt + ¢) (5.63)
where

Frequency of 1 A

harmonic oscillator v=— [— (5.64)
2T m

is the frequency of the oscillations and A is their amplitude. The value of ¢, the phase
angle, depends upon what x is at the time t = 0 and on the direction of motion then.

The importance of the simple harmonic oscillator in both classical and modern
physics lies not in the strict adherence of actual restoring forces to Hooke’s law, which
is seldom true, but in the fact that these restoring forces reduce to Hooke’s law for
small displacements x. As a result, any system in which something executes small
vibrations about an equilibrium position behaves very much like a simple harmonic
oscillator.

To verify this important point, we note that any restoring force which is a func-
tion of x can be expressed in a Maclaurin’s series about the equilibrium position
x = 0as

F(x)=F +(d_F) +l(dZ_F) 2+l(ﬁ> 34,
* o dX x:ox 2 d‘xz x=0x 6 dX3 x=0x

Since x = 0 is the equilibrium position, F,—o = 0. For small x the values of Pl G
are very small compared with x, so the third and higher terms of the series can be
neglected. The only term of significance when x is small is therefore the second one.
Hence

dF
F(X) - (E>x—0x

which is Hooke’s law when (dF/dx),—, is negative, as of course it is for any restoring
force. The conclusion, then, is that all oscillations are simple harmonic in character
when their amplitudes are sufficiently small.

The potential-energy function U(x) that corresponds to a Hooke’s law force may be
found by calculating the work needed to bring a particle from x = 0 to x = x against
such a force. The result is

Ulx) = —LXF(X) dx = kLXx dx = %kxz (5.65)

which is plotted in Fig. 5.10. The curve of U(x) versus x is a parabola. If the energy
of the oscillator is E, the particle vibrates back and forth between x = —A and x =
+A, where E and A are related by E = 1kA”. Figure 8.18 shows how a nonparabolic
potential energy curve can be approximated by a parabola for small displacements.

o
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Even before we make a detailed calculation we can anticipate three quantum-
mechanical modifications to this classical picture:

1 The allowed energies will not form a continuous spectrum but instead a discrete
spectrum of certain specific values only.

2 The lowest allowed energy will not be E = 0 but will be some definite minimum
E = E,.

3 There will be a certain probability that the particle can penetrate the potential well
it is in and go beyond the limits of —A and +A.

Energy Levels

Schrodingers equation for the harmonic oscillator is, with U = 1kx?,

2
Zx—‘f ; %(E - %kXZ)lp: 0 (5.66)

It is convenient to simplify Eq. (5.75) by introducing the dimensionless quantities

1 2
y=(=Vim|"x= [T (5.67)
h h
2E |m 2E
and a = 7 ? = E (568)

where v is the classical frequency of the oscillation given by Eq. (5.64). In making
these substitutions, what we have done is change the units in which x and E are
expressed from meters and joules, respectively, to dimensionless units.

In terms of y and a Schrodinger’s equation becomes

2

d f +@—yH)y=0 (5.69)
dy

The solutions to this equation that are acceptable here are limited by the condition that
y — 0 as y — % in order that

| P ay=n

Otherwise the wave function cannot represent an actual particle. The mathematical
properties of Eq. (5.69) are such that this condition will be fulfilled only when

a=2n+1 n=20,1 23, ...

Since @ = 2E/hv according to Eq. (5.68), the energy levels of a harmonic oscillator
whose classical frequency of oscillation is v are given by the formula

Energy levels of E,=(+Yw n=0123,. . . (5.70)

harmonic oscillator

o
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1 The energy of a harmonic oscillator is thus quantized in steps of hv.
" x(_ ﬁ) We note that when n = 0,
e = E=0
5 Zero-point energy Ey, = hy (5.71)
2
which is the lowest value the energy of the oscillator can have. This value is called the
TEnergy zero-point energy because a harmonic oscillator in equilibrium with its surroundings
would approach an energy of E = E, and not E = 0 as the temperature approaches 0 K.
E, Figure 5.11 is a comparison of the energy levels of a harmonic oscillator with those
of a hydrogen atom and of a particle in a box with infinitely hard walls. The shapes
(a) of the respective potential-energy curves are also shown. The spacing of the energy
levels is constant only for the harmonic oscillator.
E, o< n?
Wave Functions
E4
For each choice of the parameter «, there is a different wave function . Each func-
Energy E tion consists of a polynomial H,(y) (called a Hermite polynomial) in either odd or
even powers of y, the exponential factor ¢ 72, and a numerical coefficient which is
E, needed for ¢, to meet the normalization condition
Bir_o *
f [, dy=1 n=0,1,2...
(b e
The general formula for the nth wave function is
E,oc(n+ L .
( 2) Har.momc v = ( 2my )1/4(2"n!)71/2Hn(y)efy2/2 (5.72)
E; oscillator A
Ey The first six Hermite polynomials H,(y) are listed in Table 5.2.
Energy The wave functions that correspond to the first six energy levels of a harmonic
Ex oscillator are shown in Fig. 5.12. In each case the range to which a particle oscillating
Eo classically with the same total energy E, would be confined is indicated. Evidently the
E=0  particle is able to penetrate into classically forbidden regions—in other words, to exceed

(©

Figure 5.11 Potential wells and en-
ergy levels of (a) a hydrogen atom,
(b) a particle in a box, and (¢) a
harmonic oscillator. In each case
the energy levels depend in a dif-
ferent way on the quantum
number n. Only for the harmonic
oscillator are the levels equally
spaced. The symbol = means “is
proportional to.”

the amplitude A determined by the energy—with an exponentially decreasing proba-
bility, just as in the case of a particle in a finite square potential well.

It is interesting and instructive to compare the probability densities of a classical har-
monic oscillator and a quantum-mechanical harmonic oscillator of the same energy. The
upper curves in Fig. 5.13 show this density for the classical oscillator. The probability
P of finding the particle at a given position is greatest at the endpoints of its motion,

Table 5.2 Some Hermite Polynomials

n Ha(y) Qan En
0 1 1 thy
1 2y 3 “hy
2 4y* — 2 5 Shy
3 8y> — 12y 7 Thy
4 16y* — 48y + 12 9 Shy
5 32y° — 160y + 120y 11 Yhy

o
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where it moves slowly, and least near the equilibrium position (x = 0), where it moves
rapidly.

Exactly the opposite behavior occurs when a quantum-mechanical oscillator is
in its lowest energy state of n = 0. As shown, the probability density |¢|* has its
maximum value at x = 0 and drops off on either side of this position. However,
this disagreement becomes less and less marked with increasing n. The lower graph
of Fig. 5.13 corresponds to n = 10, and it is clear that |i},|* when averaged over
x has approximately the general character of the classical probability P This is
another example of the correspondence principle mentioned in Chap. 4: In the limit
of large quantum numbers, quantum physics yields the same results as classical
physics.

It might be objected that although [¢,|* does indeed approach P when smoothed
out, nevertheless |f,0|* fluctuates rapidly with x whereas P does not. However, this
objection has meaning only if the fluctuations are observable, and the smaller the spac-
ing of the peaks and hollows, the more difficult it is to detect them experimentally.
The exponential “tails” of |fo|* beyond x = * A also decrease in magnitude with
increasing n. Thus the classical and quantum pictures begin to resemble each other
more and more the larger the value of n, in agreement with the correspondence prin-
ciple, although they are very different for small n.

lirol?
P
x=—-A x=+A

lr10l* n W

x=-A Xx=4+A

Figure 5.13 Probability densities for the n = 0 and n = 10 states of a quantum-mechanical harmonic
oscillator. The probability densities for classical harmonic oscillators with the same energies are shown
in white. In the n = 10 state, the wavelength is shortest at x = 0 and longest at x = —A.

o

-

x=-A x=+A

s

=

x=-A x=+A

Uy

=

x=-A x=+A

in

Figure 5.12 The first six harmonic-
oscillator wave functions. The ver-
tical lines show the limits —A and
+A between which a classical os-
cillator with the same energy
would vibrate.
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Example 5.7
Find the expectation value (x) for the first two states of a harmonic oscillator.
Solution

The general formula for (x) is
(=[xl ax

In calculations such as this it is easier to begin with y in place of x and afterward use Eq. (5.67)
to change to x. From Eq. (5.72) and Table 5.2,

Yo = ( 2my )1/467),2/2

h
2mpy \1/4/ 1 \1/2 .
n=(G) (7)o

The values of (x) for n = 0 and n = 1 will respectively be proportional to the integrals

” * 2 1 2 |*
nZOrJ Yol dy:f ye o dy = —be”] =0

o0 o0 B 1 2 ) o
n= I:J y|¢1|2 dy =J yBefy dy = —[(Z + y?)e*y} =0

The expectation value (x) is therefore 0 in both cases. In fact, (x) = 0 for all states of a harmonic
oscillator, which could be predicted since x = 0 is the equilibrium position of the oscillator

where its potential energy is a minimum.
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The Tunnel Effect

e consider the situation that was shown in Fig. 5.9 of a particle of energy
‘ N / E < U that approaches a potential barrier U high and L wide. Outside

the barrier in regions I and III Schrodinger’s equation for the particle takes

the forms
dzlpl 2m _
a2 + ?Ed/l =0 (5.73)
a4’ 2m
dféll + ?Edfﬂl =0 5.74)

The solutions to these equations that are appropriate here are

P = Ae™™ + B (5.75)
l!/HI = Feiklx + Geiiklx (576)
where
Wave number 2mE p 2
ky = == =— 5.77
outside barrier ! h h A ( )

is the wave number of the de Broglie waves that represent the particles outside the
barrier.
Because

0

e = cos0 +isind

¢ % =cosf —isinf

these solutions are equivalent to Eq. (5.38)—the values of the coefficients are differ-
ent in each case, of course—but are in a more suitable form to describe particles that
are not trapped.

The various terms in Eqs. (5.75) and (5.76) are not hard to interpret. As was shown
schematically in Fig. 5.9, Ae™™ is a wave of amplitude A incident from the left on the
barrier. Hence we can write

Incoming wave Yy = Ae™x (5.78)
This wave corresponds to the incident beam of particles in the sense that |1, |* is their

probability density. If v, is the group velocity of the incoming wave, which equals the
velocity of the particles, then

S= |l/f1+|zvl+

o
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is the flux of particles that arrive at the barrier. That is, S is the number of particles
per second that arrive there.
At x = 0 the incident wave strikes the barrier and is partially reflected, with

Reflected wave Y = Be ¥ (5.79)
representing the reflected wave. Hence
b= P (5.80)
On the far side of the barrier (x > L) there can only be a wave
Transmitted wave Y = Fe™* (5.81)

traveling in the +x direction at the velocity vy since region III contains nothing that
could reflect the wave. Hence G = 0 and

Y = Py = Fe™~ (5.82)
The transmission probability T for a particle to pass through the barrier is the ratio

2
Transmission T= |¢1H+| Vit _ FF*uy
probability |t o [Purs AA*u

(5.83)

between the flux of particles that emerges from the barrier and the flux that arrives at
it. In other words, T is the fraction of incident particles that succeed in tunneling
through the barrier. Classically T = 0 because a particle with E < U cannot exist inside
the barrier; let us see what the quantum-mechanical result is.

In region II Schrodinger’s equation for the particles is

% + 2—”;(5 — Uy = d;‘f;l - i—T(U — By =0 (5.84)
Since U > E the solution is
g::cfefg:::ii:rn = Ce " + De/> (5.85)
where the wave number inside the barrier is
Wave number R, = \/m (5.86)

inside barrier

h

Since the exponents are real quantities, ¢y does not oscillate and therefore does not
represent a moving particle. However, the probability density [¢|* is not zero, so there
is a finite probability of finding a particle within the barrier. Such a particle may emerge
into region III or it may return to region I.

o



bei48482 ch05.gxd 1/17/02 12:17 AM Page 195 $

The Tunnel Effect 195

Applying the Boundary Conditions

In order to calculate the transmission probability T we have to apply the appropriate
boundary conditions to ¢, ¢y, and ;. Fig. 5.14 shows the wave functions in regions
I, 11, and III. As discussed earlier, both ¢ and its derivative di//dx must be continuous
everywhere. With reference to Fig. 5.14, these conditions mean that for a perfect fit at
each side of the barrier, the wave functions inside and outside must have the same
value and the same slope. Hence at the left-hand side of the barrier

o =Y (5.87)
Boundary conditions g J 0
atx =0 (/jl _ (pH X =
—_— = — 5.88
I » (5.88)
and at the right-hand side
Yy = (5.89)
Boundary conditions m m _
atx =L LI\ 5.90
. I (5.90)

Now we substitute ¢, ¢y, and by, from Egs. (5.75), (5.81), and (5.85) into the
above equations. This yields in the same order

A+B=C+D (5.91)

ikiA — ikyB = —k,C + ky,D (5.92)

Ce "k + Delol = Fellt (5.93)
—kyCe "2k + kyDelel = ik Feit (5.94)

Equations (5.91) to (5.94) may be solved for (A/F) to give

A ]_ i kz kl (ik, +k,)L ]- i kZ kl (ik, — k)L
— =4+ - = - = Tl | — — —| = — — Ry =Ry 05
(F) [2 4(kl kzﬂe AV (5.95)

S\

INANWA NN
"\

x=0 x=L

Figure 5.14 At each wall of the barrier, the wave functions inside and outside it must match up
perfectly, which means that they must have the same values and slopes there.

o
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Let us assume that the potential barrier U is high relative to the energy E of the
incident particles. If this is the case, then k,/k; > k;/k, and

T = (5.96)

Let us also assume that the barrier is wide enough for i;; to be severely weakened
between x = 0 and x = L. This means that k,L => 1 and

ol s ool

Hence Eq. (5.95) can be approximated by

A 1 ik .
(F) =5+ e oo
1

The complex conjugate of (A/F), which we need to compute the transmission prob-
ability T, is found by replacing i by —i wherever it occurs in (A/F):

A *_ 1 ikZ (—ik, +k,)L
(F) _(2 %)e (5.98)

Now we multiply (A/F) and (A/F)* to give

AAT _(i 5 ) okl
FF*

+
4 16k3

Here v+ = vt s0 vy4/vi+ = 1 in Eq. (5.83), which means that the transmission
probability is

Transmission FFope (AA* )7] _ [ 16

- FF* 4+ (ky/ky)”

—2k,L
probability = AA*y, ]6 (5.99)

From the definitions of ky, Eq. (5.77), and of k,, Eq. (5.86), we see that
k\2  2m(U— B)/k* U
=l === - 5.100
( k, ) 2mE/h* E ( )

This formula means that the quantity in brackets in Eq. (5.99) varies much less with
E and U than does the exponential. The bracketed quantity, furthermore, always is of
the order of magnitude of 1 in value. A reasonable approximation of the transmission
probability is therefore

Approximate
transmission T =¢ 2kt (5.101)

probability

as stated in Sec. 5.10.
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Press on, and faith will catch up with you. — Jean D’Alembert

5.1 Quantum Mechanics

1. Which of the wave functions in Fig. 5.15 cannot have physical
significance in the interval shown? Why not?
2. Which of the wave functions in Fig. 5.16 cannot have physical
significance in the interval shown? Why not?
¥ Y Y
(@) (b) ©
b ¥ U
| ’\/ * \\ x
(d) (e D)
Figure 5.15

U 1 v
‘\\ X ’.\ X X
(a) (b) (@)
U v v
X X X
(d) (e) (6]

Figure 5.16

3. Which of the following wave functions cannot be solutions of
Schrodinger’s equation for all values of x? Why not? (a) ¢ =
A sec x; (b) l,D = A tanx; (¢) l/l = Ae*; (d) ¢ = Ae .

4. Find the value of the normalization constant A for the wave
2
function i = Axe /2.

5. The wave function of a certain particle is ¢/ = A cos’x for
—m/2 <x < m/2. (a) Find the value of A. (b) Find the proba-
bility that the particle be found between x = 0 and x = /4.

5.2 The Wave Equation

6. The formulay = A cos w(t — x/V), as we saw in Sec. 3.3, de-
scribes a wave that moves in the +x direction along a stretched
string. Show that this formula is a solution of the wave equa-
tion, Eq.(5.3).

7. As mentioned in Sec. 5.1, in order to give physically meaning-
ful results in calculations a wave function and its partial deriva-
tives must be finite, continuous, and single-valued, and in addi-
tion must be normalizable. Equation (5.9) gives the wave
function of a particle moving freely (that is, with no forces
acting on it) in the +x direction as

V= Ae—(i/ﬁ)(Et—px)

where E is the particle’s total energy and p is its momentum.
Does this wave function meet all the above requirements? If
not, could a linear superposition of such wave functions meet
these requirements? What is the significance of such a superpo-
sition of wave functions?

5.4 Linearity and Superposition
8. Prove that Schrodinger’s equation is linear by showing that
W =a,V(x, 0+ a;Wa(x, O

is also a solution of Eq. (5.14) if ¥, and ¥, are themselves
solutions.

5.6 Operators

9. Show that the expectation values (px) and (xp) are related by
h
(px) = (p) = n

This result is described by saying that p and x do not commute
and it is intimately related to the uncertainty principle.

10. An eigenfunction of the operator d*/dx” is sinnx, where n
=1,2,3,....Find the corresponding eigenvalues.

o
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5.7 Schrodinger’s Equation: Steady-State Form

11.

Obtain Schrodingers steady-state equation from Eq. (3.5) with
the help of de Broglies relationship A = h/mv by letting y = i
and finding ¢ /x>,

5.8 Particle in a Box

12.

13.

According to the correspondence principle, quantum theory
should give the same results as classical physics in the limit of
large quantum numbers. Show that as n — o, the probability of
finding the trapped particle of Sec. 5.8 between x and x + Ax
is Ax/L and so is independent of x, which is the classical
expectation.

One of the possible wave functions of a particle in the potential
well of Fig. 5.17 is sketched there. Explain why the wavelength
and amplitude of ¢ vary as they do.

L

Figure 5.17

14.

15.

16.

17.

18.

In Sec. 5.8 a box was considered that extends from x = 0 to

x = L. Suppose the box instead extends from x = x, to x =

Xo + L, where xo # 0. Would the expression for the wave func-
tions of a particle in this box be any different from those in the
box that extends from x = 0 to x = L? Would the energy levels
be different?

An important property of the eigenfunctions of a system is that
they are orthogonal to one another, which means that

n#m

fm Yt AV =0

Verify this relationship for the eigenfunctions of a particle in a
one-dimensional box given by Eq. (5.46).

A rigid-walled box that extends from —L to L is divided into
three sections by rigid interior walls at —x and x, where x <L.
Each section contains one particle in its ground state. (@) What
is the total energy of the system as a function of x? (b) Sketch
E(x) versus x. (¢) At what value of x is E(x) a minimum?

As shown in the text, the expectation value (x) of a particle
trapped in a box L wide is L/2, which means that its average
position is the middle of the box. Find the expectation value (x*).

As noted in Exercise 8, a linear combination of two wave func-
tions for the same system is also a valid wave function. Find
the normalization constant B for the combination

Y= B(sinﬂ% + si

. 2mx
n 2
L

19.

20.

(@)

)

21.

22.

23.

of the wave functions for the n = 1 and n = 2 states of a parti-
cle in a box L wide.

Find the probability that a particle in a box L wide can be
found between x = 0 and x = L/n when it is in the nth state.

In Sec. 3.7 the standard deviation o of a set of N measurements
of some quantity x was defined as

1 N
=~ > 6o = %o
o N;x Xo

Show that, in terms of expectation values, this formula can be
written as

o= V{x = (N = V) — (1)

If the uncertainty in position of a particle in a box is taken as
the standard deviation, find the uncertainty in the expectation
value {(x) = L/2 for n = 1. (¢) What is the limit of Ax as n
increases?

A particle is in a cubic box with infinitely hard walls whose
edges are L long (Fig. 5.18). The wave functions of the particle
are given by

n=123 ...
X nmy . nemz *
= Asin —— sin = sin —— n,=123...
L L L
n,=12,3,...

Find the value of the normalization constant A.

Figure 5.18 A cubic box.

The particle in the box of Exercise 21 is in its ground state of
ne =n, = n, = 1. (a) Find the probability that the particle will
be found in the volume defined by 0 = x =L/4,0 =y =
L/4,0 = z = L/4. (b) Do the same for L/2 instead of L/4.

(@) Find the possible energies of the particle in the box of
Exercise 21 by substituting its wave function ¢ in Schrodinger’s
equation and solving for E. (Hint: Inside the box U = 0.)

(b) Compare the ground-state energy of a particle in a one-
dimensional box of length L with that of a particle in the three-
dimensional box.

5.10 Tunnel Effect

24.

Electrons with energies of 0.400 eV are incident on a barrier
3.00 eV high and 0.100 nm wide. Find the approximate proba-
bility for these electrons to penetrate the barrier.

o
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25.

34.

5.11 Harmonic Oscillator
26. Show that the energy-level spacing of a harmonic oscillator is in 35,
accord with the correspondence principle by finding the ratio 36

27.

28.

20.

30.

31.

32.

33.

A beam of electrons is incident on a barrier 6.00 eV high and
0.200 nm wide. Use Eq. (5.60) to find the energy they should
have if 1.00 percent of them are to get through the barrier.

AE, /E, between adjacent energy levels and seeing what hap-
pens to this ratio as n — .

‘What bearing would you think the uncertainty principle has on

the existence of the zero-point energy of a harmonic oscillator? 37

In a harmonic oscillator, the particle varies in position from —A to
+A and in momentum from —p, to +po. In such an oscillator,
the standard deviations of x and p are Ax = A/V2 and Ap =
Po/V2. Use this observation to show that the minimum energy of
a harmonic oscillator is thy.

Show that for the n = 0 state of a harmonic oscillator whose
classical amplitude of motion is A, y = 1 at x = A, where y is
the quantity defined by Eq. (5.67).

Find the probability density [tho|* dx at x = 0 and at x = *A of 38.

a harmonic oscillator in its n = 0 state (see Fig. 5.13).

Find the expectation values (x) and {x*) for the first two states
of a harmonic oscillator.

The potential energy of a harmonic oscillator is U = tkx”.
Show that the expectation value (U) of U is Ey/2 when the
oscillator is in the n = 0 state. (This is true of all states of the
harmonic oscillator, in fact.) What is the expectation value of
the oscillator’s kinetic energy? How do these results compare
with the classical values of U and KE?

A pendulum with a 1.00-g bob has a massless string 250 mm
long. The period of the pendulum is 1.00 s. (a) What is its
zero-point energy? Would you expect the zero-point oscillations
to be detectable? (b) The pendulum swings with a very small

Energy

amplitude such that its bob rises a maximum of 1.00 mm
above its equilibrium position. What is the corresponding
quantum number?

Show that the harmonic-oscillator wave function ¢ is a solu-
tion of Schrodinger’s equation.

Repeat Exercise 34 for .

Repeat Exercise 34 for 5.

Appendix: The Tunnel Effect

Consider a beam of particles of kinetic energy E incident on a
potential step at x = 0 that is U high, where E > U (Fig. 5.19).
(a) Explain why the solution De ¥ (in the notation of
appendix) has no physical meaning in this situation, so that D
= 0. (b) Show that the transmission probability here is T =
CC*' JAA*v, = 4k?/(ky, + k)%, () A 1.00-mA beam of elec-
trons moving at 2.00 X 10° m/s enters a region with a sharply
defined boundary in which the electron speeds are reduced to
1.00 X 10° m/s by a difference in potential. Find the transmit-
ted and reflected currents.

An electron and a proton with the same energy E approach a
potential barrier whose height U is greater than E. Do they have
the same probability of getting through? If not, which has the
greater probability?

U _fE‘U

Figure 5.19
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Quantum Theory of
the Hydrogen Atom

The strong magnetic fields associated with sunspots were detected
by means of the Zeeman effect. Sunspots appear dark because
they are cooler than the rest of the solar surface, although quite
hot themselves. The number of spots varies in an 11-year cycle,
and a number of terrestrial phenomena follow this cycle.

6.1 SCHRODINGER’S EQUATION FOR THE 6.7 ELECTRON PROBABILITY DENSITY
HYDROGEN ATOM No definite orbits
Symmetry suggests spherical polar coordinates 6.8 RADIATIVE TRANSITIONS
6.2 SEPARATION OF VARIABLES What happens when an electron goes from one
A differential equation for each variable state to another
6.3 QUANTUM NUMBERS 6.9 SELECTION RULES
Three dimensions, three quantum numbers Some transitions are more likely to occur than
6.4 PRINCIPAL QUANTUM NUMBER others
Quantization of energy 6.10 ZEEMAN EFFECT
6.5 ORBITAL QUANTUM NUMBER How atoms interact with a magnetic field

Quantization of angular-momentum magnitude

6.6 MAGNETIC QUANTUM NUMBER
Quantization of angular-momentum direction

200
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he first problem that Schrodinger tackled with his new wave equation was that

of the hydrogen atom. He found the mathematics heavy going, but was rewarded

by the discovery of how naturally quantization occurs in wave mechanics: “It
has its basis in the requirement that a certain spatial function be finite and single-
valued.” In this chapter we shall see how Schrodinger’s quantum theory of the hydro-
gen atom achieves its results, and how these results can be interpreted in terms of
familiar concepts.

6.1 SCHRODINGER’S EQUATION FOR

THE HYDROGEN ATOM

Symmetry suggests spherical polar coordinates

A hydrogen atom consists of a proton, a particle of electric charge +e, and an elec-
tron, a particle of charge —e which is 1836 times lighter than the proton. For the sake
of convenience we shall consider the proton to be stationary, with the electron mov-
ing about in its vicinity but prevented from escaping by the proton’s electric field. As
in the Bohr theory, the correction for proton motion is simply a matter of replacing the
electron mass m by the reduced mass m’ given by Eq. (4.22).

Schrodinger’s equation for the electron in three dimensions, which is what we must
use for the hydrogen atom, is

%

x> dy

%Y 2m

0%y
2+8_z2+F(E_U>¢:0 6.1)

The potential energy U here is the electric potential energy

Electric potential e’

U=

- 6.2
41reqr 6.2)

energy
of a charge —e when it is the distance r from another charge +e.

Since U is a function of r rather than of x, y, z, we cannot substitute Eq. (6.2)
directly into Eq. (6.1). There are two alternatives. One is to express U in terms of the
cartesian coordinates x, y, z by replacing r by Vx> + y* 4+ 2. The other is to express
Schrodinger’s equation in terms of the spherical polar coordinates r, 8, ¢ defined in
Fig. 6.1. Owing to the symmetry of the physical situation, doing the latter is appro-
priate here, as we shall see in Sec. 6.2.

The spherical polar coordinates r, 8, ¢ of the point P shown in Fig. 6.1 have the
following interpretations:

Spherical
polar
coordinates

r = length of radius vector from origin O to point P

=‘/x2+y2+zz

0 = angle between radius vector and +z axis

= zenith angle

. z

=cos l— =
Vx? + y2 + zz
Z

= cos 1=
;

x =71sin O cos ¢
y=rsinBsin ¢
Z=1cos O

(a)

Z

7

b0

O

(b)

S~
0

(o)

Figure 6.1 (a) Spherical polar co-
ordinates. (b) A line of constant
zenith angle 6 on a sphere is a
circle whose plane is perpendicu-
lar to the z axis. (¢) A line of con-
stant azimuth angle ¢ is a circle
whose plane includes the z axis.
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¢ = angle between the projection of the radius vector in the xy
plane and the +x axis, measured in the direction shown

azimuth angle

= tan’ll
X

On the surface of a sphere whose center is at O, lines of constant zenith angle 6 are
like parallels of latitude on a globe (but we note that the value of 8 of a point is not
the same as its latitude; = 90° at the equator, for instance, but the latitude of the
equator is 0°). Lines of constant azimuth angle ¢ are like meridians of longitude (here
the definitions coincide if the axis of the globe is taken as the +z axis and the +x axis
isat ¢ = 0°).

In spherical polar coordinates Schrodinger’s equation is written

1 0 J 1 0 i)
—2—<r2—lp)+ 5— —(sin(ﬂ—lp)
e or or = sinf 00 a0
1 9% 2m
——— 5+ —(E—-Uy=0 6.3
r* sin?6 a¢* #? ( W 6.3)

Substituting Eq. (6.2) for the potential energy U and multiplying the entire equation
by r* sin’@, we obtain

J J d dJ
Hydrogen atom sze_(rz_lﬂ) + sin0—<sin0—dl>
ar\ ar a0 00
2 2 2 2
L 24, 2mr siwf ( £ +E)¢=o 6.4
ad h 4meqr

Equation (6.4) is the partial differential equation for the wave function ¢ of the elec-
tron in a hydrogen atom. Together with the various conditions ¢ must obey, namely
that ¢ be normalizable and that ¢ and its derivatives be continuous and single-valued
at each point r, 0, ¢, this equation completely specifies the behavior of the electron.
In order to see exactly what this behavior is, we must solve Eq. (6.4) for 4.

When Eq. (6.4) is solved, it turns out that three quantum numbers are required to
describe the electron in a hydrogen atom, in place of the single quantum number of
the Bohr theory. (In Chap. 7 we shall find that a fourth quantum number is needed to
describe the spin of the electron.) In the Bohr model, the electron’s motion is basically
one-dimensional, since the only quantity that varies as it moves is its position in a def-
inite orbit. One quantum number is enough to specify the state of such an electron,
just as one quantum number is enough to specify the state of a particle in a one-
dimensional box.

A particle in a three-dimensional box needs three quantum numbers for its de-
scription, since there are now three sets of boundary conditions that the particle’s wave
function ¢ must obey: ) must be 0 at the walls of the box in the x, y, and z directions
independently. In a hydrogen atom the electron’s motion is restricted by the inverse-
square electric field of the nucleus instead of by the walls of a box, but the electron is

o
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nevertheless free to move in three dimensions, and it is accordingly not surprising that
three quantum numbers govern its wave function also.

6.2 SEPARATION OF VARIABLES

A differential equation for each variable

The advantage of writing Schrodinger’s equation in spherical polar coordinates for the
problem of the hydrogen atom is that in this form it may be separated into three in-
dependent equations, each involving only a single coordinate. Such a separation is
possible here because the wave function ¢(r, 6, ¢) has the form of a product of three
different functions: R(r), which depends on r alone; ©(0) which depends on 6 alone;
and ®(¢), which depends on ¢ alone. Of course, we do not really know that this sep-
aration is possible yet, but we can proceed by assuming that

Hydrogen-atom

P(r, 0, &) = RNHOO)D(P) (6.5)

wave function

and then seeing if it leads to the desired separation. The function R(r) describes how
the wave function ¢ of the electron varies along a radius vector from the nucleus, with
6 and ¢ constant. The function O() describes how s varies with zenith angle 6 along
a meridian on a sphere centered at the nucleus, with r and ¢ constant (Fig. 6.1¢). The
function ®(¢) describes how i varies with azimuth angle ¢ along a parallel on a sphere
centered at the nucleus, with r and 6 constant (Fig. 6.1b).

From Eq. (6.5), which we may write more simply as

y = ROD
we see that

W op R _ og &R

ar or dr
W10 g 0O
a0 00 do
2 2 2
Y _Reaqa :Redqb

a9’ d¢?

The change from partial derivatives to ordinary derivatives can be made because we
are assuming that each of the functions R, O, and ® depends only on the respective
variables r, 6, and ¢.

When we substitute RO® for ¢ in Schrodinger’s equation for the hydrogen atom
and divide the entire equation by RO®, we find that

sin’ d(zdR> siné d({ d@) 1 d*®
_— + sinf—— | +

R dr\ dr 0 do D dg?

N 2mr? sin’6 [ ¢ YE =0 6.6)
h? 4areqr '
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The third term of Eq. (6.6) is a function of azimuth angle ¢ only, whereas the other
terms are functions of r and 6 only.
Let us rearrange Eq. (6.6) to read

sin d [, dR sinf d [ dO
) e ey
N 2mr? sin’6 ( e* N E> _ 1 &*® ©.7)
h? 4eqr ® dop? ’

This equation can be correct only if both sides of it are equal to the same constant, since they
are functions of different variables. As we shall see, it is convenient to call this constant
mj. The differential equation for the function ¢ is therefore

LA
D dp®

6.8)

Next we substitute m;” for the right-hand side of Eq. (6.7), divide the entire equa-
tion by sin®#, and rearrange the various terms, which yields

1 d ( dR 2mr? [ & mf 1 d do
—~— r2—>+ ( +E>= — - —(' 0—) 6.9
R dr\ dr h* \ 4meor sin’6 Osing o\ de (09

Again we have an equation in which different variables appear on each side, requiring
that both sides be equal to the same constant. This constant is called I(I + 1), once
more for reasons that will be apparent later. The equations for the functions © and R
are therefore

m__ 1 i(' eﬁ)—zaﬂ) (6.10)
sin’0  Osind do\C de ‘
1d(, dR) 2mr’ ( e’ )

— (=] + +E|=10+ :
R dr (r dr #* \ 4meor E)=li+ 1D (6.11)

Equations (6.8), (6.10), and (6.11) are usually written

. d*® 5
Equation for ® —d(l)z +mi® =0 (6.12)
Equation 1 d/. dO mi
— 0— |+ |10+ 1) — =0
for © sinf dé (sm i} ( ) sin26 S} (6.13)
Equation 1 d/,drR 2m (e 10+ 1)
el Ll Il sy +E|— R= 1

for R r dr (r dr 7\ 4meor r 0 6.19)

Each of these is an ordinary differential equation for a single function of a single vari-
able. Only the equation for R depends on the potential energy U(r).

o
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We have therefore accomplished our task of simplifying Schrodinger’s equation for
the hydrogen atom, which began as a partial differential equation for a function ¢ of
three variables. The assumption embodied in Eq. (6.5) is evidently valid.

6.3 QUANTUM NUMBERS

Three dimensions, three quantum numbers

The first of these equations, Eq. (6.12), is readily solved. The result is

D(P) = Ac™? (6.15)
As we know, one of the conditions that a wave function—and hence ®, which is 2
a component of the complete wave function y—must obey is that it have a
single value at a given point in space. From Fig. 6.2 it is clear that ¢ and ¢ + 27
both identify the same meridian plane. Hence it must be true that ®(¢) =
d(p + 2m), or

Aelm,(/) — Aelm,(¢+277) o y
0

which can happen only when m; is O or a positive or negative integer (*1, 0+2m
+2, =3, .. .). The constant m; is known as the magnetic quantum number of the

hydrogen atom.
The differential equation for ©(6), Eq. (6.13), has a solution provided that the con-
stant | is an integer equal to or greater than |my|, the absolute value of m;. This Figure 6.2 The angles ¢ and ¢ +

requirement can be expressed as a condition on m; in the form 2m both indentify the same
meridian plane.

m =0,=*1,*2,. .., *I

5

The constant | is known as the orbital quantum number.

The solution of the final equation, Eq. (6.14), for the radial part R(r) of the hydrogen-
atom wave function ¢ also requires that a certain condition be fulfilled. This condition
is that E be positive or have one of the negative values E, (signifying that the electron
is bound to the atom) specified by

me” 1 E;
EnI—W? :F n=1,2,3,,.. (616)

We recognize that this is precisely the same formula for the energy levels of the hydrogen
atom that Bohr obtained.

Another condition that must be obeyed in order to solve Eq. (6.14) is that n, known
as the principal quantum number, must be equal to or greater than [ + 1. This
requirement may be expressed as a condition on [ in the form

1=0,1,2,...,(n—1)

o



bei48482 ch06 1/23/02 8:16 AM Page 206

206

Chapter Six

o

Hence we may tabulate the three quantum numbers n, I, and m together with their

permissible values as follows:

Principal quantum number n=123, ...

Orbital quantum number !

Magnetic quantum number

It is worth noting again the natural way in which quantum numbers appear in quantum-

0,1,2,...,
=0, +1,*2,...,

n—D

*1

(6.17)

mechanical theories of particles trapped in a particular region of space.

To exhibit the dependence of R, O, and ® upon the quantum numbers n, [, m, we

may write for the electron wave functions of the hydrogen atom

The wave functions R, O, and ® together with ¢ are given in Table 6.1 for n = 1, 2,

and 3.

(1[/ = Rnlelm,q)m,

(6.18)

Table 6.1 Normalized Wave Functions of the Hydrogen Atom for n = 1, 2, and 3*
n | m D(e) 6(0) R(r) w(r, 0, ¢)
1 1 _ 1 _
1 0 0 — — —32/26 /o — e
V2r V2 as Va all?
1 1 1 1
>0 0o — L 5= e (2 _ r>er/2aO
Vam V2 N2a ad? ao N 27 adl? ao
1 Ve 1 _ 1
2 1 0o — —cos 0 L S e —1/24 cos 6
V2 2 2Ve ad/* a0 4V2 3/2 ao
1 ., V3 1 , N
2 1 =1 e Zsing = T era ! “1/240 gin § =i
\V2m 2V6 al? a0 N a? a3/2 ao
2
1 1 o173 1 AT
30 0 9 — — 27—18—+2 /e (27—18r+ 2)6 /3%
Vam V2 81\/_ a? a5 81V3m a3/? a gl
1 V2 .
3 1 0 E— ——cos 6 L Le_r/;‘"““ 6 — L 7_efr/3aD cos 0
V2w 2 81\/8 a3/2 ao ) aq 81V al/” do / do
31 =*1 L= ﬁsin 0 SN AP ! 6 — —— | e asin g e
\Vam 2 81\/_ a3/2 do ) do 81V alf” 32 do ) do
1 V10 4 r o 1 ,
3 2 0 @ — 2P (3 cos20 — 1) e Le 7% (3 cos?f — 1)
V2w 4 81V30 a”z a; 81Vem al/> as
1 i 4 S 1 2 "
3 2 +1 671¢ sin 6 cos 0 1—26 /34 _ r—ze "/3aq sin 6 cos 6 67@
\V2m 81V30 af/? a5 81V ad/? ag
1 oy AV 4 2 _ 1 2 s
32 *2 et 15 sin’6 S A I e Pagin?g t2@
\Vam 4 81V30 ay/? @ 162V a)? e

*The quantity ay = 4mefi*/me” = 5.292 X 10~ "' m is equal to the radius of the innermost Bohr orbit.
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Example 6.1

Find the ground-state electron energy E; by substituting the radial wave function R that corre-
sponds ton = 1,1 = 0 into Eq. (6.14).

Solution

From Table 6.1 we see that R = (2/ad/?)e "/%. Hence

R[22\
o ( al/? >e "
1 d dR 2 4
d P dr 2_):< 7—) o
an rdr (T dr al/? al?r ¢

Substituting in Eq. (6.14) with E = E; and | = 0 gives

( 2 . 4mE, >+< me? 4 )1 ~rfaq —
- )= =
ay? #ra)? meohal? al?* ) r

Each parenthesis must equal O for the entire equation to equal 0. For the second parenthesis
this gives

me” 4
el @
_ 4qreh?
do = mez

which is the Bohr radius ay = r, given by Eq. (4.13)—we recall that i = h/2. For the first
parenthesis,

2 4mE, _
a/? 22
E = — H ___ me
2maj 32 edh’

which agrees with Eq. (6.16).

6.4 PRINCIPAL QUANTUM NUMBER

Quantization of energy

It is interesting to consider what the hydrogen-atom quantum numbers signify in terms
of the classical model of the atom. This model, as we saw in Chap. 4, corresponds
exactly to planetary motion in the solar system except that the inverse-square force
holding the electron to the nucleus is electrical rather than gravitational. Two quanti-
ties are conserved—that is, maintain a constant value at all times—in planetary mo-
tion: the scalar total energy and the vector angular momentum of each planet.
Classically the total energy can have any value whatever, but it must, of course, be
negative if the planet is to be trapped permanently in the solar system. In the quan-
tum theory of the hydrogen atom the electron energy is also a constant, but while it
may have any positive value (corresponding to an ionized atom), the only negative

o
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values the electron can have are specified by the formula E, = E,/n*. The quantiza-
tion of electron energy in the hydrogen atom is therefore described by the principal
quantum number n.

The theory of planetary motion can also be worked out from Schrodinger’s equa-
tion, and it yields a similar energy restriction. However, the total quantum number n
for any of the planets turns out to be so immense (see Exercise 11 of Chap. 4) that
the separation of permitted levels is far too small to be observable. For this reason clas-
sical physics provides an adequate description of planetary motion but fails within the
atom.

6.5 ORBITAL QUANTUM NUMBER

Quantization of angular-momentum magnitude

The interpretation of the orbital quantum number [ is less obvious. Let us look at the
differential equation for the radial part R(r) of the wave function

ii(2d—R>+ (& g MED g (6.14)
¥ dr ' dr 12\ 4meor 7 '

This equation is solely concerned with the radial aspect of the electron’s motion, that
is, its motion toward or away from the nucleus. However, we notice the presence of
E, the total electron energy, in the equation. The total energy E includes the electron’s
kinetic energy of orbital motion, which should have nothing to do with its radial motion.

This contradiction may be removed by the following argument. The kinetic energy
KE of the electron has two parts, KE, i due to its motion toward or away from the
nucleus, and KE ;.1 due to its motion around the nucleus. The potential energy U of
the electron is the electric energy

U= (6.2)

Hence the total energy of the electron is

2
(4

E = KEagiat T KEoital T U = KE agial T KEorbiw —
4mreqr

Inserting this expression for E in Eq. (6.14) we obtain, after a slight rearrangement,

L4 ( z—dR) L [KE + KE 4D 1)] R=0  (6.19)
r i ital — = .
rZ dr dr ﬁz radial orbital 2mr2

If the last two terms in the square brackets of this equation cancel each other out, we
shall have what we want: a differential equation for R(r) that involves functions of the
radius vector r exclusively.

We therefore require that

R0+ 1)
KEorbital = > (6.20)
2mr

o
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Since the orbital kinetic energy of the electron and the magnitude of its angular
momentum are respectively

1
— 2 —
KEorbital = T MUgrbital L= MVUqrbitall

2
we may write for the orbital kinetic energy

LZ
KEorpital = Smr?

Hence, from Eq. (6.20),

12 B0+ 1)
> = 2

2mr 2mr

Electron angular
momentum

L=VII+ Dk (6.21)

With the orbital quantum number [ restricted to the values
1=0,1,2,...,n— 1

The electron can have only the angular momenta L specified by Eq. (6.21), Like to-
tal energy E, angular momentum is both conserved and quantized. The quantity

h
h=—=1054%X10"*]-5s
2T

is thus the natural unit of angular momentum.

In macroscopic planetary motion, as in the case of energy, the quantum number
describing angular momentum is so large that the separation into discrete angular
momentum states cannot be experimentally observed. For example, an electron (or,
for that matter, any other body) whose orbital quantum number is 2 has the angular
momentum

L=V2Q2 + D% =Vo#h
=26X10"]-5s

By contrast the orbital angular momentum of the earth is 2.7 X 10 J - s!

Designation of Angular-Momentum States

It is customary to specify electron angular-momentum states by a letter, with s corre-
sponding to | = 0, p to [ = 1, and so on, according to the following scheme:

Angular- I=0 1 2 3 4 5 6...
momentum states s pdf g hoi..

o
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Table 6.2 Atomic Electron States

/=0 =1 =2 =3 =4 =5
n=1 Is
n=2 2s 2p
n=23 3s 3p 3d
n=4 4s 4p 4d 4f
n=>5 5s 5p 5d 5f 5¢
n==6 65 6p 6d 6f 6g 6h
This peculiar code originated in the empirical classification of spectra into series called
sharp, principal, diffuse, and fundamental which occurred before the theory of the
atom was developed. Thus an s state is one with no angular momentum, a p state has
the angular moment V2%, and so forth.

The combination of the total quantum number with the letter that represents orbital
angular momentum provides a convenient and widely used notation for atomic elec-
tron states. In this notation a state in which n = 2,1 = 0 is a 2s state, for example,
and one in which n = 4, [ = 2 is a 4d state. Table 6.2 gives the designations of electron
states in an atom through n = 6,1 = 5.

6.6 MAGNETIC QUANTUM NUMBER
Quantization of angular-momentum direction
Thumb in L The orbital quantum number | determines the magnitude L of the electron’s angular
direction momentum L. However, angular momentum, like linear momentum, is a vector quan-
of angular- tity, and to describe it completely means that its direction be specified as well as its
momentum magnitude. (The vector L, we recall, is perpendicular to the plane in which the rota-
vector

Fingers of right hand in
direction of rotational motion

Figure 6.3 The right-hand rule
for angular momentum.

tional motion takes place, and its sense is given by the right-hand rule: When the
fingers of the right hand point in the direction of the motion, the thumb is in the
direction of L. This rule is illustrated in Fig. 6.3.)

What possible significance can a direction in space have for a hydrogen atom? The
answer becomes clear when we reflect that an electron revolving about a nucleus is a
minute current loop and has a magnetic field like that of a magnetic dipole. Hence an
atomic electron that possesses angular momentum interacts with an external magnetic
field B. The magnetic quantum number m; specifies the direction of L by determining
the component of L in the field direction. This phenomenon is often referred to as
space quantization.

If we let the magnetic-field direction be parallel to the z axis, the component of L
in this direction is

Space quantization L, =mh m=0,*x1,x2, ..., =*I (6.22)

The possible values of m, for a given value of | range from +I through 0 to —I, so
that the number of possible orientations of the angular-momentum vector L in a
magnetic field is 21 + 1. When | = 0, L, can have only the single value of 0; when
| =1,L, may be #, 0, or —f; when | = 2, L, may be 24, #, 0, —f, or —2f; and
so on.
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21

—2h L=vII+ Dh
=v6h

Figure 6.4 Space quantization of orbital angular momentum. Here the orbital quantum number is
I = 2 and there are accordingly 21 + 1 = 5 possible values of the magnetic quantum number m;, with
each value corresponding to a different orientation relative to the z axis.

The space quantization of the orbital angular momentum of the hydrogen atom is
show in Fig. 6.4. An atom with a certain value of m; will assume the corresponding
orientation of its angular momentum L relative to an external magnetic field if it finds
itself in such a field. We note that L can never be aligned exactly parallel or antiparallel
to B because L, is always smaller than the magnitude VI(l + 1)% of the total angular
momentum.

In the absence of an external magnetic field, the direction of the z axis is arbitrary.
What must be true is that the component of L in any direction we choose is mfi. What
an external magnetic field does is to provide an experimentally meaningful reference
direction. A magnetic field is not the only such reference direction possible. For
example, the line between the two H atoms in the hydrogen molecule H, is just as
experimentally meaningful as the direction of a magnetic field, and along this line the
components of the angular momenta of the H atoms are determined by their m; values.

The Uncertainty Principle and Space Quantization

Why is only one component of L quantized? The answer is related to the fact that L
can never point in any specific direction but instead is somewhere on a cone in space
such that its projection L, is mfi. Were this not so, the uncertainty principle would be
violated. If L were fixed in space, so that L, and L, as well as L, had definite values,
the electron would be confined to a definite plane. For instance, if L were in the
z direction, the electron would have to be in the xy plane at all times (Fig. 6.5a). This
can occur only if the electron’s momentum component p, in the z direction is infinitely
uncertain, which of course is impossible if it is to be part of a hydrogen atom.
However, since in reality only one component L, of L together with its magnitude
L have definite values and |L| > |L.|, the electron is not limited to a single plane
(Fig.6.5b). Thus there is a built-in uncertainty in the electrons z coordinate. The

o

Az=0

(@)

(b)

Figure 6.5 The uncertainty prin-
ciple prohibits the angular mo-
mentum vector L from having a
definite direction in space.
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Figure 6.6 The angular momen-
tum vector L precesses constantly
about the z axis.

Bohr
electron
orbit

Figure 6.7 The Bohr model of the
hydrogen atom in a spherical po-
lar coordinate system.

direction of L is not fixed, as in Fig. 6.6, and so the average values of L, and L, are 0,
although L, always has the specific value m.

6.7 ELECTRON PROBABILITY DENSITY

No definite orbits

In Bohr’s model of the hydrogen atom the electron is visualized as revolving around
the nucleus in a circular path. This model is pictured in a spherical polar coordinate
system in Fig. 6.7. It implies that if a suitable experiment were performed, the electron
would always be found a distance of r = n’a, (where n is the quantum number of the
orbit and ay is the radius of the innermost orbit) from the nucleus and in the equato-
rial plane # = 90°, while its azimuth angle ¢ changes with time.

The quantum theory of the hydrogen atom modifies the Bohr model in two ways:

1 No definite values for r, 6, or ¢ can be given, but only the relative probabilities for
finding the electron at various locations. This imprecision is, of course, a consequence
of the wave nature of the electron.

2 We cannot even think of the electron as moving around the nucleus in any
conventional sense since the probability density |f|* is independent of time and varies
from place to place.

The probability density [f|* that corresponds to the electron wave function ¢y = RO®
in the hydrogen atom is

[W* = [RPOF|®[* (6.23)

As usual the square of any function that is complex is to be replaced by the product
of the function and its complex conjugate. (We recall that the complex conjugate of a
function is formed by changing i to —i whenever it appears.)

From Eq. (6.15) we see that the azimuthal wave function is given by

D(p) = Ae™?
The azimuthal probability density |®|* is therefore
|¢)|2 = PP = Aze—imld)eim,q[) — AZ 0 _ AZ

The likelihood of finding the electron at a particular azimuth angle ¢ is a constant that
does not depend upon ¢ at all. The electron’s probability density is symmetrical about
the z axis regardless of the quantum state it is in, and the electron has the same chance
of being found at one angle ¢ as at another.

The radial part R of the wave function, in contrast to @, not only varies with r but
does so in a different way for each combination of quantum numbers n and . Figure 6.8
contains graphs of R versus r for 1s, 2s, 2p, 3s, 3p, and 3d states of the hydrogen atom.
Evidently R is a maximum at + = O—that is, at the nucleus itself—for all s states, which
correspond to L = 0 since | = 0 for such states. The value of R is zero at r = 0 for
states that possess angular momentum.

o
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Figure 6.8 The variation with distance from the nucleus of the radial part of the electron wave function

in hydrogen for various quantum states. The quantity a, = 4mesh*/me? = 0.053 nm is the radius of
the first Bohr orbit.

Probability of Finding the Electron
The probability density of the electron at the point , 8, ¢ is proportional to |1|*, but

the actual probability of finding it in the infinitesimal volume element dV there is [i]* dV.
In spherical polar coordinates (Fig. 6.9),

dV = (dr) (r d@) (r sin 0 dd¢)
Volume element = r*sin O dr dO d¢ (6.24)

Figure 6.9 Volume element dV in spherical polar coordinates.
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dr

Nucleus

Figure 6.10 The probability of
finding the electron in a hydrogen
atom in the spherical shell be-
tween r and r + dr from the nu-
cleus is P(r) dr.

P(r)dr = r2Ry|2dr

0 5ag 10a, 15a, 20ag 25a,

r—>

Figure 6.11 The probability of finding the electron in a hydrogen atom at a distance between r and
r + dr from the nucleus for the quantum states of Fig. 6.8.

As O and ® are normalized functions, the actual probability P(r) dr of finding the elec-
tron in a hydrogen atom somewhere in the spherical shell between r and r + dr from
the nucleus (Fig. 6.10) is

T 27T
Pw) dr = PIRP dr [ |OP sin 6 do [ [ do
0 0
= r*|R]* dr (6.25)

Equation (6.25) is plotted in Fig. 6.11 for the same states whose radial functions R
were shown in Fig. 6.8. The curves are quite different as a rule. We note immediately
that P is not a maximum at the nucleus for s states, as R itself is, but has its maximum
a definite distance from it.

The most probable value of r for a 1s electron turns out to be exactly ao, the or-
bital radius of a ground-state electron in the Bohr model. However, the average value
of r for a 1s electron is 1.5a,, which is puzzling at first sight because the energy lev-
els are the same in both the quantum-mechanical and Bohr atomic models. This
apparent discrepancy is removed when we recall that the electron energy depends
upon 1/r rather than upon r directly, and the average value of 1/r for a 1s electron
is exactly 1/ao.

Example 6.2

Verify that the average value of 1/r for a 1s electron in the hydrogen atom is 1/d.
Solution

The wave function of a 1s electron is, from Table 6.1,

_ e_V/ao

V= \/Eaé/z
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Since dV = r? sinf dr df d¢ we have for the expectation value of 1/r

1 (1
=L we
r 0 r
1 oo T 2
=— f re” "% dr f sinf df f dep
mdy Jo 0 0

The integrals have the respective values

o0 2 * 2
f refzr/ao dr = [@efzr/ao _ Le*Zr/ag] — 4o
o 4 2 0 4

J’ sin 0 d = [—cos 0] = 2
0

2
J; dp = (9137 =27

>
Hence <l> = <%)<&)(2)(27ﬂ - L
r Tdo 4 do

Example 6.3

How much more likely is a 1s electron in a hydrogen atom to be at the distance ay from the
nucleus than at the distance ao/2?

Solution

According to Table 6.1 the radial wave function for a 1s electron is

2
e

—r/a,

R =

e

From Eq. (6.25) we have for the ratio of the probabilities that an electron in a hydrogen atom
be at the distances r; and r, from the nucleus

P ARE e
AR T Re
Here r; = ao and r, = ay/2, so
2 —2
P, (ap)“e _
o = =4e =147

P./2 a (ap/2)%e !
The electron is 47 percent more likely to be g, from the nucleus than half that distance (see
Fig. 6.11).
Angular Variation of Probability Density
The function © varies with zenith angle 6 for all quantum numbers | and m; except

1 = m; = 0, which are s states. The value of |O]* for an s state is a constant; 2, in fact.
This means that since |®|” is also a constant, the electron probability density [i]? is

o



bei48482 ch06 1/23/02 8:16 AM Page 216 $

216 Chapter Six

spherically symmetric: it has the same value at a given r in all directions. Electrons in
other states, however, do have angular preferences, sometimes quite complicated ones.
This can be seen in Fig. 6.12, in which electron probability densities as functions of r

Figure 6.12 Photographic representation of the electron probability-density distribution > for several energy states. These
may be regarded as sectional views of the distribution in a plane containing the polar axis, which is vertical and in the plane
of the paper. The scale varies from figure to figure.
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and 6 are shown for several atomic states. (The quantity plotted is |1

2 not [* dV)

Since [i§]* is independent of ¢, we can obtain a three-dimensional picture of |y|* by
rotating a particular representation about a vertical axis. When this is done, we see that
the probability densities for s states are spherically symmetric whereas those for other
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states are not. The pronounced lobe patterns characteristic of many of the states turn
out to be significant in chemistry since these patterns help determine the manner in
which adjacent atoms in a molecule interact.

A look at Figure 6.12 also reveals quantum-mechanical states that resemble these
of the Bohr model. The electron probability-density distribution for a 2p state with
m; = *1, for instance, is like a doughnut in the equatorial plane centered at the nu-
cleus. Calculation shows the most probable distance of such an electron from the nu-
cleus to be 4ao—precisely the radius of the Bohr orbit for the same principal quantum
number n = 2. Similar correspondences exist for 3d states with m; = =2, 4f states
with m; = *3, and so on. In each of these cases the angular momentum is the high-
est possible for that energy level, and the angular-momentum vector is as near the z axis
as possible so that the probability density is close to the equatorial plane. Thus the
Bohr model predicts the most probable location of the electron in one of the several
possible states in each energy level.

6.8 RADIATIVE TRANSITIONS

What happens when an electron goes from one state to another

In formulating his theory of the hydrogen atom, Bohr was obliged to postulate that the
frequency v of the radiation emitted by an atom dropping from an energy level E,, to
a lower level E,, is

_ E, — E,
h

It is not hard to show that this relationship arises naturally in quantum mechanics.
For simplicity we shall consider a system in which an electron moves only in the
x direction.

From Sec. 5.7 we know that the time-dependent wave function ¥, of an electron
in a state of quantum number n and energy E, is the product of a time-independent
wave function ¢, and a time-varying function whose frequency is

En
Vy, = ——
h

Hence W, = e WEME P = e TR/ (6.26)

The expectation value (x) of the position of such an electron is

() = j XV, dx = f el (/W UEIE g

= f by dx 6.27)
The expectation value (x) is constant in time since ¢, and ¢/ are, by definition, functions
of position only. The electron does not oscillate, and no radiation occurs. Thus quan-
tum mechanics predicts that a system in a specific quantum state does not radiate, as
observed.

o
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We next consider an electron that shifts from one energy state to another. A system
might be in its ground state n when an excitation process of some kind (a beam of
radiation, say, or collisions with other particles) begins to act upon it. Subsequently
we find that the system emits radiation corresponding to a transition from an excited
state of energy E,, to the ground state. We conclude that at some time during the
intervening period the system existed in the state m. What is the frequency of the
radiation?

The wave function W of an electron that can exist in both states n and m is

v =qaV¥, +bV¥, (6.28)

where a*a is the probability that the electron is in state n and b*b the probability that
it is in state m. Of course, it must always be true that a*a + b*b = 1. Initially a = 1
and b = 0; when the electron is in the excited state, a = 0 and b = 1; and ultimately
a = 1and b = 0 once more. While the electron is in either state, there is no radiation,
but when it is in the midst of the transition from m to n (that is, when both a and b
have nonvanishing values), electromagnetic waves are produced.

The expectation value (x) that corresponds to the composite wave function of
Eq. (6.28) is

{x) = f x(a*W% + b*WE)(aW, + bW, dx

= f x(@WEW, + b*aWi W, + a*bWiV, + WiV, ) dx  (6.29)

Here, as before, we let a*a = a* and b*b = b*. The first and last integrals do not vary
with time, so the second and third integrals are the only ones able to contribute to a
time variation in (x).

With the help of Egs. (6.26) we expand Eq. (6.29) to give

o0

X(IJ;"HEJr(iE"’/h)t l!fnef(iE“/ﬁ)t dx

(x) = azf s, dx + b*af

0

+ a*b f xipe PUES/ My o~ GBI gy + b2 f Pt dx (6.30)

Because

¢ = cos O +isin @ and e ¥ =cos @ —isin6

the two middle terms of Eq. (6.30), which are functions of time, become

cos<%)t f xIb*agab, + a*byi, ] dx

+ i sin (%)J xlb*apa, — a*byp,) dx - (6.31)

The real part of this result varies with time as

Em - En Em B EH
cos (T)t = cos 2W<T)t = cos 2wyt (6.32)

o
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The electron’s position therefore oscillates sinusoidally at the frequency

E,—E
v= ”‘T (6.33)

When the electron is in state n or state m the expectation value of the electron’s
position is constant. When the electron is undergoing a transition between these states,
its position oscillates with the frequency v. Such an electron, of course, is like an elec-
tric dipole and radiates electromagnetic waves of the same frequency ». This result is
the same as that postulated by Bohr and verified by experiment. As we have seen, quan-
tum mechanics gives Eq. (6.33) without the need for any special assumptions.

6.9 SELECTION RULES

Some transitions are more likely to occur than others

We did not have to know the values of the probabilities a and b as functions of time,
nor the electron wave functions ¢, and ¢,,, in order to find the frequency ». We need
these quantities, however, to calculate the chance a given transition will occur. The
general condition necessary for an atom in an excited state to radiate is that the integral

f Xy, dx (6.34)

not be zero, since the intensity of the radiation is proportional to it. Transitions for
which this integral is finite are called allowed transitions, while those for which it is
zero are called forbidden transitions.

In the case of the hydrogen atom, three quantum numbers are needed to specify
the initial and final states involved in a radiative transition. If the principal, orbital,
and magnetic quantum numbers of the initial state are n’, I, mj, respectively, and those
of the final state are n, [, m;, and u represents either the x, y, or z coordinate, the con-
dition for an allowed transition is

Allowed transitions f U i 17y AV # O (6.35)
where the integral is now over all space. When u is taken as x, for example, the radiation
would be that produced by a dipole antenna lying on the x axis.

Since the wave functions s, ;,,, for the hydrogen atom are known, Eq. (6.35) can
be evaluated for u = x, u = y, and u = z for all pairs of states differing in one or
more quantum numbers. When this is done, it is found that the only transitions be-
tween states of different n that can occur are those in which the orbital quantum num-
ber I changes by +1 or —1 and the magnetic quantum number m; does not change
or changes by +1 or —1. That is, the condition for an allowed transition is that

Al==*1 (6.36)
Am =0, *1 (6.37)

Selection rules

The change in total quantum number n is not restricted. Equations (6.36) and (6.37)
are known as the selection rules for allowed transitions (Fig. 6.13).

o



bei48482 ch06 1/23/02 8:16 AM Page 221 $

Quantum Theory of the Hydrogen Atom 221
Excitation
energy, eV 1=0 I=1 =2 1=3
136 T1n=oo
n=4 I
n=3
109 [n=2
5 -
0+—n=1

Figure 6.13 Energy-level diagram for hydrogen showing transitions allowed by the selection rule
Al = *1. In this diagram the vertical axis represents excitation energy above the ground state.

The selection rule requiring that I change by =1 if an atom is to radiate means that
an emitted photon carries off the angular momentum *# equal to the difference
between the angular momenta of the atom’ initial and final states. The classical ana-
log of a photon with angular momentum =7 is a left or right circularly polarized elec-
tromagnetic wave, so this notion is not unique with quantum theory.

Quantum Electrodynamics

he preceding analysis of radiative transitions in an atom is based on a mixture of classical
and quantum concepts. As we have seen, the expectation value of the position of an atomic
electron oscillates at the frequency v of Eq. (6.33) while passing from an initial eigenstate to
another one of lower energy. Classically such an oscillating charge gives rise to electromagnetic
waves of the same frequency v, and indeed the observed radiation has this frequency. However,
classical concepts are not always reliable guides to atomic processes, and a deeper treatment is
required. Such a treatment, called quantum electrodynamics, shows that the radiation emitted
during a transition from state m to state n is in the form of a single photon.
In addition, quantum electrodynamics provides an explanation for the mechanism that causes
the “spontaneous” transition of an atom from one energy state to a lower one. All electric and

o
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Figure 6.14 Two parallel metal plates exhibit the Casimir effect even in empty space. Virtual photons
of any wavelength can strike the plates from the outside, but photons trapped between the plates can
have only certain wavelengths. The resulting imbalance produces inward forces on the plates.

magnetic fields turn out to fluctuate constantly about the E and B that would be expected on
purely classical grounds. Such fluctuations occur even when electromagnetic waves are absent
and when, classically, E = B = 0. It is these fluctuations (often called “vacuum fluctuations” and
analogous to the zero-point vibrations of a harmonic oscillator) that induce the apparently
spontaneous emission of photons by atoms in excited states.

The vacuum fluctuations can be regarded as a sea of “virtual” photons so short-lived
that they do not violate energy conservation because of the uncertainty principle in the form
AE At = fi/2. These photons, among other things, give rise to the Casimir effect (Fig. 6.14),
which was proposed by the Dutch physicist Hendrik Casimir in 1948. Only virtual photons with
certain specific wavelengths can be reflected back-and-forth between two parallel metal plates,
whereas outside the plates virtual photons of all wavelengths can be reflected by them. The re-
sult is a very small but detectable force that tends to push the plates together.

Can the Casimir effect be used as a source of energy? If the parallel plates are released, they
would fly together and thereby pick up kinetic energy from the vacuum fluctuations that would
become heat if the plates were allowed to collide. Unfortunately not much energy is available in

this way: about half a nanojoule (0.5 X 1077 J) per square meter of plate area.

Richard P Feynman (1918-
1988) was born in Far Rockaway,
a suburb of New York City, and
studied at the Massachusetts
Institute of Technology and Prince-
ton. After receiving his Ph.D. in
: 1942, he helped develop the
N‘\ atomic bomb at Los Alamos, New

Mexico, along with many other
young physicists. When the war
was over, he went first to Cornell
and, in 1951, to the California Institute of Technology.

In the late 1940s Feynman made important contributions
to quantum electrodynamics, the relativistic quantum theory
that describes the electromagnetic interaction between charged
particles. A serious problem in this theory is the presence of in-
finite quantities in its results, which in the procedure called
renormalization are removed by subtracting other infinite quan-
tities. Although this step is mathematically dubious and still
leaves some physicists uneasy, the final theory has proven

extraordinarily accurate in all its predictions. An unrepentant
Feynman remarked, “It is not philosophy we are after, but the
behavior of real things,” and compared the agreement between
quantum electrodynamics and experiment to finding the dis-
tance from New York to Los Angeles to within the thickness of
a single hair.

Feynman articulated the feelings of many physicists when
he wrote: “We have always had a great deal of difficulty
understanding the world view that quantum mechanics
represents . . . I cannot define the real problem, therefore I
suspect there’s no real problem, but I'm not sure there’s no
real problem.”

In 1965 Feynman received the Nobel Prize together with two
other pioneers in quantum electrodynamics, Julian Schwinger,
also an American, and Sin-Itiro Tomonaga, a Japanese. Feynman
made other major contributions to physics, notably in explain-
ing the behavior of liquid helium near absolute zero and in
elementary particle theory. His three-volume Lectutes on Physics
has stimulated and enlightened both students and teachers since
its publication in 1963.
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6.10 ZEEMAN EFFECT

How atoms interact with a magnetic field

Y

In an external magnetic field B, a magnetic dipole has an amount of potential energy

U,, that depends upon both the magnitude w of its magnetic moment and the orien-

tation of this moment with respect to the field (Fig. 6.15). L
The torque 7 on a magnetic dipole in a magnetic field of flux density B is /

7= uBsin 0 /@

/7

Y

Y& Y

>
S

where 0 is the angle between w and B. The torque is a maximum when the dipole is
perpendicular to the field, and zero when it is parallel or antiparallel to it. To calcu-  Figyre6.15 o magnetic dipole of
late the potential energy U,, we must first establish a reference configuration in which  moment g at the angle 6 relative
U,, is zero by definition. (Since only changes in potential energy are ever experimen- to a magnetic field B.

tally observed, the choice of a reference configuration is arbitrary.) It is convenient to

set Uy, = 0 when 6 = 7r/2 = 90° that is, when u is perpendicular to B. The poten-

tial energy at any other orientation of u is equal to the external work that must be

done to rotate the dipole from 6, = /2 to the angle 6 that corresponds to that

orientation. Hence

0 0
f 7d0=,LLBj sin6 df
2

U, =
/2 w/
= —uB cos 0 (6.38)
When p points in the same direction as B, then U,, = —uB, its minimum value. This

follows from the fact that a magnetic dipole tends to align itself with an external mag-
netic field.

The magnetic moment of the orbital electron in a hydrogen atom depends on its
angular momentum L. Hence both the magnitude of L and its orientation with respect
to the field determine the extent of the magnetic contribution to the total energy of
the atom when it is in a magnetic field. The magnetic moment of a current loop has
the magnitude

n=1IA
where [ is the current and A the area it encloses. An electron that makes f rev/s in a

circular orbit of radius r is equivalent to a current of —ef (since the electronic charge
is —e), and its magnetic moment is therefore

w= —efmr’
Because the linear speed v of the electron is 277fr its angular momentum is
L = mur = 2amfr*

Comparing the formulas for magnetic moment w and angular momentum L shows

that
Electron magnetic _ (e L 6.39)
moment K= (Zm) ®.
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(@) (b)

Figure 6.16 (a) Magnetic moment of a current loop enclosing area A. (b) Magnetic moment of an
orbiting electron of angular momentum L.

for an orbital electron (Fig. 6.16). The quantity (—e/2m), which involves only the
charge and mass of the electron, is called its gyromagnetic ratio. The minus sign means
that u is in the opposite direction to L and is a consequence of the negative charge of
the electron. While the above expression for the magnetic moment of an orbital electron
has been obtained by a classical calculation, quantum mechanics yields the same result.
The magnetic potential energy of an atom in a magnetic field is therefore

4
U, = (—)LB cos 6 (6.40)
2m

which depends on both B and 6.

Magnetic Energy
From Fig. 6.4 we see that the angle 6 between L and the z direction can have only the
values specified by

m
I+ 1)

cos O =

with the permitted values of L specified by
L=VIIl+ DA

To find the magnetic energy that an atom of magnetic quantum number m; has when it is
in a magnetic field B, we put the above expressions for cos 6 and L in Eq. (6.40) to give

T
Magnetic energy Un=m (;—m)B (6.41)

The quantity efi/2m is called the Bohr magneton:

Bohr eh

magneton BT 50 T 9274 X 107%* J/T = 5.788 X 107 eV/T (6.42)

In a magnetic field, then, the energy of a particular atomic state depends on the value
of m; as well as on that of n. A state of total quantum number n breaks up into several
substates when the atom is in a magnetic field, and their energies are slightly more or
slightly less than the energy of the state in the absence of the field. This phenomenon

o
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leads to a “splitting” of individual spectral lines into separate lines when atoms radiate
in a magnetic field. The spacing of the lines depends on the magnitude of the field.

The splitting of spectral lines by a magnetic field is called the Zeeman effect after
the Dutch physicist Pieter Zeeman, who first observed it in 1896. The Zeeman effect
is a vivid confirmation of space quantization.

Because m; can have the 2 + 1 values of +I through 0 to —1, a state of given orbital
quantum number [ is split into 2] + 1 substates that differ in energy by uzB when
the atom is in a magnetic field. However, because changes in m; are restricted to
Am; = 0, =1, we expect a spectral line from a transition between two states of differ-
ent [ to be split into only three components, as shown in Fig. 6.17. The normal Zeeman
effect consists of the splitting of a spectral line of frequency v, into three components
whose frequencies are

B e
VIZVO_MBI = Vo~ 47TmB
Normal Zeeman vy = vy (6.43)
effect
e
V3=VO+[.LBI =vy+ 477_mB

In Chap. 7 we will see that this is not the whole story of the Zeeman effect.

No magnetic field Magnetic field present

mp = 2

mp; = 1
1=2 mp; = 0

mp; = -1

mp = -2

)| | | ] ¢
(hvo 2m> § - 7(}11/0 + Zm)
hy
Imm==c hy,

mp = 1
I=1 mp = 0

mp=-—

N~ e
Amy = +1 Am)=-1
Aml =0

_eB_ _eB_
Yo (V B 4nm> 2 (V°+ 4Tcm>

Spectrum without Spectrum with magnetic
magnetic field field present

Figure 6.17 In the normal Zeeman effect a spectral line of frequency vy is split into three components
when the radiating atoms are in a magnetic field of magnitude B. One component is v, and the others
are less than and greater than v, by eB/47m. There are only three components because of the selec-
tion rule Am; = 0, £1.
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Example 6.4

A sample of a certain element is placed in a 0.300-T magnetic field and suitably excited. How
far apart are the Zeeman components of the 450-nm spectral line of this element?

Solution

The separation of the Zeeman components is

B
Av = ¢
4mm
Since v = ¢/, dv = —c d\/\?, and so, disregarding the minus sign,
AA BA?
AN = v_ ¢
c 47mmc

(1.60 X 102 ©)(0.300 T)(4.50 X 10" m)?
(4m)(9.11 X 10! kg)(3.00 X 10° m/s)
2.83 X 107"? m = 0.00283 nm

To strive, to seek, to find, and not to yield. —Alfred, Lord Tennyson

6.3 Quantum Numbers Verify that this is true for the azimuthal wave functions ®,, of

the hydrogen atom by calculating
1. Why is it natural that three quantum numbers are needed to

describe an atomic electron (apart from electron spin)?

2T
2. Show that J; D7, Dy dep
V10 ’
0.0(0) = TG cos2f — 1) for m; # mj.
6. The azimuthal wave function for the hydrogen atom is
is a solution of Eq. (6.13) and that it is normalized. D(P) = Ac™®
3. Show that

Show that the value of the normalization constant A is 1/V 27

by integrating |®|* over all angles from 0 to 2.

z T,
Ryp(r) = eV /a0
do

is a solution of Eq. (6.14) and that it is normalized. 6.4 Principal Quantum Number

4. Show that 6.5 Orbital Quantum Number
Ro(r) = 1 I/ 7. Compare the angular momentum of a ground-state electron in
2! 2V6a3/? do the Bohr model of the hydrogen atom with its value in the

quantum theory.

i lution of Eq. (6.1 hat it i lized.
is a solution of Eq. (6.14) and that it is normalized 8. (@) What is Schrodinger’s equation for a particle of mass m

5. In Exercise 12 of Chap. 5 it was stated that an important that is constrained to move in a circle of radius R, so that ¢
property of the eigenfunctions of a system is that they are depends only on ¢? (b) Solve this equation for i and evaluate
orthogonal to one another, which means that the normalization constant. (Hint: Review the solution of

Schrodinger’s equation for the hydrogen atom.) (¢) Find the
possible energies of the particle. (d) Find the possible angular

W, dV =0 n#m
f—w i momenta of the particle.

o
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Exercises

6.6

9.
10.

11.

12.

13.

6.7

14.

15.

16.

17.

18.

19.

20.

21.

22.

Magnetic Quantum Number

Under what circumstances, if any, is L, equal to L?

What are the angles between L and the z axis for | = 1?
Forl = 2?

What are the possible values of the magnetic quantum number
m; of an atomic electron whose orbital quantum number is
=4

List the sets of quantum numbers possible for an n = 4 hydro-
gen atom.

Find the percentage difference between L and the maximum
value of L, for an atomic electron in p, d, and f states.

Electron Probability Density

Under what circumstances is an atomic electron’s probability-
density distribution spherically symmetric? Why?

In Sec. 6.7 it is stated that the most probable value of r for a 1s
electron in a hydrogen atom is the Bohr radius a,. Verify this.

At the end of Sec. 6.7 it is stated that the most probable value
of r for a 2p electron in a hydrogen atom is 4ao, which is the
same as the radius of the n = 2 Bohr orbit. Verify this.

Find the most probable value of r for a 3d electron in a hydro-
gen atom.

According to Fig. 6.11, P dr has two maxima for a 2s electron.
Find the values of r at which these maxima occur.

How much more likely is the electron in a ground-state hydro-
gen atom to be at the distance ao from the nucleus than at the
distance 2ay?

In Section 6.7 it is stated that the average value of r for a 1s
electron in a hydrogen atom is 1.5a,. Verify this statement by
calculating the expectation value (r) = [ rlyl* dV.

The probability of finding an atomic electron whose radial wave
function is R(r) outside a sphere of radius ry centered on the
nucleus is

J [R(V|*r* dr
(a) Calculate the probability of finding a 1s electron in a hydro-
gen atom at a distance greater than dao from the nucleus.
(b) When a 1s electron in a hydrogen atom is 2d, from the nu-
cleus, all its energy is potential energy. According to classical
physics, the electron therefore cannot ever exceed the distance
24, from the nucleus. Find the probability r > 24, for a 1s
electron in a hydrogen atom.

According to Fig. 6.11, a 2s electron in a hydrogen atom is
more likely than a 2p electron to be closer to the nucleus than

23.

r = do (that is, to be between r = 0 and r = ay). Verify this by
calculating the relevant probabilities.

Unsold’s theorem states that for any value of the orbital
quantum number [, the probability densities summed over all
possible states from m; = —I to m; = +1 yield a constant
independent of angles 6 or ¢; that is,

+1
> 6P |®f = constant
mp=—1
This theorem means that every closed subshell atom or ion
(Sec. 7.6) has a spherically symmetric distribution of electric
charge. Verify Unsold’s theorem for [ = 0,1 = 1,and | = 2
with the help of Table 6.1.

6.9 Selection Rules

24.

25.

26.

27.

A hydrogen atom is in the 4p state. To what state or states can
it go by radiating a photon in an allowed transition?

With the help of the wave functions listed in Table 6.1 verify
that Al = =1 forn = 2 — n = 1 transitions in the hydrogen
atom.

The selection rule for transitions between states in a harmonic
oscillator is An = *1. (a) Justify this rule on classical grounds.
(b) Verify from the relevant wave functions that the n = 1 —

n = 3 transition in a harmonic oscillator is forbidden whereas
then=1—>n=0andn = 1-—n = 2 transitions are allowed.

Verify that the n = 3 — n = 1 transition for the particle in a
box of Sec. 5.8 is forbidden whereas the n = 3 —n = 2 and
n =2 —n = 1 transitions are allowed.

6.10 Zeeman Effect

28.

29.

30.

31.

32.

In the Bohr model of the hydrogen atom, what is the magni-
tude of the orbital magnetic moment of an electron in the
nth energy level?

Show that the magnetic moment of an electron in a Bohr orbit
of radius r, is proportional to Vr,.

Example 4.7 considered a muonic atom in which a negative
muon (m = 207m,) replaces the electron in a hydrogen atom.
What difference, if any, would you expect between the Zeeman
effect in such atoms and in ordinary hydrogen atoms?

Find the minimum magnetic field needed for the Zeeman effect
to be observed in a spectral line of 400-nm wavelength when a
spectrometer whose resolution is 0.010 nm is used.

The Zeeman components of a 500-nm spectral line are
0.0116 nm apart when the magnetic field is 1.00 T. Find the
ratio e/m for the electron from these data.
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Many-Electron Atoms

Helium, whose atoms have only closed electron shells, is inert chemically and cannot burn or explode.
Because it is also less dense than air; it is used in airships.

71 ELECTRON SPIN 7.6
Round and round it goes forever

1.2 EXCLUSION PRINCIPLE
A different set of quantum numbers for each 1.7

electron in an atom

7.3 SYMMETRIC AND ANTISYMMETRIC WAVE 7.8

FUNCTIONS
Fermions and bosons

7.4 PERIODIC TABLE
Organizing the elements

1.5 ATOMIC STRUCTURES
Shells and subshells of electrons

228

7.9

EXPLAINING THE PERIODIC TABLE
How an atom’s electron structure determines its
chemical behavior
SPIN-ORBIT COUPLING
Angular momenta linked magnetically
TOTAL ANGULAR MOMENTUM
Both magnitude and direction are quantized
X-RAY SPECTRA
They arise from transitions to inner shells

APPENDIX: ATOMIC SPECTRA
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uantum mechanics explains certain properties of the hydrogen atom in an

accurate, straightforward, and beautiful way. However, it cannot approach a

complete description of this atom or of any other without taking into account
electron spin and the exclusion principle. In this chapter we will look into the role of
electron spin in atomic phenomena and into why the exclusion principle is the key to
understanding the structures of atoms with more than one electron.

7.1 ELECTRON SPIN

Round and round it goes forever

The theory of the atom developed in the previous chapter cannot account for a num-
ber of well-known experimental observations. One is the fact that many spectral
lines actually consist of two separate lines that are very close together. An example
of this fine structure is the first line of the Balmer series of hydrogen, which arises
from transitions between the n = 3 and n = 2 levels in hydrogen atoms. Here the
theoretical prediction is for a single line of wavelength 656.3 nm while in reality
there are two lines 0.14 nm apart—a small effect, but a conspicuous failure for the
theory.

Another failure of the simple quantum-mechanical theory of the atom occurs in the
Zeeman effect, which was discussed in Sec. 6.10. There we saw that the spectral lines
of an atom in a magnetic field should each be split into the three components speci-
fied by Eq. (6.43). While the normal Zeeman effect is indeed observed in the spectra
of a few elements under certain circumstances, more often it is not. Four, six, or even
more components may appear, and even when three components are present their spac-
ing may not agree with Eq. (6.43). Several anomalous Zeeman patterns are shown in
Fig. 7.1 together with the predictions of Eq. (6.43). (When reproached in 1923 for
looking sad, the physicist Wolfgang Pauli replied, “How can one look happy when he
is thinking about the anomalous Zeeman effect?”)

In order to account for both fine structure in spectral lines and the anomalous
Zeeman effect, two Dutch graduate students, Samuel Goudsmit and George Uhlenbeck,
proposed in 1925 that

Every electron has an intrinsic angular momentum, called spin, whose magni-
tude is the same for all electrons. Associated with this angular momentum is a
magnetic moment.

.. No magnetic field
ll]l Magnetic field present
LH

Expected splitting

l No magnetic
ﬁ e
Magnetic field
Il e
[N [N

Expected splitting

Figure 7.1 The normal and anomalous Zeeman effects in various spectral lines.
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What Goudsmit and Uhlenbeck had in mind was a classical picture of an electron
as a charged sphere spinning on its axis. The rotation involves angular momentum,
and because the electron is negatively charged, it has a magnetic moment p, opposite
in direction to its angular momentum vector S. The notion of electron spin proved to
be successful in explaining not only fine structure and the anomalous Zeeman effect
but a wide variety of other atomic effects as well.

To be sure, the picture of an electron as a spinning charged sphere is open to seri-
ous objections. For one thing, observations of the scattering of electrons by other elec-
trons at high energy indicate that the electron must be less than 10™'° m across, and
quite possibly is a point particle. In order to have the observed angular momentum
associated with electron spin, so small an object would have to rotate with an equa-
torial velocity many times greater than the velocity of light.

But the failure of a model taken from everyday life does not invalidate the idea of
electron spin. We have already found plenty of ideas in relativity and quantum physics
that are mandated by experiment although at odds with classical concepts. In 1929
the fundamental nature of electron spin was confirmed by Paul Dirac’s development of
relativistic quantum mechanics. He found that a particle with the mass and charge of
the electron must have the intrinsic angular momentum and magnetic moment pro-
posed for the electron by Goudsmit and Uhlenbeck.

The quantum number s describes the spin angular momentum of the electron. The
only value s can have is s = 3, which follows both from Dirac’s theory and from spec-
tral data. The magnitude S of the angular momentum due to electron spin is given in
terms of the spin quantum number s by

i 1
Spin angular S=Vsis+ Dk = ?ﬁ (7.1

momentum

This is the same formula as that giving the magnitude L of the orbital angular
momentum in terms of the orbital quantum number [, L = VI(I + 1) 4.

Example 7.1

Find the equatorial velocity v of an electron under the assumption that it is a uniform sphere of
radius ¥ = 5.00 X 10~'" m that is rotating about an axis through its center.

Solution

The angular momentum of a spinning sphere is Iw, where T = 2 m? is its moment of inertia
and w = v/r is its angular velocity. From Eq. (7.1) the spin angular momentum of an electron

isS = (V?/z)ﬁ, so
2 2
S= ﬁh =lw = (—mr2><z> = —mur
2 5 r 5

=501 X102 m/s=1.67 X 10%¢

e < 5V3 )i _ (5V3)(1.055 X 107 - 5)
4 Jmr (#)(9.11 X 107°! k)(5.00 X 1071 m)

The equatorial velocity of an electron on the basis of this model must be over 10,000 times the
velocity of light, which is impossible. No classical model of the electron can overcome this
difficulty.

o
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Table 7.1 Quantum Numbers of an Atomic Electron S,
Name Symbol Possible Values Quantity Determined
Principal n 1,2,3, ... Electron energy
Orbital l 0,1,2,...,n—1 Orbital angular-momentum magnitude
Magnetic m =1,...,0, ..., +l Orbital angular-momentum direction
Spin magnetic m -+ Electron spin direction

The space quantization of electron spin is described by the spin magnetic quantum
number m,;. We recall that the orbital angular-momentum vector can have the 21 + 1
orientations in a magnetic field from +I to —I. Similarly the spin angular-momentum
vector can have the 2s + 1 = 2 orientations specified by m; = +7 (“spin up”) and
m, = — 5 (“spin down”), as in Fig. 7.2. The component S, of the spin angular momentum
of an electron along a magnetic field in the z direction is determined by the spin mag-
netic quantum number, so that

Z component of 1

spin angular S,=mh==*—h (7.2)
momentum 2 Figure 7.2 The two possible ori-
entations of the spin angular-
momentum vector are “spin up”
(mg=+;) and “spin down’
(m, = —).

We recall from Sec. 6.10 that gyromagnetic ratio is the ratio between magnetic
moment and angular momentum. The gyromagnetic ratio for electron orbital motion
is —e/2m. The gyromagnetic ratio characteristic of electron spin is almost exactly twice
that characteristic of electron orbital motion. Taking this ratio as equal to 2, the spin
magnetic moment g, of an electron is related to its spin angular momentum S by

Spin magnetic o= — iS (7.3)

moment m

The possible components of p, along any axis, say the z axis, are therefore limited to

z component of
P eh

spin magnetic ey = F— = Fpup (7.4
moment 2m

where g is the Bohr magneton (= 9.274 X 10~ J/T = 5.788 X 107> eV/T).

The introduction of electron spin into the theory of the atom means that a total of
four quantum numbers, n, I, m;, and m,, is needed to describe each possible state of
an atomic electron. These are listed in Table 7.1.

7.2 EXCLUSION PRINCIPLE

A different set of quantum numbers for each electron in an atom
In a normal hydrogen atom, the electron is in its quantum state of lowest energy. What
about more complex atoms? Are all 92 electrons of a uranium atom in the same quantum

state, jammed into a single probability cloud? Many lines of evidence make this idea
unlikely.
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